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Abstract

A method is introducted for detecting intrusions at the level of privileged processes. Evidence is given that short
sequences of system calls executed by running processes area good discriminator between normal and abnormal op-
erating characteristics of several common UNIX programs. Normal behavior is collected in two ways: Synthetically,
by exercising as many normal modes of usage of a program as possible, and in a live user environment by tracing the
actual execution of the program. In the former case several types of intrusive behavior were studied; in the latter case,
results were analyzed for false positives.



1 Introduction

Modern computer systems are plagued by security vulnerabilities. Whether it is the latest UNIX buffer overflow or
bug in Microsoft Internet Explorer, our applications and operating systems are full of security flaws on many levels.
From the viewpoint of the traditional security paradigm, it shouldbe possible to eliminate such problems through
more extensive use of formal methods and better software engineering. This view rests on several assumptions: That
security policy can be explicitly and correctly specified, that programs can becorrectly implemented, and that systems
can be correctly configured. Although these assumptions may be theoretically reasonable, in practice none of them
holds. Computers systems are not static: They are being continually changed by vendors, system administrators, and
users. Programs are added and removed, and configurations are changed. Formal verification of a statically defined
system is time-consuming and hard to do correctly; formal verification of adynamic system is impractical. Without
formal verifications, tools such as encryption, access controls, firewalls,and audit trails all become fallible, making
perfect implementation of a security policy impossible, even if a correct policy could be devised in the first place. If
we accept that our security policies, our implementations, and our configurations are flawed in practice, then we must
also accept that we will have imperfect security. We can incrementally improve security through the use of tools such
as Intrusion Detection Systems (IDS). The IDS approach to security is based on the assumption that a system will
not be secure, but that violations of security policy (intrusions) canbe detected by monitoring and analyzing system
behavior.

There are many different levels on which an IDS can monitor system behavior. It is critical to profile normal
behavior at a level that is both robust to variations in normal, and perturbed by intrusions. In the work reported here,
we chose to monitor behavior at the level of /emphprivileged processes. Privileged processes are running programs
that perform services (such as send or receive mail), which require access to system objects that are inaccessible to the
ordinary user. To enable these processes to perform their jobs, they are given privileges over and above those of an or-
dinary user (even though they can be invoked by an ordinary user). In UNIX, processes usually run with the privileges
of the user that invoked them. However, privileged processes can change their privileges to that of the superuser by
means of the setuid mechanism. One of the security problems with privileged processes in UNIX is that the granularity
of permissions is too coarse: Privileged processes need superuser status toaccess system resources, but granting them
such status gives them more permission than necessary to perform their specific tasks [26]. Consequently they have
permission to access /emphall system resources, not just those that are relevant to their operation. Privileged processes
are trusted to access only relevant system resources, but in cases where there issome programming error in the code
that the privileged process is running, or if the privileged processis incorrectly configured, an ordinary user may be
able to gain superuser privileges by exploiting the problem in the process. For the sake of brevity, we usually refer
to privileged processes (or programs) simply as “processes” (or “programs”), and use the qualifier only to resolve
ambiguities.

It is clear that privileged processes are a good level to focus on because exploitation of vulnerabilities in privileged
processes can give an intruder superuser status. Furthermore, privilegedprocesses constitute a natural boundary for a
computer, especially processes that listen to a particular port. In UNIX, privileged processes, such astelnetd and
logind, function as servers that control access into the system. Corruption of these servers can allow an intruder
to access the system remotely. Monitoring privileged processes also offers some advantages over monitoring user
behavior, which has been the most method to date (for example, see [4, 9, 22, 31, 35]). The range of behaviors of
privileged processes is limited compared to the range of behaviors of users; Privileged processes usually perform a
specific, limited function, whereas users can carry out a wide variety of actions. Finally, the behavior of privileged
processes is relatively stable over time, especially compared to user behavior.Not only do users perform a wider
variety of actions, but the actions performed may change considerably over time, whereas the actions (or at least the
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functions) of privileged processes usually do not vary much with time.
Our approach to detecting irregularities in the behavior of privilegedprograms is to regard the program as a black

box, which, when run, emits someobservable. We believe that this observable should be a dynamic characteristic
of that program; although code stored on disk may have the potential todo harm, it has to be actually running to
realise that potential. If we regard the process as a black-box, we do not need specialized knowledge of the internal
functioning or the intended role of the process; we can infer these indirectly by observing its normal behavior1. A
natural observable for processes in UNIX would be based onsystem calls, because UNIX processes access system
resources through the use of system calls. We have chosenshort sequencesof system calls as our observable.

In an earlier study we reported preliminary evidence that short sequences of system calls are a good simple dis-
criminator for several types of intrusion [14]. The results reportedhere extend the earlier study, with several important
differences. First, we have slightly changed how we record sequences of system calls: Previously we used look-ahead
pairs, with a look-ahead value of 6; here we use exact sequences of length 10.Next, we have used a measure of
anomalous behavior that is independent of trace length (based on Hamming matches between sequences). Finally, we
have collected normal behavior in a real, live2 environment, and analyzed it for false positives.

We want an IDS that is stable and lightweight (efficient), all of which all depends on the discriminator (observable)
that we use to distinguish between acceptable and unacceptable behavior. By stable we mean that the descriminator re-
liably distinguishes between acceptable and unacceptable behavior. Our approachis experimental because we believe
that current theories do not adequately describe how implemented systems really run. In this paper we are primarily
concerned with determining empirically if the discriminator is stable. Efficiency is a secondary consideration, and is
addressed in this paper to the extent that we analyze the complexity of ouralgorithm; however, we do not report actual
running times for the method on a production system.

Our work is inspired by the defenses of natural immune systems. There are compelling similarities between the
problems faced by immune systems and by computer security [15]. Both systems must protect a highly complex
system from penetration by inimical agents; to do this, they must be able to discriminate between broad ranges of
normal and abnormal behavior. In the immune system, this discrimination task is known as the problem of distin-
guishing “self” (the harmless molecules normally within the body) from “nonself” (dangerous pathogens and other
foreign materials). Discrimination in the immune system is based on a characteristic structure called a peptide (a short
protein fragment) that is both compact and universal in the body. This limits the effectiveness of the immune system;
for example, the immune system cannot protect the body against radiation. However, proteins are a component of all
living matter, and generally differ between self and nonself, so they provide a good distinguishing characteristic. We
view our chosen discriminator (short sequences of system calls) as analogous to a peptide.

The structure of this paper is as follows. In section 2 we review relatedwork in intrusion detection. Section 3
describes our method of anomaly intrusion detection: First we describe how to build up profiles of normal behavior,
and then we define three ways of detecting anomalies. We then use the method tobuild a synthetic normal profile
in section 4, demonstrating its effectiveness at detecting intrusions and other anomalies. In section 5 we consider the
consequences of collecting our normal data in online, functioning environments, discuss false positives, and present
experimental results on false positive rates. The limitations and implications of our approach are discussed in section
6. A brief appendix is included which details the various intrusions that we used in our experiments, the methods we1There are other approaches that require knowledge of the internals and intended role of a program, most notably the program specification
method [26], which attempts to constrain the program in sucha way that it can perform only those operations the program isdesigned to do, and
no more, i.e the method refines the permissions structure to accomodate specific privileged processes. The differences between our method and this
are discussed more fully in section 6.2We use the words “real” and “live” to refer to a production environment, i.e an environment which is currently in normal, everyday use. We
contrast this to our “synthetic” environment, which is an isolated test environment.
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used to generate synthetic normal, and a brief overview of UNIX.

2 Related Work

An Intrusion Detection System (IDS) continuously monitors some dynamic behavioral characteristics of a computer
system to determine if an intrusion has occurred. This definition excludes many useful computer security methods.
Security analysis tools, such as SATAN [12] and COPS [13] are used to scan a system for weaknesses and possible
security holes. They are not IDS because they do not monitor some dynamic characteristic of the system for intrusions
or evidence of intrusions, rather they scan the system for weaknesses suchas configuration errors or poor password
choices that couldlead to intrusions. Other important non-IDS solutions to computer security problems are provided
by cryptography [10], which is especially useful for authentication and secure communications [32]. Virus protection
schemes such as that described in [24] are also not IDS under our definition, because they scan static code, not dynamic
behavioral characteristics. Some approaches are not easily classified, for example, integrity checking systems such as
TRIPWIRE [25] monitor important files for changes that could indicate intrusions. Although such files are static code,
they become a dynamic characteristic indicative of intrusions when modified by intrusive activities, and so TRIPWIRE
could be classified as an IDS.

There are many different architectures for IDS. IDS can be centralized (i.e. processing is performed on a single
machine) or distributed across many machines. Almost all IDS are centralized; the autonomous agents approach [8]
is one of the few proposed IDS that is truly distributed. Furthermore, an IDS can be host-based or network-based; the
former type monitors activity on a single computer, whereas the latter type monitors activity over a network. Network-
based IDS can monitor information collated from audit trails from many different hosts (multi-host monitoring) or
they can monitor network traffic. NADIR [22] and DIDs [21] are examples of IDS that do both multi-host and
network traffic monitoring; NSM [20] is an IDS that monitors only network traffic. Regardless of other architectural
considerations, any IDS must have three components: Data collection (andreduction), data classification and data
reporting. Data reporting is usually very simple, with system administrators being informed of anomalous or intrusive
behavior; few IDS take it upon themselves to act rapidly to deal with irregularities. Various methods for data collection
and classification are discussed below.

An IDS that monitors for intrusive behavior, needs to collect data on the dynamic state of the system. Selecting
a set of dynamic behavioral characteristics to monitor is a key design decision for an IDS, one which will influence
the types of analyzes that can be performed and the amount of data that will be collected. Most systems (for example,
IDES/NIDES [30, 31, 4], Wisdom&Sense [29] and TIM [35]) collect profiles of user behavior, generated by audit
logs. Other systems look at network traffic, for example, NSM and the system presented in [19]. Other approaches
attempt to characterize the behavior of privileged processes, as in the program specification method [26]. Different
behavioral characteristics will generate different amounts of data; as an extreme example, systems monitoring user
profiles process large volumes of raw data (an average user will generate from 3 to 35MB of audit data per day [18]).
In the latter case the data may need to be reduced to a manageable size.

Once a behavioral characteristic is selected, it is used to classify data. In thesimplest case, this is a binary
decision problem: The data is classified as either normal (acceptable) or anomalous (and possibly intrusive). Data
classification can be more complex, for instance, trying to identify the particular type of intrusion associated with
anomalous behavior. A plethora of methods have been used for data classification, the majority of them using artificial
intelligence techniques (see [18] for a detailed overview). Classificationtechniques can be divided into two categories,
depending on whether they look for known intrusion signatures (misuse intrusion detection), or for anomalous behavior
(anomaly intrusion detection). Misuse-IDS encode intrusion signatures or scenarios and scan for occurrences of these,
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which requires prior knowledge of the nature of the intrusion. By contrast, in anomaly-IDS, it is assumed that the
nature of the intrusion is unknown, but that the intrusion willresult in behavior different from that normally seen
in the system. Anomaly IDS use models of normal or expected behavior tomonitor systems; deviations from the
normal model indicate possible intrusions. Some systems incorporate both categories, a good example being NIDES,
or Denning’s generic model of an IDS [9].

Relatively few IDS deal with misuse intrusion detection. One type of implementation uses an expert system to
fit data to known intrusion signatures, for example, in IDES/NIDES, or Stalker [33], knowledge of past intrusions is
encoded by human experts in expert system rules. Other approaches attempt to generate intrusion signatures automat-
ically, for example, one approach uses a pattern matching model based on coloredPetri nets [28, 27], while USTAT
[23] represents potential intrusions as sequences of system states in the form of state transition diagrams.

Because of the difficulty of encoding known intrusions, and the continual occurrence of new intrusions, many
systems focus on anomaly intrusion detection. A wide variety of methodshave been used. TRIPWIRE monitors the
state of special files (such as the/etc/hosts.equiv file on a UNIX system, or UNIX daemon binaries) for change;
normal is simply the static MD5 checksum of a file. A program specification language is used in [26] to define normal
for privileged processes in terms of the allowed operations for that process. Rule-based induction systems such as TIM
have been used to generate temporal models of normal user behavior. Wisdom&Sense incorporates an unsupervised
tree- learning algorithm to build models of patterns in user transactions. Other systems, such as NIDES, have employed
statistical methods to generate models of normal user behavior in terms offrequency distributions. NSM uses a
hierarchical model in combination with a statistical approach to determine network traffic usage profiles. On the
biologically inspired side, connectionist or neural nets have been used toclassify data [17], and genetic programming
has been proposed as a means of developing classifications [8].

3 Anomaly Intrusion Detection

The method we present here performs anomaly intrusion detection (although it could be used for misuse detection—
see section 6). We build up a profile of normal behavior for a process ofinterest, treating deviations from this profile as
anomalies. There are two stages to the anomaly detection: In the first stage we build up profiles ordatabasesof normal
behavior (this is analogous to the training phase for a learning system); in the second stage we use these databases to
monitor system behavior for significant deviations from normal (analogous to the test phase).

Recall that we have chosen to define normal in terms of short sequences of system calls. In the interests of
simplicity, we ignore the parameters passed to the system calls, and lookonly at their temporal orderings. This
definition of normal behavior ignores many other important aspects of process behavior, such as timing information,
instruction sequences between system calls, and interactions with other processes. Certain intrusions may only be
detectable by examining other aspects of process behavior, and so we may need toconsider them later. Our philosophy
is to see how far we can go with the simplest possible assumption.

3.1 Profiling Normal Behavior

The algorithm used to build the normal databases is extremely simple. Wescan traces of system calls generated by
a particular process, and build up a database of all unique sequences of a givenlength,k, that occurred during the
trace. Each program of interest has a different database, which is specific to a particular architecture, software version
and configuration, local administrative policies, and usage patterns. Oncea stable database is constructed for a given
program, the database can be used to monitor the ongoing behavior of the processes invoked by that program.
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This method is complicated by the fact that in UNIX a program can invoke more than one process. Processes are
created via thefork system call or its virtual variantvfork. The essential difference between the two is that afork
creates a new process which is an instance of the same program (i.e. a copy), whereas avfork replace the exisisting
process with a new one, without changing the process ID. We trace forks individually and include their traces as part
of normal, but we do not yet trace virtual forks because a virtual fork exectues a new program. In future, we will
switch databases dynamically to follow the virtual fork.

Given the large variability in how individual systems are currently configured, patched, and used, we conjecture
that individual databases will provide a unique definition of normal for most systems. We believe that such uniqueness,
and the resulting diversity of systems, is an important feature of theimmune system, increasing the robustness of
populations to infectious diseases [16]. The immune system of each individual is vulnerable to different pathogens,
greatly limiting the spread of a disease across a population. Traditionally, computer systems have been biased towards
increased uniformity because of the advantages offered, such as portability and maintainability. However, all the
advantages of uniformity become potential weaknesses when errors can be exploited by an attacker. Once a method is
discovered for penetrating the security of one computer, all computers with the same configuration become similarly
vulnerable.

The construction of the normal database is best illustrated with an example. Suppose we observe the following
trace of system calls (excluding parameters):

open, read, mmap, mmap, open, read, mmap

We slide a window of sizek across the trace, recording each unique sequence of lengthk that is encountered. For
example, ifk = 3, then we get the unique sequences:

open, read, mmap

read, mmap, mmap

mmap, mmap, open

mmap, open, read

For efficiency, these sequences are stored as trees, with each tree rooted at a particular system call. The set of trees
corresponding to our example is given in figure 1.

We record the size of the database in terms of the number of unique sequencesN , (in the example just given,N = 4) so an upper bound on the storage requirements for the normal database isO(Nk). In practice, the storage
requirements are much lower because the sequences are stored as trees. For example,thesendmail database, which
contains 1318 unique sequences of length 10, has 7578 nodes in the forest, where each node corresponds to a system
call. If we had a node for every single system call in all 1318 sequences, we would have 13180 nodes.

3.2 Measuring Anomalous Behavior

Once we have a database of normal behavior, we use the same method that weused to generate the database to check
new traces of behavior. We look at all overlapping sequences of lengthk in the new trace and determine if they
are represented in the normal database. Sequences that do not occur in the normal database are considered to be
mismatches. By recording the number of mismatches, we can determine the strength of ananomalous signal. Thus the
number of mismatches occurring in a new trace is the simplest determinant of anomalous behavior. We report these
counts both as a raw number and as a percentage of the total number of matches performed in the trace, which reflects
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the length of the trace. Ideally, we would like these numbers to be zero for new examples of normal behavior, and for
them to jump significantly when abnormalities occur.

We make a clear distinction here betweennormal and legal behavior. In the ideal case we want the normal
database to contain all variations in normal behavior, but we do not want it to contain every single possible path of
legal behavior, because our approach is based upon the assumption that normal behavior forms only a subset of the
possible legal execution paths through a program, and unusual behavior that deviates from those normal paths signifies
an intrusion or some other undesirable condition. We want to be able to detect not only intrusions, but also unusual
conditions that are indicative of system problems. For example, when a process runs out of disk space, it may execute
some error code that results in an unusual execution sequence (path through the program). Clearly such a path islegal,
but certainly it should not be regarded asnormal.

If the normal database does contain all variations in normal behavior, thenwhen we encounter a sequence that
is not present in the normal database, we can regard it as anomalous, i.e. we can consider a single mismatch to be
significant. In reality, it is likely to be impossible to collect all normal variations in behavior (these issues are discussed
more fully in sections 5 and 6), so we must face the possibility that our normal database will provide incomplete
coverage of normal behavior. One solution is to count the number of mismatches occurring in a trace, and only regard
as anomalous those traces that produce more than a certain number of mismatches. This is problematic however,
because the count is dependent on trace length, which might be indefinite for continuously running processes.

An alternative is to constrain the measure locally. The anomalies we have studied are temporally clumped: Anoma-
lous sequences due to intrusions seem to occur in local bursts. However, defining a local measure is difficult because
we have an unordered state space, i.e. we have no true notion of locality—how “close” one system call is to another.
We have chosen “Hamming distance”3 between sequences as the measure. Although this choice is somewhat arbitrary,
it is related to how closely anomalies are clumped. We cannot theoretically justify this measure, so we determine its
worth empirically.

We use the “Hamming distance” between two sequences to compute how much a new sequence actually differs
from existing normal sequences. The similarity between two sequences can be computed using a matching rule that
determines how the two sequences are compared. The matching rule used here is based on Hamming distance, i.e. the
difference between two sequencesi andj is indicated by the Hamming distanced(i; j) between them. For each new
sequencei, we determine theminimalHamming distancedmin(i) betweeni and the set of normal sequences:dmin(i) = minfd(i; j) 8 normal sequencesjg

Thedmin value represents the strength of the anomalous signal, i.e. how much it deviates from a known pattern.
Note that this measure is not dependent on trace length and is still amenableto the use of thresholds for binary decision
making.

The various measures can be illustrated with a small example. Again, consider the trace shown in the previous
example:

open, read, mmap, mmap, open, read, mmap

that generated the normal database consisting of:

open, read, mmap3Although we are not using a binary alphabet, the measure we use is analogous to a binary Hamming distance, i.e. it is the number of positions
in which the two sequences differ.
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read, mmap, mmap

mmap, mmap, open

mmap, open, read

Now, if we have a trace in which one call (the sixth in the trace) is changed from read to mmap:

open, read, mmap, mmap, open,mmap, mmap

then we will have the following new sequences:

mmap, open,mmap

open,mmap, mmap

This corresponds to 2 mismatches, which is 40% of the trace, and twodmin values of 1.
These three different measures have different time- complexities. To determine that a new sequence is a mismatch

requires at mostk � 1 comparisons, because the normal sequences are stored in a forest of trees, where the root of
each tree corresponds to a different system call. Similarly, it will takek� 1 comparisons to confirm that a sequence is
actually in the normal database. If the sequence is not in the normal database, then computingdmin for that sequence
is much more expensive. Becausedmin(i) is the smallest Hamming distance betweeni and all normal sequences,
we have to check every single sequence in normal before we can determinedmin(i) , which will require a total ofN(k � 1) comparisons (recall thatN is the number of sequences in the database). However, we expect anomalies to
be rare, so most of the time, the algorithm will be confirming normal sequences, which is much cheaper to do. If our
rate of anomalous to normal sequences isRA , then the average complexity of computingdmin(i) per sequence isN(k � 1)RA + (k � 1)(1�RA), which isO(k(RAN + 1)).
3.3 Classification Errors

An IDS using these measures will be making decisions based on the observedvalues of the measures. In the simplest
case, these are binary decisions: Either a sequence is anomalous, or it is normal. With binary decision making, there
are two types of classification errors: False positives and false negatives. We define these errors asymmetrically: A
false positiveoccurs when a single sequence generated by legitimate behavior is classified asanomalous; and afalse
negativeoccurs when none of the sequences generated by an intrusion is classified as anomalous, i.e. when all of the
sequences generated by an intrusion appear in the normal database. In statistical decision theory, false negatives and
false positives are called type I and type II errors, respectively.

To detect an intrusion,at least oneof the sequences generated by the intrusion must be classified as anomalous. In
terms of our measures, we requiredmin > 0 for at least one of the sequences generated by the intrusion. We measure
the strength of the anomaly bydmin, and because we want intrusions to generate strong anomalies, we assume that the
higher thedmin the more likely it is that the sequence was actually generated by an intrusion. In practice, we report
the maximumdmin value that was encountered during a trace, because that represents the strongestanomalous signal
found in the trace, i.e. we compute the signal of the anomaly,SA, as:SA = maxfdmin(i) 8 new sequencesig
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In our example above,SA = 1. Generally, we do not report the actualSA value, but rather theSA value normalized
over the sequence lengthk, to enable us to compareSA values for different values ofk, i.e.:cSA = SA=k

Although we would like to minimize both kinds of errors, we are more willing to tolerate false negatives than
false positives. False negatives can be reduced by adding layers of defense, whereas layering will not reduce overall
false positive rates. A simple example illustrates this. Consider asystem withL layers of defense that an intruder
must penetrate, where at each layer there is a probabilitypn that the intruder will escape detection (i.e.pn is the false
negative rate). If the probability of detection is independent for each layer, then the probability that the intruder will
penetrate all layers undetected ispLn . So, in this example, the overall false negative rate is exponentiallyreduced by
adding layers of protection (provided we have independence). By contrast,if we assume that at each layer we have an
(independent) probabilitypf of generating a false positive, then the expected number of false positives ispf � L . In
this case layering compounds false positives.

False positives can be measured when we collect normal behavior in live environments (see section 5). If we
are collecting normal empirically, the occurrence of rare but acceptable events could result in an incomplete normal
database. If the normal were incomplete, false positives could be the result, as we encounter acceptable sequences that
are not yet included in our normal database. To limit false positives, we set thresholds on thedmin(i) values, i.e. we
will regard as anomalous any sequencei for whichdmin(i) � C

where1 � C � k is the threshold value. To summarize, if a sequencei of lengthk is sufficiently different from all
normal sequences it is flagged as anomalous. The validity of the assumptionthat intrusive behavior is characterized
by increased Hamming distance from normal sequences is tested empirically in the sections that follow.

4 Behavior in a Synthetic Environment

There are two methods for choosing the normal behavior that is used to define the normal database: (1) We can
generate a “synthetic” normal by exercising a program in as many normal modesas possible and tracing its behavior;
(2) we can generate a “real” normal by tracing the normal behavior of a programin a live user environment. A
synthetic normal is useful for replicating results, comparing performance in different settings, and other kinds of
controlled experiments. Real normal is more problematic to collect and evaluate (these issues are discussed in section
5); however, we need real normal to determine how our system is likely to perform in realistic settings. For example,
if we generate normal synthetically we have no idea what false positive rates we will get in realistic settings because
our synthetic, by definition, includes all variations on normal behavior (although not all variations on legal behavior).
We could exclude some synthetically generated traces from normal and see what false positives resulted, but it is not
clear which traces to exclude—the choice is arbitrary and the resulting false positives would be equally arbitrary. In
this section we present results using a synthetic normal; in section 5 we present results using a real normal.

4.1 Building a Synthetic Normal Database

We studied normal behavior for three different processes in UNIX:sendmail, lpr andwu.ftpd (the first two
were running under SunOS 4.1.x, and the last one was running under Linux). Sendmail is a program that sends
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and receives mail,lpr is a program that enables users to print documents on a printer, andftpd is a program for
the transfer of files between local and remote hosts. Becausesendmail is the most complex of these processes, we
will briefly describe how we exercised sendmail to produce a profile of normal behavior (the methods for constructing
synthetic normal for the other two processes are described in Appendix 2). We considered variations in message
length, number of messages, message content (text, binary, encoded, encrypted), message subject line, who sent the
mail, who received the mail, and mailers. In addition, we looked at the effectsof forwarding, bounced mail and
queuing. Lastly, we considered the effects of the origin of all these variations in the cases of remote and local delivery.

A suite of 112 artificially constructed messages was used to exercisesendmail (version 5), producing a trace
of a combined length of over 1.5 million system calls. Table 1 shows howmany messages of each type were used to
generate the normal databases. We began with message length, testing 12 different message lengths, ranging from 1
line to 300,000 bytes. From this, we selected the shortest length thatproduced the most varied pattern of system calls
(50,000 bytes), and then used that as the standard message length for the remaining test messages. Similarly, with the
number of messages in asendmail run, we first sent 1 message and tracedsendmail, then we sent 5 messages,
tracingsendmail, and so forth, up to 20 messages. This was intended to test the response of sendmail to bursts of
messages. We tested message content by sending messages containing ASCII text, uuencoded data, gzipped data, and
a pgp encrypted file. In each case, a number of variations was tested and the one thatgenerated the most variations in
system call patterns was selected as a single default was selected before moving onto the next stage. These messages
constituted our corpus of normal behavior. We reran this set of standardmessages on each different operating system
andsendmail.cf (thesendmail configuration file) variant that we tried, thus generating a normal database that
was tailored to the exact operating conditions under whichsendmail was running.

Of the features considered, the following seemed to have little or no effect: Number of messages, message content,
subject line, who sent the mail, who received the mail, mail programs and queuing. Message length has a considerably
different effect on the sequence of system calls, depending on the message origin: Remote mail produces traces of
system calls that are proportional to the length of the message, with little sequence variation in these traces; local
mail produces traces that are roughly the same length, regardless of the size of message, but the sequence of system
calls used changes considerably as the message size increases. In both cases, once a large enough message size (50K)
is used to generate normal, message size makes no difference. The effect of forwarding mail on remote traces is
negligible, whereas it has a small but noticeable affect on local traces. Bounced mail had more of an effect remotely,
but the effects are still evident in the local case.

For each test, we generated databases for different values ofk for each of the three processes tested, i.e.sendmail,
lpr andftpd. The results fork = 10 are shown in table 2. Our choice of sequence length was determined by two
conflicting criteria. On the one hand we want a sequence length as short as possible to minimize the size of the database
and the computation involved in detection (recall that the time complexity of detection is proportional tok). On the
other hand, if the sequence length is too small we will not be able to discriminate between normal and anomalous
behavior. Our choice of 10 is based on empirical observations.

These databases are remarkably compact, for example, thesendmail database contains only 1318 unique se-
quences of length 10, which requires 9085 bytes to store in our current implementation.sendmail is one of the
most complex of the privileged processes currently used in UNIX systems, and if its behavior can be described so
compactly, then we can expect that other privileged processes will have normals at least as compact. The data are en-
couraging because they indicate that the range of normal behavior of theseprograms is limited. Too much variability
in normal would preclude detecting anomalies; in the worst case, if all possible sequences of lengthk show up as legal
normal behavior, then no anomalies could ever be detected.

How many possible sequences of lengthk are there? If we have an alphabetSigma of system calls, with sizejSigmaj, then there arejSigmajk possible sequences of lengthk. Choosing the alphabet size can be problematic
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without knowing exactly which system calls are used bysendmail, considering that there are a total of 182 system
calls in the SunOS 4.1.x operating system. As a conservative estimate, weassume thatsendmail uses no more than
53 calls (the number in the synthetic normal database), so, fork = 10 there are5310 , or approximately1017 possible
sequences. Thus oursendmail normal database only contains about10�13 percent of the total possible number of
patterns. Of course, this is not completely accurate, because the number of possible sequences thatsendmail can
actually use is limited by the structure of the code. To determine this would require analysis of the source code, which
is precisely what we wish to avoid because one of the strengths of our approach is that it does not require specialized
knowledge of any particular program.

4.2 Detecting Anomalous Behavior

Is intrusive behavior anomalous under this definition of normal? Ideally, we want most, if not all, intrusive behavior
to be anomalous. To test this, we have compared the normal databases againsta range of known abnormal behavior.

In these experiments, we report the number of mismatches, the percentage of mismatches, and the normalized
anomaly signalcSA. BecausecSA is not dependent on the length of the trace, it is our preferred measure. However,cSA
values are meaningful only in the context of detection thresholds, and thresholds are dependent on the acceptable level
of false positives. Because of the way we constructed normal, we have zero false positives for synthetic data; thus, in
principle, anycSA > 0 indicates an anomaly (although our goal is clear separation between the anomaly andnormal,
i.e. we want thecSA values to be large). The issue of false positives in a real environment isexplored in section 5.

4.2.1 Distinguishing Between Processes

The first experiments we performed comparedsendmail with other UNIX programs. If we could not distinguish
betweensendmail and other programs, then we would be unlikely to detect small deviationsin the behavior of a
single program. We have done this comparison for varying sequence lengths. When the sequence length is very low,
(k = 1), there are very few mismatches, in the range of 0 to 7%. When the sequence length reachesk = 30 there are
100% mismatches against all programs. Results of comparisons fork = 10 are presented in table 3

Each process showed a significant number of anomalous sequences (at least 57), andat least one anomalous
sequence is quite different from the normalsendmail sequences, as evinced bycSA, which is at least 0.6, indicating
that the most anomalous sequence differs from the normal sequences in over half of its positions. The processes shown
are distinct fromsendmail because the actions they perform are considerably different from those ofsendmail.
We also tested the normal database forlpr and achieved similar results (data not shown).lpr exhibits even more
separation than that shown in table 3, presumably because it is a smaller program with more limited behavior. These
results suggest that the behavior of different processes is easily distinguishable using sequence information alone.

4.2.2 Detecting Intrusions

The second set of experiments was to detect intrusions that exploit flawsin three processes:sendmail, lpr and
wu.ftpd. Some of the intrusions were successful, and others unsuccessful becauseof updates and patches in soft-
ware. We report results for both. We would like to be able to detect most(if not all) of these attempted intrusions, even
if they fail. Detection of failed intrusions would be a useful warningsign that an attacker is attempting to break into
a system. A third behavioral category that we would like to be able to detect is the occurrence of error states, such as
sendmail forwarding loops. Although these error states are technically legal behavior, they are properly regarded
as abnormal because they indicate the existence of problems.
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We compared system call traces for each of the three categories (successful exploits, unsuccessful exploits and error
conditions) with the normal database for the relevant program and recorded the number of mismatches, percentage of
mismatches over the trace, andcSA values. Table 4 shows results for successful intrusions. Each row in the table reports
data for one typical trace. In most cases, we have conducted multiple runs of the intrusion with identical or nearly
identical results; where runs differed significantly, we report a range of values. To date, we have collected data on five
successful intrusions, three of them forsendmail, one forlpr [3] and one forftpd [5]. The threesendmail
intrusions were: sunsendmailcp [1], syslogd [2, 6], and a decode alias intrusion. These intrusionsare described in
the appendix. Most of the successful intrusions are clearly detected, withcSA values of 0.5 to 0.7. The exception to
this is decode intrusion, which, on the low end of the range, generates only 7 mismatches and acSA value of 0.2. These
results suggest approximate detection thresholds that we would need in anonline system to detect intrusions.

The results for trying to detect unsuccessful intrusions and error conditions are shown in table 5. The unsuccessful
intrusions are based on attack scripts called sm565a and sm5x. SunOS 4.1.4 has patches that prevent these particular
intrusions. Overall, these unsuccessful intrusions are as clearly detectable as the successful intrusions. Error conditions
are also detectable within a similar range ofcSA values. As a clear case of undesirable errors, we have studied local
forwarding loops insendmail (see appendix for a description).

In summary, we are able to detectall the abnormal behaviors we tested against, including successful intrusions,
failed intrusion attempts, and unusual error conditions.

We have only reported results fork = 10 because experiments show that varying sequence length has little effect
on detection, in terms of thecSA measure. We analyzed sequences of lengthk = 2 to k = 30. The minimum sequence
length used was 2, becausek = 1 will just give cSA = 0 or cSA = 1, which is not sufficiently informative. The
maximum sequence length used was 30 because the cost of computation scales withsequence length. The results are
reported in figure 2. The decode intrusion is not detectable fork < 6, but beyond this value ofkk, sequence length
seems to make little difference forcSA. Sometimes an increased sequence length results in a decreased anomaly signal.
This could happen if the anomalies consisted of short clumps of system calls separated by large gaps: As sequence
length increases, longer sequences would be more similar to normal sequences.For example, say we had a normal
sequenceopen, read, mmap, mmap, open, read, which an intrusion disrupted in the first three positions to giveclose,
close, close, mmap, open, read. Thenk = 3 would givecSA = 3=3 = 1:0 (from the first three system calls), butk = 6
would givecSA = 3=6 = 0:5. Figure 2 implies that the best sequence length to use would be 6 or slightly larger than
6, because that will allow detection of anomalies while minimizing computation, which is directly proportional tok.
We have chosenk = 10 because that gives a margin for error.

Considering only the three anomaly measures gives a limited picture of the sorts of perturbations caused by in-
trusions and other unacceptable behaviors. For example, thecSA values only indicate the most anomalous sequence
without giving any clear idea of how anomalous sequences are temporally distributed. The anomaly profile in figure 3
shows the temporal distribution of anomalous sequences for a successfulsendmail intrusion, one of thesyslogd
intrusion runs. From this figure we can see how noticeable intrusions are, and how anomalies are clumped. It also
indicates that if we were doing real-time monitoring, we might be ableto detect some intrusionsbeforean intruder
gains access, right at the start of the intrusive behavior.

5 Behavior in a Real Environment

The results reported in section 4 were based on normal databases generated synthetically, i.e. we attempted to exercise
all normal modes of behavior of a given process and used the resulting tracesto build our normal databases. For an
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IDS that is deployed to protect a functioning system, this may not be the best way to generate normal. The real normal
behavior of a given process on a particular machine could be quite different from the synthetic normal. Some synthetic
normal behaviors may be absent in an actual system; on the other hand, the realnormal might include behavior that
we had not thought of, or were unable to incorporate into the synthetic. In this section we attempt to build normal in a
real environment.

Several questions arise when we consider collecting real normal on a running system:

1. How do we ensure that we have not included abnormal sequences? That is, how do we ensure that the system
is not being exploited as we collect the normal traces? Including abnormal sequences could result in false
negatives.

2. How do we ensure that our normal is sufficiently comprehensive? How long do we collect normal for? How
much normal is enough? An incomplete normal could result in false positives.

3. Are intrusions still detectable as we increase the size of the normal?As the size of normal increases, we include
rare normal sequences that could overlap more with abnormal sequences, thus reducing detection rates, i.e.
increasing false negatives.

5.1 Collecting Real Normal

We have collected normal forlpr in two different real environments, at the Massachusetts Institute of Technology’s
Artificial Intelligence laboratory (MIT), and at the University of New Mexico’s Computer Science Department (UNM).
In both cases, we used a very simple solution to question 1 posed above: How do we ensure that intrusive behavior
is not included in these normals? For thelpr we have studied, we are aware of only one intrusion (reported in
section 4.2.2 above) which requires thatlpr generate a 1000 print jobs in close succession, which is something we
as observers could easily detect on a system that never generates more than 200 jobs in a day. This does not guarantee
that our normal is free of intrusion traces, but at least we have excluded the intrusion against which we do our analysis.
In general, however, the problem will not be so trivial, particularly if we do not know the nature of the intrusion
beforehand, i.e. if we are concerned with true anomaly detection. Possible ways of excluding intrusive behavior from
the normal trace include:� Collect normal in the real, open environment, whilst monitoring the environment very carefully to ensure that

no intrusions have happened during our collection of normal. This iswhat we did forlpr.� Collect normal in an isolated environment where we are sure no intrusions can happen. The disadvantage of
this solution is that the normal will possibly be incomplete, becausethe environment is of necessity limited,
particularly in the case of processes, such assendmail, that communicate with the outside world.

In the MIT environment, we tracedlpr running on 77 different hosts, each running SunOS, for two weeks, to
obtain traces of a total of 2766 print jobs. The growth of the sizeN of the normal database is shown in figure 4.
As more print jobs are traced and the traces added into normal, so the numberof unique sequencesN in the normal
database grows. Initially, the growth is very rapid, but then tapers off, in particular, fork = 6 andk = 10, there
is minimal database growth past 1000 print jobs. This reinforces the idea of choosing as short a sequence length as
possible, because we can accumulate the full range of normal sequences much morerapidly for short sequences. We
regard figure 4 as promising, because it indicates that normal behavior islimited and can be collected in a short period
of time (depending on how much the system is used).

13



How much does normal vary between different environments? We have some answers in the case oflpr because
we have two normals collected independently at MIT and UNM, for the identical program and operating system. These
represent considerably different environments, as can be seen from the differences listed in table 6, for example, we
tracedlpr on only one host at UNM, whereas we traced it on 77 hosts at MIT. Despite the differences in environment,
the patterns of database growth in the UNM environment are similar to those at MIT (data not shown), although the
resulting database sizes are quite different: 569 unique sequences for UNMand 876 for MIT. These databases not
only differ in size, but also in content: For example, a comparison of theunique sequences in both databases fork = 6 indicates that only 141 of the sequences are the same between the databases, whichrepresents 40% of the UNM
database and 29% of the MIT database.

Although these databases are very different, they both detect thelprcp intrusion almost identically. When we
analyze the anomalous sequences generated by the intrusion, we find that thereare 16uniqueanomalous sequences
detected by the UNM database, which are identical to 16 of the 17 unique anomalous sequences detected by the MIT
database, i.e. the anomaly is almost identical for both databases. This suggests that intrusion signatures could be
encoded in sequences of system calls, i.e. the system call signature could be the basis of a misuse-IDS, or an IDS that
does both anomaly and misuse detection (for a further exploration of these ideas see [32]).

5.2 How much Normal is enough?

This section addresses questions 2 and 3 posed above: How much normal is enough? And, are intrusions still de-
tectable as the size of normal increases? In our experiments we used thelpr data we collected in the real environ-
ments at MIT and UNM. In both cases, we divided the set of data into two, the first set is used as the training set, and
the second set as the test set. The training data are used to build up a normal database, and the test data are scanned
using this normal database (we explain below how we choose the test and training sets). A false positive is then any
sequencei in the test set for whichdmin(i) � C

We determine the lowest false positive rate"fp by setting the thresholdC to be the minimum value needed for the
normal database to detect thelprcp intrusion. Because we only have one intrusion to test against, and weset the
threshold so that we always detect it, we have zero false negatives. The false positive rate is simply the number of
false positives per job.

Theexpectedfalse positive rate was calculated using the bootstrap technique, which isa procedure for estimating
(approximating) the distribution of a statistic from a random sample [11]. We divided the jobs into test and training
sets as follows: up to 700 jobs were chosen randomly with replacement for the training set, and the remaining jobs
were used for the test set (thus we had a test set of 2066 jobs for MIT and one of 534 jobs for UNM). This process
was repeated 100 times to get the bootstrap estimate. The bootstrap is applicable here because the data appear to be
stationary. We checked for stationarity by sampling the jobs both randomly, and in small chronologically consecutive
groups, and comparing the means produced by the two sampling methods. Atwo-tailed, two sample t-test between
these two samples gives a P-value of 0.19. Thus the probability that these means are different is insignificant.

The expected false positive rates and standard deviations are shown in figure 5 for varying sizes of the normal
database. The data shown are for the MITlpr, with k = 10, andC = 4. Similar results were obtained with thelpr
data collected at UNM (data not shown).

To summarize, the lowest expected false positive rate in figure 5 is0:01� 0:004. This is about 1 false positive in
every 100 jobs, or, on the MIT system, an average of 2 false positives per day. This rate was computed for a normal
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database of 700 jobs, with 2066 jobs in the test set. From figure 5 thefalse positive rate appears to be leveling off.
However, when we increase the size of the normal database to 1400 jobs (not shown in the figure), with a test set of
1366 jobs, the rate drops to0:005 � 0:002, which is one false positive per day. We are hesitant to draw too many
conclusions from these data because they are derived from a single processfor which we have only one true positive
(an intrusion), and so we cannot get an accurate measure of false negatives, orthe false positive rate we could expect
if we had to detect several different intrusions. Furthermore, althoughwe have done tests to check for stationarity, we
cannot be absolutely sure that there are no time-dependent effects in the data.

If we build the normal database chronologically from the first 700 jobs and compare that to the remaining 2066
jobs, we get a false positive rate of0:004 for a sequence length of 10. Although this is within the bootstrap distribution,
there is a probability of only0:05 of getting a false positive rate that low when the jobs are randomly selected. So it
may be that there are temporal dependencies not detected by our tests for stationarity. In an on- line system, normal
would be constructed from the first jobs encountered, and so in this case we could expect lower false positive rates.

It is worth noting that these false positive rates are computed for a system in which we have only spent 3 or 4 days
collecting normal behavior. Provided the size of the normal database does not grow indefinitely, we could expect our
false positive rates to reduce as we spend more days on normal collection. This is illustrated by the fact that when we
increase the size of the normal database to include 1400 jobs (7 days), our false positive rate halves. Furthermore, even
if we use all of the normal behavior traced over two weeks to build the normal database, the threshold for detection of
thelprcp intrusion does not drop (see table 6).

5.3 Analysis of False Positives

We looked at the sequences which were responsible for the false positivesto get an idea of what could be causing rare
but acceptable behavior. We investigated several false positives and foundunusual circumstances behind all of them,
including:

1. Trying to print on a machine where the file/dev/printer did not exist. This file is a named local socket
that connects tolpd running on the machine. Apparentlylpr would place a job in the queue, but could not
communicate withlpd. It is unclear whetherlpd indicated an error. It is likely that the job did not print.

2. Printing from symbolic links.lpr was told to print a file in the current directory using the -s flag. It seems
that the file to be printed was actually a symbolic link to another file, solpr followed the symbolic link to the
original file, and then placed a symbolic link to the real file in the spooldirectory.

3. Printing from a separately administered machine with a very different configuration.

4. Trying to print a job so large thatlpr ran out of disk space for the log file.

When the normal database is built chronologically, there are only 6 falsepositives, 3 of which are caused by the
first case (1) above, and 3 of which are caused by the second case (2).

Are these really false positives? A false positive is some sort of acceptable behavior that is classified as anomalous.
If the behavior is unacceptable, even if it is not caused by an intrusion, wewould want to know about it, because it
indicates that the system is not functioning properly or efficiently. Points 1 and 4 above are both instances of irregular
behavior symptomatic of a problem with the system; both indicate conditions that need to be rectified. In this sense,
neither 1 nor 4 are false positives. This kind of analysis indicates that our actual false positive rate is lower than the
reported values, for example, in the case of a chronological normal, the number of false positives would be reduced
from 6 to 3.

15



6 Discussion

The previous two sections have presented evidence that short sequences ofsystem calls are good discriminators be-
tween normal and abnormal operating characteristics of several common UNIX programs. In essence, we have found
a regularity in executing programs that is highly likely to be perturbed by intrusive activities. These results are inter-
esting for several reasons: They suggest a possible implementation path for a lightweight intrusion-detection system;
the techniques might be applicable to security problems in other computational settings; they illustrate the value of
studying the empirical behavior of actual systems; and they suggest a strategy for approaching other on-line problems
in computing that are not well solved by conventional methods.

Although the results presented in sections 4 and 5 are suggestive, much more testing needs to be completed
to validate the approach. In particular, extensive testing on a wider variety of UNIX programs being subjected to
large numbers of different kinds of intrusions is desirable. For each ofthese programs, we would ideally like to
have results both in controlled environments (in which we could run large numbers of intrusions) and in live user
environments. Overall, we expect that discrimination will be more difficult in highly stressed environments (high user
loads, overloaded networks, etc.) in which many exceptional conditions areraised. Furthermore, we would like to test
these ideas in different operating systems, such as Windows NT. Recently wehave successfully detected intrusions in
two other programs: A buffer overflow in thexlock program running in Linux, and a symbolic link vulnerability in
theswinstall program running under HP-UX [7]4.

However, there are some logistical problems associated with collecting data in live user environments. Most
operating systems are not shipped with robust tracing facilities, and as much as possible, we would like to collect
data in standardized environments. It is difficult to justify installing code with known vulnerabilities (needed to run
large numbers of different intrusions) in a production environment, thus putting the user community at risk of real
intrusions. Finally, there are no obvious stopping criteria. Everysystem is slightly different—when can we say that
we have collected enough data on enough different programs in enough different environments?

Assuming that more detailed experiments confirm our results, there are ahost of systems-engineering questions
that need to be addressed before an IDS based on these principles could be implemented and deployed. First, what
combination of synthetic and actual behavior should be collected to define anormal database? In many user envi-
ronments, certain (legitimate) features of programs might be seldom used, and so a database generated from live user
traces might contain false positives, whereas constructing a synthetic database appropriately could prevent these false
positives. It would also be much easier to distribute an IDS that did not require a lot of customization at the time it
is installed– -an IDS should make systems administration easier not harder. Thus, the collection of real usage data
at install- time would have to be highly automated. A related complication is how to guarantee that no intrusions
take place during the collection of normal behavior. Second, which UNIX programs should be monitored, and how
(and when) should databases be switched when different processes are started? We could use a completely different
database for each program—earlier we emphasized that normal behavior for different programs is significantly dif-
ferent (ranging from 40% to 80%). However, these percentages also imply that there is much behavior in common
between different programs, and so in a running implementation we mightbe able to reduce resource requirements by
exploiting this commonality. Finally, we envision our IDS as a real-time, on-line system that could potentially dis-
cover and interrupt some intrusions before they were successful. The feasibility of this is highly dependent on efficient
design and implementation of both the tracing facility and the algorithms that detect mismatches.

Our emphasis has been on determining if our approach can be successful at all. We were not too concerned
with efficiency issues in this paper. However, for the system to be able to detect intrusions in real-time—as they4This data was collected by Mark Crosbie, at Hewlett Packard
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are happening—will require careful attention to efficiency issues. As a first step towards this we have analyzed the
complexity of our algorithm, although we have not been able to measureits efficiency in a production environment.
Should the implementation prove too inefficient, there are numerous simplifications we could experiment with, such
as looking only at specific kinds of calls, or only at every tenth call, etc.

An important question in the context of an IDS is what response is most appropriate once a possible intrusion
has been detected. This is a deep topic and largely beyond the scope of our paper. Most IDS respond by sending
an alarm to a human operator. In the long run, however, we believe that the response side will have to be largely
automated if IDS technology is going to be widely deployed. We have some evidence that intrusions generate highly
regular signatures, so it might be possible to store these signatures for known intrusions and respond more aggressively
when those signatures are detected. Then for new anomalies more cautious actions could be taken. One advantage of
monitoring at the process level is that a wide range of responses is possible, ranging from shutting down the computer
completely (most radical) to simply running the process at lower priority.

The method we propose is not a panacea—it will certainly miss some formsof intrusions. One example is race
condition attacks, which typically involve stealing a resource (such as a file) created by a program running as root,
before the program has had a chance to restrict access to the resource. If the root process does not detect an unusual
error state, a normal set of system calls will be made, defeating our method. Other examples of intrusions that would
be missed are password hijacking (when one user masquerades as another), and cases in which a user violates policy
without using privileged processes.

The idea of looking at short sequences of behavior is quite general and might be applicable to several other se-
curity problems. For example, people have suggested applying the technique to several other computational systems,
including: The Java virtual machine, the CORBA distributed object system, security for ATM switches, and network
security. For each of these potential applications, it will be necessary firstto determine empirically whether simple
definitions (analogous to sequences of system calls) give a clear and compact signature of normal behavior, and then
to determine if the signature is perturbed by intrusive behavior.

Our approach is similar to several other approaches, although the differencesare critical. Ko et al [26] have also
chosen the level of privileged processes, but they characterize the behavior of a privileged process by a program
specification or policy, which is a description of what the program should be able to do. This policy is derived from
the program code and so requires specialized knowledge of program function. Writing a policy can be prone to the
same sorts of errors as writing the program, i.e. it is hard to guaranteecorrectness. Most importantly, from our
perspective, such a policy could easily include behavior that is legal butnot normal because it is hard to determine
beforehand what behavior should be normal. We avoid these issues by treating the program as a black box, and relying
purely on empirical observation to ascertain program behavior. Another key difference is that we rely exclusively on
sequencing information, unlike the specification approach, which monitors individual operations. However, there are
other approaches, such as TIM [35], that consider sequencing information. These differ from our approach in that they
look at the domain of user behavior, and use a probabilitistic approachfor detecting anomalies. Because our results
are sufficiently promising the added complexity of using probabilities seems unnecessary. It is possible that our simple
deterministic approach is successful because because our data is well-structured. If this is the case, it may well be that
probabilities are necessary in less structured domains, such as user behavior.

In earlier papers, we have advocated a comprehensive approach to computer security based on a collection of
organizing principles derived from our study of the immune system [34]. The immune-system perspective has certainly
influenced many of our design decisions, but in this paper we are emphasizingconcrete computational mechanisms
and largely ignoring the immune system connection. Details of how our approach to IDS fits into the overall immune-
system vision are given in [15]. Extensions are suggested by analogy.

An important bias underlying our approach is that modern computers are “complex systems” in the sense that they
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are comprised of a large number of components, many of which interact nonlinearly. These components are continually
evolving, as well as the environments in which they are embedded, their users, and the programmers who implement
them. This complexity threatens to overwhelm design strategies based on functional decomposition. Furthermore, it
implies that although we design and build computers, we do not necessarily understand how they behave. An example
of this is the fact that the normal behavior of a highly complex program such assendmail can be captured by such
a small number of system call sequences—it would have been hard to predict this. Rather than making assumptions
about how we believe that programs or users will behave, or trying to prespecify their behavior (and being surprised),
this paper asks the question: What behavior do we observe? That is, we take existing artifacts and study their behavior
rigorously. Although such an approach might be dismissed as ”merely empirical” rather than theoretical, our point is
that we need to spend more time asking to what extent our existing theories describe our existing artifacts.

7 Conclusions

We presented a method for anomaly intrusion detection at the process level.Normal was defined in terms of short
sequences of system calls executed by running privileged processes. Our profiles of normal behavior, which consisted
of unique sequences of length 10, were remarkably compact, for example, thesendmail database contained only
1318 such sequences. Three measures were used to detect abnormal behavior as deviations from profiles of normal.
These measures allowed us to successfully detect several classes of abnormal behavior, including: Intrusions in the
UNIX programssendmail, lpr andftpd; failed intrusion attempts againstsendmail; and error conditions in
sendmail. We studied two different methods of accumulating normal profiles: Generating normal synthetically by
attempting to exercise the program in as many modes of normal operation as possible, and tracing a process in a live
user environment. In the latter case we have analyzed the data for false positives. Our false positive rates forlprwere
about 1 in every 100 print jobs (and explainable in terms of system problems), but these results are tentative because
we did not have sufficient data for a comprehensive analysis. In futurewe intend to expand our base of intrusions
and gather more data for more processes running in real environments, so we can get more realistic estimates of false
positive and false negative rates.
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Appendix 1

This appendix gives more detailed descriptions of intrusions and errorconditions that we tested against.

sunsendmailcp: The sunsendmailcp script uses a special command line option to causesendmail to append an
email message to a file. By using this script on a file such as/.rhosts, a local user may obtain root access.

syslogd: Thesyslogd attack uses thesyslog interface to overflow a buffer insendmail. A message is sent to
thesendmail on the victim machine, causing it to log a very long, specially created error message. The log
entry overflows a buffer insendmail, replacing part of thesendmail’s running image with the attacker’s
machine code. The new code is then executed, causing the standard I/O of a root-owned shell to be attached to
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a port. The attacker may then attach to this port at his or her leisure. This attack can be run either locally or
remotely; we have tested both modes. We also varied the number of commandsissued as root after a successful
attack.

decode: In oldersendmail installations, the alias database contains an entry called “decode,” which resolves to
uudecode, a UNIX program that converts a binary file encoded in plain text into itsoriginal form and name.
uudecode respects absolute filenames, so if a file “bar.uu” says that the original fileis “/home/foo/.rhosts” then
whenuudecode is given “bar.uu,” it will attempt to create foo’s.rhosts file. sendmail will generally
run uudecode as the semi-privileged user daemon, so email sent to decode cannot overwriteany file on the
system; however, if the target file happens to be world-writable, the decode alias entry allows these files to be
modified by a remote user.

lprcp: Thelprcp attack script useslpr to replace the contents of an arbitrary file with those of another. This attack
exploits the fact that older versions oflpr use only 1000 different names for printer queue files, and they do not
remove the old queue files before reusing them. The attack consists of getting lpr to place a symbolic link to
the victim file in the queue, incrementinglpr’s counter 1000 times, and then printing the new file, overwriting
the victim file’s contents.

ftpd: This is a configuration problem.Wu.ftpd is misconfigured at compile time, allowing users SITE EXEC access
to /bin. Users can then run executables such asbash with root privilege.

unsuccessful intrusions:sm5x, sm565a.

forwarding loops: A local forwarding loops occurs insendmail when a set of$HOME/.forward files form a
logical circle. We considered the simplest case, shown in table 7.

Appendix 2

This appendix describes briefly how synthetic normals were generated forftpd andlpr.
The syntheticftpd was generated by tracing the execution offtpd, using every option on theftpd man page

at least once.
The syntheticlpr was generated by tracing the following types oflpr jobs: Printing a text file, printing a

postscript file, attempting to print a nonexistent file, printing toseveral different printers, printing with and without
burst pages, printing with symbolic links (the -s option).
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Type of Behavior # of Mail Messages
message length 12
number of messages 70
message content 6
subject 2
sender/receiver 4
different mailers 4
forwarding 4
bounced mail 4
queuing 4
vacation 2
Total 112

Table 1: Number of messages of each type used to generate syntheticsendmail normal. Each number in the table
indicates the number of variants used, for example, we used 12 different message lengths.

process Database Size N
sendmail 1318
lpr 198
ftpd 1017

Table 2: Normal database sizeN for sequence length of 10, forsendmail, lpr andftpd.

Process Number Mismatches % MismatchescSA
ls 42 75 0.6
ls -l 134 91 1.0
ls -a 44 76 0.6
ps 539 97 0.6
ps -ux 1123 99 0.6
finger 67 83 0.6
ping 41 57 0.6
ftp 271 90 0.7
pine 430 77 1.0

Table 3: Distinguishingsendmail from other processes. Each column reports results for a single anomalousmea-
sures: Mismatches (column 2), percentage of mismatches over a trace (column 3), and (column 4). The results shown
are for a sequence length ofk = 10. There are no mismatches againstsendmail itself because the database includes
all variations.
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Anomaly Number Mismatches % Mismatches cSA
syslogd 248 - 529 17 - 30 0.7
sunsendmailcp 92 25 0.6
decode 7 - 22 1 - 2 0.2 - 0.5
lprcp 242 9 0.5
ftpd 496 38 0.7

Table 4: Detection of successful intrusions forsendmail, lpr andftpd. The data for the syslogd attack show
the results of tracingsendmail (rather than tracingsyslogd itself). The three columns list the results for various
anomalous measures, from mismatches, percentage of mismatches over a trace, tocSA. In some cases the columns list
a range of values, from minimum to maximum. The results are fork = 10.

Anomaly Number Mismatches % Mismatches cSA
sm565a 54 22 0.6
sm5x 472 33 0.6
forward loop 21 - 108 10 - 18 0.4 - 0.6

Table 5: Detection of unsuccessful intrusions and error conditions forsendmail. The three columns list the results
for various anomalous measures, from mismatches, percentage of mismatches over a trace, tocSA. The results are fork = 10.

UNM MIT
Number of hosts 1 77
Number of print jobs 1234 2766
Time period (weeks) 13 2
DB SizeN 569 876
Detection of lprcp:
# mismatches 11009 11006
% mismatches 7 7cSA 0.4 0.4

Table 6: Comparison oflpr normals collected at MIT and at UNM. These results are fork = 10.

Email address .forward file
foo@host1 bar@host2
bar@host2 foo@host1

Table 7: Forward loop.
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Figure Captions

Figure 1: An Example of a forest of system call sequence trees.

Figure 2:cSA plotted against sequence lengthk. From this plot we infer that sequence length makes little difference
once we have a length of at least 6.

Figure 3: Anomaly profile for a run of thesyslogd intrusion. The data represents a trace of system calls that is a
concatenation of 5 forkedsendmail processes. ThecSA value for this intrusion is 0.7, i.e. the highest point reached
on the y-axis.

Figure 4: Growth of database size forlpr normal collected at MIT. The x-axis indicates the number of print jobs
tried, and the y-axis indicates the number of unique sequencesN in the normal database.

Figure 5: Bootstrap estimate of change in expected false positive rate asnormal database size increases.
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