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Abstract

A method is introducted for detecting intrusions at the lefgrivileged processes. Evidence is given that short
sequences of system calls executed by running processagaosl discriminator between normal and abnormal op-
erating characteristics of several common UNIX programstnhal behavior is collected in two ways: Synthetically,
by exercising as many normal modes of usage of a program agjfmsand in a live user environment by tracing the

actual execution of the program. In the former case sevgpaktof intrusive behavior were studied; in the latter case,
results were analyzed for false positives.



1 Introduction

Modern computer systems are plagued by security vulnerabilities. Whetiseihe latest UNIX buffer overflow or
bug in Microsoft Internet Explorer, our applications and operatingesys are full of security flaws on many levels.
From the viewpoint of the traditional security paradigm, it shobkdpossible to eliminate such problems through
more extensive use of formal methods and better software engineehigyviéw rests on several assumptions: That
security policy can be explicitly and correctly specified, that programs caoiectly implemented, and that systems
can be correctly configured. Although these assumptions may be theoyetezdbnable, in practice none of them
holds. Computers systems are not static: They are being continuallgethény vendors, system administrators, and
users. Programs are added and removed, and configurations are changed. Fdficatiomiof a statically defined
system is time-consuming and hard to do correctly; formal verificationdyfreamic system is impractical. Without
formal verifications, tools such as encryption, access controls, firevaaitsaudit trails all become fallible, making
perfect implementation of a security policy impossible, even if a correlitypcould be devised in the first place. If
we accept that our security policies, our implementations, and our confgyusatre flawed in practice, then we must
also accept that we will have imperfect security. We can incrementally impemegisy through the use of tools such
as Intrusion Detection Systems (IDS). The IDS approach to security éllmsthe assumption that a system will
not be secure, but that violations of security policy (intrusions)lmanetected by monitoring and analyzing system
behavior.

There are many different levels on which an IDS can monitor system behavigr critical to profile normal
behavior at a level that is both robust to variations in normal, andigest! by intrusions. In the work reported here,
we chose to monitor behavior at the level of /emphprivileged procesa®sleged processes are running programs
that perform services (such as send or receive mail), which require accesetn sygects that are inaccessible to the
ordinary user. To enable these processes to perform their jobs, theyemnegvileges over and above those of an or-
dinary user (even though they can be invoked by an ordinary user). X jMbcesses usually run with the privileges
of the user that invoked them. However, privileged processes can changpritiégéges to that of the superuser by
means of the setuid mechanism. One of the security problems withgg@dIprocesses in UNIX is that the granularity
of permissions is too coarse: Privileged processes need superuser statosd® system resources, but granting them
such status gives them more permission than necessary to perform theficsjasks [26]. Consequently they have
permission to access /emphall system resources, not just those that\eaatrele¢heir operation. Privileged processes
are trusted to access only relevant system resources, but in cases wheregbare [gogramming error in the code
that the privileged process is running, or if the privileged prodesscorrectly configured, an ordinary user may be
able to gain superuser privileges by exploiting the problem in toegss. For the sake of brevity, we usually refer
to privileged processes (or programs) simply as “processes” (or “pragjjaend use the qualifier only to resolve
ambiguities.

Itis clear that privileged processes are a good level to focus on becaus#aiquh of vulnerabilities in privileged
processes can give an intruder superuser status. Furthermore, priplegedses constitute a natural boundary for a
computer, especially processes that listen to a particular port. In UNIMlggred processes, such sl net d and
| ogi nd, function as servers that control access into the system. Corruptidtresé servers can allow an intruder
to access the system remotely. Monitoring privileged processes alss stigre advantages over monitoring user
behavior, which has been the most method to date (for example, see &, ®1,235]). The range of behaviors of
privileged processes is limited compared to the range of behaviorseaos;uBrivileged processes usually perform a
specific, limited function, whereas users can carry out a wide variety of actkinally, the behavior of privileged
processes is relatively stable over time, especially compared to user behideioanly do users perform a wider
variety of actions, but the actions performed may change considerably mantihereas the actions (or at least the



functions) of privileged processes usually do not vary much with time.

Our approach to detecting irregularities in the behavior of privilggedrams is to regard the program as a black
box, which, when run, emits sonabservable We believe that this observable should be a dynamic characteristic
of that program; although code stored on disk may have the potentid tearm, it has to be actually running to
realise that potential. If we regard the process as a black-box, we deadtapecialized knowledge of the internal
functioning or the intended role of the process; we can infer theseeirttli by observing its normal behaviorA
natural observable for processes in UNIX would be basedystem callsbecause UNIX processes access system
resources through the use of system calls. We have claherhsequencesf system calls as our observable.

In an earlier study we reported preliminary evidence that short sequencegstefirscalls are a good simple dis-
criminator for several types of intrusion [14]. The results repohteck extend the earlier study, with several important
differences. First, we have slightly changed how we record sequencegersyalls: Previously we used look-ahead
pairs, with a look-ahead value of 6; here we use exact sequences of lenghtet).we have used a measure of
anomalous behavior that is independent of trace length (based on Hammuigembetween sequences). Finally, we
have collected normal behavior in a real, fvanvironment, and analyzed it for false positives.

We want an IDS that is stable and lightweight (efficient), all of which allede}s on the discriminator (observable)
that we use to distinguish between acceptable and unacceptable behaviablBy& mean that the descriminator re-
liably distinguishes between acceptable and unacceptable behavior. Our apprequtrimental because we believe
that current theories do not adequately describe how implemented systemsuralln this paper we are primarily
concerned with determining empirically if the discriminator is stabldicleicy is a secondary consideration, and is
addressed in this paper to the extent that we analyze the complexity algouithm; however, we do not report actual
running times for the method on a production system.

Our work is inspired by the defenses of natural immune systems. Themarpelling similarities between the
problems faced by immune systems and by computer security [15]. Botbnsysnust protect a highly complex
system from penetration by inimical agents; to do this, they must keetabiiscriminate between broad ranges of
normal and abnormal behavior. In the immune system, this discrimmmégask is known as the problem of distin-
guishing “self” (the harmless molecules normally within the bodg)rir‘nonself” (dangerous pathogens and other
foreign materials). Discrimination in the immune system is based oai@cteristic structure called a peptide (a short
protein fragment) that is both compact and universal in the body. Thisslthe effectiveness of the immune system;
for example, the immune system cannot protect the body against radislbevever, proteins are a component of all
living matter, and generally differ between self and nonself, so they gecwigood distinguishing characteristic. We
view our chosen discriminator (short sequences of system calls) as ansitogopeptide.

The structure of this paper is as follows. In section 2 we review relatatt in intrusion detection. Section 3
describes our method of anomaly intrusion detection: First we desanilvedbuild up profiles of normal behavior,
and then we define three ways of detecting anomalies. We then use the methold @ synthetic normal profile
in section 4, demonstrating its effectiveness at detecting intrusionstaadanomalies. In section 5 we consider the
consequences of collecting our normal data in online, functioning envieoits, discuss false positives, and present
experimental results on false positive rates. The limitations antidatfpns of our approach are discussed in section
6. A brief appendix is included which details the various intrusiomas tie used in our experiments, the methods we

IThere are other approaches that require knowledge of teeniit and intended role of a program, most notably the progspecification
method [26], which attempts to constrain the program in suefay that it can perform only those operations the progradessgned to do, and
no more, i.e the method refines the permissions structurectmnaodate specific privileged processes. The differenegden our method and this
are discussed more fully in section 6.

2We use the words “real” and “live” to refer to a production gomment, i.e an environment which is currently in normateryday use. We
contrast this to our “synthetic” environment, which is aoléged test environment.



used to generate synthetic normal, and a brief overview of UNIX.

2 Related Work

An Intrusion Detection System (IDS) continuously monitors soyreadhic behavioral characteristics of a computer
system to determine if an intrusion has occurred. This definition ersluteiny useful computer security methods.
Security analysis tools, such as SATAN [12] and COPS [13] are used to sgateansfor weaknesses and possible
security holes. They are not IDS because they do not monitor some dtyolanacteristic of the system for intrusions
or evidence of intrusions, rather they scan the system for weaknesseassachfiguration errors or poor password
choices that coulttadto intrusions. Other important non-IDS solutions to computer sgcproblems are provided
by cryptography [10], which is especially useful for authentication andreemmmunications [32]. Virus protection
schemes such as that described in [24] are also not IDS under our defindgaude they scan static code, not dynamic
behavioral characteristics. Some approaches are not easily classified, folexategrity checking systems such as
TRIPWIRE [25] monitor important files for changes that could indicateusions. Although such files are static code,
they become a dynamic characteristic indicative of intrusions whenfraddy intrusive activities, and so TRIPWIRE
could be classified as an IDS.

There are many different architectures for IDS. IDS can be centralized (i.e. phoges performed on a single
machine) or distributed across many machines. Almost all IDS are centralimedutonomous agents approach [8]
is one of the few proposed IDS that is truly distributed. Furthemenan IDS can be host-based or network-based; the
former type monitors activity on a single computer, whereas the |gfpermonitors activity over a network. Network-
based IDS can monitor information collated from audit trails from mafffgdint hosts (multi-host monitoring) or
they can monitor network traffic. NADIR [22] and DIDs [21] are exampléd®S that do both multi-host and
network traffic monitoring; NSM [20] is an IDS that monitors onlgtwork traffic. Regardless of other architectural
considerations, any IDS must have three components: Data collectiomddnction), data classification and data
reporting. Data reporting is usually very simple, with system adstiafors being informed of anomalous or intrusive
behavior; few IDS take it upon themselves to act rapidly to deal witidaities. Various methods for data collection
and classification are discussed below.

An IDS that monitors for intrusive behavior, needs to collect datahendynamic state of the system. Selecting
a set of dynamic behavioral characteristics to monitor is a key designiateéis an IDS, one which will influence
the types of analyzes that can be performed and the amount of data that willdmezb Most systems (for example,
IDES/NIDES [30, 31, 4], Wisdom&Sense [29] and TIM [35]) collecbfiles of user behavior, generated by audit
logs. Other systems look at network traffic, for example, NSM and thiesypresented in [19]. Other approaches
attempt to characterize the behavior of privileged processes, as in theprasgecification method [26]. Different
behavioral characteristics will generate different amounts of data; as an exéceample, systems monitoring user
profiles process large volumes of raw data (an average user will genenait8 tiww35MB of audit data per day [18]).
In the latter case the data may need to be reduced to a manageable size.

Once a behavioral characteristic is selected, it is used to classify data. hintp&est case, this is a binary
decision problem: The data is classified as either normal (acceptable) or aner(aoupossibly intrusive). Data
classification can be more complex, for instance, trying to identify gmtiqular type of intrusion associated with
anomalous behavior. A plethora of methods have been used for data ctdgsifithe majority of them using artificial
intelligence techniques (see [18] for a detailed overview). Classifictgithmiques can be divided into two categories,
depending on whether they look for known intrusion signaturgsise intrusion detectigyor for anomalous behavior
(anomaly intrusion detectignMisuse-IDS encode intrusion signatures or scenarios and scan foreocesrof these,



which requires prior knowledge of the nature of the intrusion. Bgtast, in anomaly-IDS, it is assumed that the
nature of the intrusion is unknown, but that the intrusion wekult in behavior different from that normally seen
in the system. Anomaly IDS use models of normal or expected behavioototor systems; deviations from the
normal model indicate possible intrusions. Some systems incagboth categories, a good example being NIDES,
or Denning’s generic model of an IDS [9].

Relatively few IDS deal with misuse intrusion detection. One typengdléementation uses an expert system to
fit data to known intrusion signatures, for example, in IDES/NID&SStalker [33], knowledge of past intrusions is
encoded by human experts in expert system rules. Other approaches attean@rateintrusion signatures automat-
ically, for example, one approach uses a pattern matching model based on dtdttienets [28, 27], while USTAT
[23] represents potential intrusions as sequences of system statesomthef State transition diagrams.

Because of the difficulty of encoding known intrusions, and the caatioccurrence of new intrusions, many
systems focus on anomaly intrusion detection. A wide variety of methads been used. TRIPWIRE monitors the
state of special files (such as thet ¢/ host s. equi v file on a UNIX system, or UNIX daemon binaries) for change;
normal is simply the static MD5 checksum of a file. A program specificatiogliage is used in [26] to define normal
for privileged processes in terms of the allowed operations for thagss Rule-based induction systems such as TIM
have been used to generate temporal models of normal user behavior. \BiSdose incorporates an unsupervised
tree- learning algorithm to build models of patterns in user transact@tier systems, such as NIDES, have employed
statistical methods to generate models of normal user behavior in terfinsqoiency distributions. NSM uses a
hierarchical model in combination with a statistical approach to determineonletraffic usage profiles. On the
biologically inspired side, connectionist or neural nets have been usdassify data [17], and genetic programming
has been proposed as a means of developing classifications [8].

3 Anomaly Intrusion Detection

The method we present here performs anomaly intrusion detection (ghtiocould be used for misuse detection—
see section 6). We build up a profile of normal behavior for a proceissayest, treating deviations from this profile as
anomalies. There are two stages to the anomaly detection: In the first stdmygldvup profiles odatabasesf normal
behavior (this is analogous to the training phase for a learningsysin the second stage we use these databases to
monitor system behavior for significant deviations from normal (@gailis to the test phase).

Recall that we have chosen to define normal in terms of short sequencesah syats. In the interests of
simplicity, we ignore the parameters passed to the system calls, andidplat their temporal orderings. This
definition of normal behavior ignores many other important aspectsaigss behavior, such as timing information,
instruction sequences between system calls, and interactions with otherggc€ertain intrusions may only be
detectable by examining other aspects of process behavior, and so we may caesider them later. Our philosophy
is to see how far we can go with the simplest possible assumption.

3.1 Profiling Normal Behavior

The algorithm used to build the normal databases is extremely simplescéetraces of system calls generated by
a particular process, and build up a database of all unique sequences of éegiy#mk, that occurred during the
trace. Each program of interest has a different database, which is specific taalpaarchitecture, software version
and configuration, local administrative policies, and usage patterns. @stable database is constructed for a given
program, the database can be used to monitor the ongoing behaviermbitesses invoked by that program.



This method is complicated by the fact that in UNIX a program can invokeartian one process. Processes are
created via thé or k system call or its virtual variantf or k. The essential difference between the two is tHabak
creates a new process which is an instance of the same program (i.e. a copr@asvavfork replace the exisisting
process with a new one, without changing the process ID. We trace fatkddually and include their traces as part
of normal, but we do not yet trace virtual forks because a virtual fodctxes a new program. In future, we will
switch databases dynamically to follow the virtual fork.

Given the large variability in how individual systems are currentlyfigured, patched, and used, we conjecture
that individual databases will provide a unique definition of norraahfiost systems. We believe that such uniqueness,
and the resulting diversity of systems, is an important feature ofrtimune system, increasing the robustness of
populations to infectious diseases [16]. The immune system of eachdudi is vulnerable to different pathogens,
greatly limiting the spread of a disease across a population. Tradlitfpoomputer systems have been biased towards
increased uniformity because of the advantages offered, such as portalditpaintainability. However, all the
advantages of uniformity become potential weaknesses when errors can bieeedpjaan attacker. Once a method is
discovered for penetrating the security of one computer, all computdngidtsame configuration become similarly
vulnerable.

The construction of the normal database is best illustrated with an dgarBpppose we observe the following
trace of system calls (excluding parameters):

open, read, mmap, mmap, open, read, mmap

We slide a window of sizé across the trace, recording each unique sequence of lérig#t is encountered. For
example, ift = 3, then we get the unique sequences:

open, read, mmap
read, mmap, mmap
mmap, mmap, open
mmap, open, read

For efficiency, these sequences are stored as trees, with each tree rooted atlapsytitam call. The set of trees
corresponding to our example is given in figure 1.

We record the size of the database in terms of the number of unique sequén@iesthe example just given,
N = 4) so an upper bound on the storage requirements for the normal datalia&¥ 43. In practice, the storage
requirements are much lower because the sequences are stored as trees. For thesepldimai | database, which
contains 1318 unique sequences of length 10, has 7578 nodes in thevidwest each node corresponds to a system
call. If we had a node for every single system call in all 1318 sequencespwiel Wave 13180 nodes.

3.2 Measuring Anomalous Behavior

Once we have a database of normal behavior, we use the same method tisetvte generate the database to check
new traces of behavior. We look at all overlapping sequences of léngtithe new trace and determine if they
are represented in the normal database. Sequences that do not occur in the ataivedal are considered to be
mismatchesBy recording the number of mismatches, we can determine the strengttanbamalous signal. Thus the
number of mismatches occurring in a new trace is the simplest determihanbmalous behavior. We report these
counts both as a raw number and as a percentage of the total number of matébresquktin the trace, which reflects



the length of the trace. Ideally, we would like these numbers to be zerefo examples of normal behavior, and for
them to jump significantly when abnormalities occur.

We make a clear distinction here betwesormal and legal behavior. In the ideal case we want the normal
database to contain all variations in normal behavior, but we do not wémtbntain every single possible path of
legal behavior, because our approach is based upon the assumption that behavior forms only a subset of the
possible legal execution paths through a program, and unusual bettatideviates from those normal paths signifies
an intrusion or some other undesirable condition. We want to be aldetect not only intrusions, but also unusual
conditions that are indicative of system problems. For example, wherca$s runs out of disk space, it may execute
some error code that results in an unusual execution sequence (pattttireyggogram). Clearly such a patHégal,
but certainly it should not be regardedrammal

If the normal database does contain all variations in normal behaviorythen we encounter a sequence that
is not present in the normal database, we can regard it as anomalous, i.e. wengiderca single mismatch to be
significant. In reality, it is likely to be impossible to collect all moal variations in behavior (these issues are discussed
more fully in sections 5 and 6), so we must face the possibility thiathermal database will provide incomplete
coverage of normal behavior. One solution is to count the numbersrhatches occurring in a trace, and only regard
as anomalous those traces that produce more than a certain number of mismatuiseis problematic however,
because the count is dependent on trace length, which might be indefmitmtonuously running processes.

An alternative is to constrain the measure locally. The anomalies we haliedare temporally clumped: Anoma-
lous sequences due to intrusions seem to occur in local bursts. Howefiemnd a local measure is difficult because
we have an unordered state space, i.e. we have no true notion of lochtity~elose” one system call is to another.
We have chosen “Hamming distanédsetween sequences as the measure. Although this choice is somewhat arbitrary,
it is related to how closely anomalies are clumped. We cannot theoretically jiss measure, so we determine its
worth empirically.

We use the “Hamming distance” between two sequences to compute how much equemce actually differs
from existing normal sequences. The similarity between two sequences campated using a matching rule that
determines how the two sequences are compared. The matching rule used heeglistbHamming distance, i.e. the
difference between two sequencemnd; is indicated by the Hamming distandg, j) between them. For each new
sequence, we determine theninimalHamming distancé,,;,(i) between and the set of normal sequences:

dmin(i) = min{d(i, j) ¥ normal sequences

Thed i value represents the strength of the anomalous signal, i.e. how mushiates from a known pattern.
Note that this measure is not dependent on trace length and is still améntidgdeise of thresholds for binary decision
making.

The various measures can be illustrated with a small example. Again, eotis&dtrace shown in the previous
example:

open, read, mmap, mmap, open, read, mmap
that generated the normal database consisting of:

open, read, mmap

3 Although we are not using a binary alphabet, the measure wéswmalogous to a binary Hamming distance, i.e. it is thetraurof positions
in which the two sequences differ.



read, mmap, mmap
mmap, mmap, open
mmap, open, read

Now, if we have a trace in which one call (the sixth in the trace) is changed fead to mmap:
open, read, mmap, mmap, opemnap mmap
then we will have the following new sequences:

mmap, openmmap
open,mmap mmap

This corresponds to 2 mismatches, which is 40% of the trace, andjyypvalues of 1.

These three different measures have different time- complexities. Towatethat a new sequence is a mismatch
requires at most — 1 comparisons, because the normal sequences are stored in a forest of treesghe/neot of
each tree corresponds to a different system call. Similarly, it will fakel comparisons to confirm that a sequence is
actually in the normal database. If the sequence is not in the normal datdteasepmputingl i, for that sequence
is much more expensive. Becaugin(i) is the smallest Hamming distance betweéeand all normal sequences,
we have to check every single sequence in normal before we can detefgyig€) , which will require a total of
N(k — 1) comparisons (recall tha¥ is the number of sequences in the database). However, we expect anomalies to
be rare, so most of the time, the algorithm will be confirming norreglugnces, which is much cheaper to do. If our
rate of anomalous to normal sequencegijs, then the average complexity of computidgi (i) per sequence is
Nk —1)Ra+ (k—1)(1— Ra),whichisO(k(RaN + 1)).

3.3 Classification Errors

An IDS using these measures will be making decisions based on the obsalwesl of the measures. In the simplest
case, these are binary decisions: Either a sequence is anomalous, orih&.ngfth binary decision making, there
are two types of classification errors: False positives and false negaieslefine these errors asymmetrically: A
false positiveoccurs when a single sequence generated by legitimate behavior is classdieshzalous; and false
negativeoccurs when none of the sequences generated by an intrusion is classified a®aspnealwhen all of the
sequences generated by an intrusion appear in the normal database. In statisistah dheory, false negatives and
false positives are called type | and type Il errors, respectively.

To detect an intrusiorat least onef the sequences generated by the intrusion must be classified as anonralous. |
terms of our measures, we requitg,j, > 0 for at least one of the sequences generated by the intrusion. We measure
the strength of the anomaly laly,i,, and because we want intrusions to generate strong anomalies, we asatitine th
higher thed,y,;, the more likely it is that the sequence was actually generated by an intrusipractice, we report
the maximumi,,;, value that was encountered during a trace, because that represents the stromigedbus signal
found in the trace, i.e. we compute the signal of the anonsalyas:

Sa = max{dmin(i) Y new sequencey



In our example aboves 4 = 1. Generally, we do not report the actug{ value, but rather th§ 4 value normalized
over the sequence lengthto enable us to compafg, values for different values df, i.e.:

@ZSA//C

Although we would like to minimize both kinds of errors, we arermilling to tolerate false negatives than
false positives. False negatives can be reduced by adding layers of defeassgsvlayering will not reduce overall
false positive rates. A simple example illustrates this. Considsrstem withL layers of defense that an intruder
must penetrate, where at each layer there is a probapjlithat the intruder will escape detection (i, is the false
negative rate). If the probability of detection is independent for each,l&yem the probability that the intruder will
penetrate all layers undetectedpis. So, in this example, the overall false negative rate is exponentediyced by
adding layers of protection (provided we have independence). By coritmastassume that at each layer we have an
(independent) probability; of generating a false positive, then the expected number of false gssigiy; - L . In
this case layering compounds false positives.

False positives can be measured when we collect normal behavior in livoeménts (see section 5). If we
are collecting normal empirically, the occurrence of rare but acceptable everitsresult in an incomplete normal
database. If the normal were incomplete, false positives could be thg esswle encounter acceptable sequences that
are not yet included in our normal database. To limit false positives givthgesholds on thé,in (i) values, i.e. we
will regard as anomalous any sequenéer which

dmin(i) 2 C

wherel < C < k is the threshold value. To summarize, if a sequerafdengthk is sufficiently different from all
normal sequences it is flagged as anomalous. The validity of the assuriatiantrusive behavior is characterized
by increased Hamming distance from normal sequences is tested empiricalysediions that follow.

4 Behavior in a Synthetic Environment

There are two methods for choosing the normal behavior that is usedfittedhe normal database: (1) We can
generate a “synthetic” normal by exercising a program in as many normal nasqesssible and tracing its behavior;
(2) we can generate a “real” normal by tracing the normal behavior of a prograriive user environment. A
synthetic normal is useful for replicating results, comparing perforoe in different settings, and other kinds of
controlled experiments. Real normal is more problematic to collect andates(these issues are discussed in section
5); however, we need real normal to determine how our system is likelgrform in realistic settings. For example,
if we generate normal synthetically we have no idea what false posittes we will get in realistic settings because
our synthetic, by definition, includes all variations on normal behgiathough not all variations on legal behavior).
We could exclude some synthetically generated traces from normal and sealisbaidsitives resulted, but it is not
clear which traces to exclude—the choice is arbitrary and the resulting fafstves would be equally arbitrary. In
this section we present results using a synthetic normal; in sectiengFesent results using a real normal.

4.1 Building a Synthetic Normal Database

We studied normal behavior for three different processes in UNlqdnmai | , | pr andwu. ft pd (the first two
were running under SunOS 4.1.x, and the last one was running unaiex)LiSendnai | is a program that sends



and receives mail, pr is a program that enables users to print documents on a printef,tgndl is a program for
the transfer of files between local and remote hosts. Becaisdnai | is the most complex of these processes, we
will briefly describe how we exercised sendmail to produce a profile ohabbehavior (the methods for constructing
synthetic normal for the other two processes are described in Appendi¥@)considered variations in message
length, number of messages, message content (text, binary, encoded, ejchyy@ssage subject line, who sent the
mail, who received the mail, and mailers. In addition, we looked at the eftédisrwarding, bounced mail and
gueuing. Lastly, we considered the effects of the origin of all thesatanis in the cases of remote and local delivery.

A suite of 112 artificially constructed messages was used to exeyeisémai | (version 5), producing a trace
of a combined length of over 1.5 million system calls. Table 1 showstawy messages of each type were used to
generate the normal databases. We began with message length, testirfgrédtdiiessage lengths, ranging from 1
line to 300,000 bytes. From this, we selected the shortest lengtpribddiced the most varied pattern of system calls
(50,000 bytes), and then used that as the standard message length éonadir@mg test messages. Similarly, with the
number of messages insendmai | run, we first sent 1 message and trasethdmai | , then we sent 5 messages,
tracingsendnai | , and so forth, up to 20 messages. This was intended to test the respeeselonai | to bursts of
messages. We tested message content by sending messages containing ASQBrierded data, gzipped data, and
a pgp encrypted file. In each case, a number of variations was tested and the gieménated the most variations in
system call patterns was selected as a single default was selected before mdwitigeomext stage. These messages
constituted our corpus of normal behavior. We reran this set of stamda@sdages on each different operating system
andsendnai | . cf (thesendmai | configuration file) variant that we tried, thus generating a normal database t
was tailored to the exact operating conditions under whighdmai | was running.

Of the features considered, the following seemed to have little or rotefilumber of messages, message content,
subject line, who sent the mail, who received the mail, mail programs andrgueédessage length has a considerably
different effect on the sequence of system calls, depending on the messgige Remote mail produces traces of
system calls that are proportional to the length of the message, withdéquence variation in these traces; local
mail produces traces that are roughly the same length, regardless of¢haf shessage, but the sequence of system
calls used changes considerably as the message size increases. In both caseargmeaaugh message size (50K)
is used to generate normal, message size makes no difference. The effect oflifogwaail on remote traces is
negligible, whereas it has a small but noticeable affect on local traces. Bouradigagh more of an effect remotely,
but the effects are still evident in the local case.

For each test, we generated databases for different valddsnéach of the three processes testedsendnai | ,
| pr andft pd. The results fok = 10 are shown in table 2. Our choice of sequence length was determined by two
conflicting criteria. On the one hand we want a sequence length as shorsdd@tsminimize the size of the database
and the computation involved in detection (recall that the time complexitletection is proportional té). On the
other hand, if the sequence length is too small we will not be able twidimate between normal and anomalous
behavior. Our choice of 10 is based on empirical observations.

These databases are remarkably compact, for examplsethérmai | database contains only 1318 unique se-
guences of length 10, which requires 9085 bytes to store in our currggrimentation.sendnmai | is one of the
most complex of the privileged processes currently used in UNIX systamd if its behavior can be described so
compactly, then we can expect that other privileged processes will havalsoatrieast as compact. The data are en-
couraging because they indicate that the range of normal behavior ofttegams is limited. Too much variability
in normal would preclude detecting anomalies; in the worst case, if allljesequences of lengthshow up as legal
normal behavior, then no anomalies could ever be detected.

How many possible sequences of lengthre there? If we have an alphal#iyma of system calls, with size
|Sigmal, then there aréSigmal* possible sequences of length Choosing the alphabet size can be problematic
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without knowing exactly which system calls are usedslendmai | , considering that there are a total of 182 system
calls in the SunOS 4.1.x operating system. As a conservative estimadsswee thagendmai | uses no more than
53 calls (the number in the synthetic normal database), s&, foi 0 there ares3'0 , or approximatelyl0' 7 possible
sequences. Thus osendmai | normal database only contains aba0t!2 percent of the total possible number of
patterns. Of course, this is not completely accurate, because the numbesitigpesquences thaendnai | can
actually use is limited by the structure of the code. To determine thigdwequire analysis of the source code, which
is precisely what we wish to avoid because one of the strengths of otoagbpis that it does not require specialized
knowledge of any particular program.

4.2 Detecting Anomalous Behavior

Is intrusive behavior anomalous under this definition of norma&allgh, we want most, if not all, intrusive behavior
to be anomalous. To test this, we have compared the normal databasesagaigst of known abnormal behavior.

In these experiments, we report the number of mismatches, the percehtaggratches, and the normalized
anomaly signaﬁ}. Becauses, is not dependent on the length of the trace, it is our preferred measure vEIQWg
values are meaningful only in the context of detection thresholds, aeshblds are dependent on the acceptable level
of false positives. Because of the way we constructed normal, we haveatse@bsitives for synthetic data; thus, in
principle, any§; > 0 indicates an anomaly (although our goal is clear separation between the anomatyrisnad
i.e. we want theS 4 values to be large). The issue of false positives in a real environmexyplered in section 5.

4.2.1 Distinguishing Between Processes

The first experiments we performed compasahdnai | with other UNIX programs. If we could not distinguish
betweersendmai | and other programs, then we would be unlikely to detect small deviaitiotie behavior of a
single program. We have done this comparison for varying sequengthferiVhen the sequence length is very low,
(k = 1), there are very few mismatches, in the range of 0 to 7%. When the seqeemgtl ieaches = 30 there are
100% mismatches against all programs. Results of comparisoksfar0 are presented in table 3

Each process showed a significant number of anomalous sequences (at least %f)leastlone anomalous
sequence is quite different from the norns&indmai | sequences, as evincedE;(, which is at least 0.6, indicating
that the most anomalous sequence differs from the normal sequences imlbeéits positions. The processes shown
are distinct fromsendmai | because the actions they perform are considerably different from thasenafmai | .
We also tested the normal databaselfpr and achieved similar results (data not showinpr exhibits even more
separation than that shown in table 3, presumably because it is a smafjesmpravith more limited behavior. These
results suggest that the behavior of different processes is easilyglisthable using sequence information alone.

4.2.2 Detecting Intrusions

The second set of experiments was to detect intrusions that exploitifiativeee processesendnai | , | pr and

wu. f t pd. Some of the intrusions were successful, and others unsuccessful betapsiates and patches in soft-
ware. We report results for both. We would like to be able to detect (ifosit all) of these attempted intrusions, even
if they fail. Detection of failed intrusions would be a useful warngign that an attacker is attempting to break into
a system. A third behavioral category that we would like to be ableeted is the occurrence of error states, such as
sendnai | forwarding loops. Although these error states are technically legaMih#hey are properly regarded
as abnormal because they indicate the existence of problems.
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We compared system call traces for each of the three categories (successfi gaptoiccessful exploits and error
conditions) with the normal database for the relevant program and red¢iné number of mismatches, percentage of
mismatches over the trace, a@ values. Table 4 shows results for successful intrusions. Each row talbte reports
data for one typical trace. In most cases, we have conducted multiple frtims imtrusion with identical or nearly
identical results; where runs differed significantly, we report a rarigalaes. To date, we have collected data on five
successful intrusions, three of them &endmai | , one forl pr [3] and one forf t pd [5]. The threesendnai |
intrusions were: swsendmnai | cp [1], syslogd [2, 6], and a decode alias intrusion. These intrusiomslescribed in
the appendix. Most of the successful intrusions are clearly detectedSwittalues of 0.5 to 0.7. The exception to
this is decode intrusion, which, on the low end of the range, generalieg arismatches and &, value of 0.2. These
results suggest approximate detection thresholds that we would neediiaa system to detect intrusions.

The results for trying to detect unsuccessful intrusions and erroritonslare shown in table 5. The unsuccessful
intrusions are based on attack scripts called sm565a and sm5x. Sun®8ak batches that prevent these particular
intrusions. Overall, these unsuccessful intrusions are as clearly ddéessahe successful intrusions. Error conditions
are also detectable within a similar range§;\t values. As a clear case of undesirable errors, we have studied local
forwarding loops i,sendmnai | (see appendix for a description).

In summary, we are able to detadt the abnormal behaviors we tested against, including successful ortgjsi
failed intrusion attempts, and unusual error conditions.

We have only reported results for= 10 because experiments show that varying sequence length has little effect
on detection, in terms of th, measure. We analyzed sequences of lekgth2 to k = 30. The minimum sequence
length used was 2, becauke= 1 will just give Si = 0orSs = 1, which is not sufficiently informative. The
maximum sequence length used was 30 because the cost of computation scatesjuétice length. The results are
reported in figure 2. The decode intrusion is not detectablé far 6, but beyond this value dfk, sequence length
seems to make little difference f6r;. Sometimes an increased sequence length results in a decreased anomaly signal.
This could happen if the anomalies consisted of short clumps of systesnseglirated by large gaps: As sequence
length increases, longer sequences would be more similar to normal sequEacesample, say we had a normal
sequencepen, read, mmap, mmap, open, reathich an intrusion disrupted in the first three positions to giose,
close, close, mmap, open, readrhenk = 3 would giveSAA = 3/3 = 1.0 (from the first three system calls), but= 6
would give@ = 3/6 = 0.5. Figure 2 implies that the best sequence length to use would be @btigliarger than
6, because that will allow detection of anomalies while minimizing comjutatvhich is directly proportional té.

We have choseh = 10 because that gives a margin for error.

Considering only the three anomaly measures gives a limited pictuteeafdrts of perturbations caused by in-
trusions and other unacceptable behaviors. For exampleﬁhﬂalues only indicate the most anomalous sequence
without giving any clear idea of how anomalous sequences are temporatliguatist. The anomaly profile in figure 3
shows the temporal distribution of anomalous sequences for a successfirrai | intrusion, one of thesysl ogd
intrusion runs. From this figure we can see how noticeable intresime, and how anomalies are clumped. It also
indicates that if we were doing real-time monitoring, we might be abldetect some intrusiortseforean intruder
gains access, right at the start of the intrusive behavior.

5 Behavior in a Real Environment

The results reported in section 4 were based on normal databases generatetitsyiyifi.e. we attempted to exercise
all normal modes of behavior of a given process and used the resulting toaloed our normal databases. For an

12



IDS that is deployed to protect a functioning system, this may notdbelst way to generate normal. The real normal
behavior of a given process on a particular machine could be quite diffeoamthe synthetic normal. Some synthetic
normal behaviors may be absent in an actual system; on the other hand, therreal might include behavior that
we had not thought of, or were unable to incorporate into the syintHatthis section we attempt to build normal in a
real environment.

Several questions arise when we consider collecting real normal on a gsystem:

1. How do we ensure that we have not included abnormal sequences? Tioat o ve ensure that the system
is not being exploited as we collect the normal traces? Including abnosgakaces could result in false
negatives.

2. How do we ensure that our normal is sufficiently comprehensive? Howdo we collect normal for? How
much normal is enough? An incomplete normal could result in falseipesit

3. Are intrusions still detectable as we increase the size of the norsaie size of normal increases, we include
rare normal sequences that could overlap more with abnormal sequences, titiageatktection rates, i.e.
increasing false negatives.

5.1 Collecting Real Normal

We have collected normal forpr in two different real environments, at the Massachusetts Institute ofnbdatpy’s
Artificial Intelligence laboratory (MIT), and at the University of NewaWico’s Computer Science Department (UNM).

In both cases, we used a very simple solution to question 1 posed abowedddwe ensure that intrusive behavior

is not included in these normals? For thpr we have studied, we are aware of only one intrusion (reported in
section 4.2.2 above) which requires thaitr generate a 1000 print jobs in close succession, which is something we
as observers could easily detect on a system that never generates more thdos 20@ jday. This does not guarantee
that our normal is free of intrusion traces, but at least we have exclhégdtrusion against which we do our analysis.

In general, however, the problem will not be so trivial, particulaflywe do not know the nature of the intrusion
beforehand, i.e. if we are concerned with true anomaly detection. Possibdeofvaycluding intrusive behavior from

the normal trace include:

e Collect normal in the real, open environment, whilst monitoring thdrenment very carefully to ensure that
no intrusions have happened during our collection of normal. Thiget we did forl pr .

¢ Collect normal in an isolated environment where we are sure no intrsisian happen. The disadvantage of
this solution is that the normal will possibly be incomplete, becahsesnvironment is of necessity limited,
particularly in the case of processes, suckasdnai | , that communicate with the outside world.

In the MIT environment, we traceldpr running on 77 different hosts, each running SunOS, for two weeks, to
obtain traces of a total of 2766 print jobs. The growth of the gizef the normal database is shown in figure 4.
As more print jobs are traced and the traces added into normal, so the nomlreque sequences in the normal
database grows. Initially, the growth is very rapid, but then tapdrsroparticular, fork = 6 andk = 10, there
is minimal database growth past 1000 print jobs. This reinforcestib of choosing as short a sequence length as
possible, because we can accumulate the full range of normal sequences mucapiabydor short sequences. We
regard figure 4 as promising, because it indicates that normal behalioitesd and can be collected in a short period
of time (depending on how much the system is used).
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How much does normal vary between different environments? We have somerams the case dfpr because
we have two normals collected independently at MIT and UNM, for the idehtirogram and operating system. These
represent considerably different environments, as can be seen from themt#erlisted in table 6, for example, we
traced pr on only one host at UNM, whereas we traced it on 77 hosts at MIT. Despitifferences in environment,
the patterns of database growth in the UNM environment are similaiogetht MIT (data not shown), although the
resulting database sizes are quite different: 569 unique sequences forddM 76 for MIT. These databases not
only differ in size, but also in content: For example, a comparison oltligue sequences in both databases for
k = 6 indicates that only 141 of the sequences are the same between the databasespndseints 40% of the UNM
database and 29% of the MIT database.

Although these databases are very different, they both detettghep intrusion almost identically. When we
analyze the anomalous sequences generated by the intrusion, we find thatréhkéenigueanomalous sequences
detected by the UNM database, which are identical to 16 of the 17 unique anmsalguences detected by the MIT
database, i.e. the anomaly is almost identical for both databases. Thistsutgesntrusion signatures could be
encoded in sequences of system calls, i.e. the system call signature cowdddasithof a misuse-IDS, or an IDS that
does both anomaly and misuse detection (for a further exploratioresétidleas see [32]).

5.2 How much Normal is enough?

This section addresses questions 2 and 3 posed above: How much normalgh&rind, are intrusions still de-
tectable as the size of normal increases? In our experiments we usegrttdata we collected in the real environ-
ments at MIT and UNM. In both cases, we divided the set of data into twedjrdt set is used as the training set, and
the second set as the test set. The training data are used to build upal dataiase, and the test data are scanned
using this normal database (we explain below how we choose the testaridg sets). A false positive is then any
sequence in the test set for which

dmin(i) = C

We determine the lowest false positive rajg by setting the threshol@' to be the minimum value needed for the
normal database to detect thpr cp intrusion. Because we only have one intrusion to test against, armtintbe
threshold so that we always detect it, we have zero false negatives. Ta@daliive rate is simply the number of
false positives per job.

Theexpectedalse positive rate was calculated using the bootstrap technique, whagtreeedure for estimating
(approximating) the distribution of a statistic from a random gknjl1]. We divided the jobs into test and training
sets as follows: up to 700 jobs were chosen randomly with replacemeritefdraining set, and the remaining jobs
were used for the test set (thus we had a test set of 2066 jobs for MITrandf®34 jobs for UNM). This process
was repeated 100 times to get the bootstrap estimate. The bootstrap cahleptiere because the data appear to be
stationary. We checked for stationarity by sampling the jobs both rahdand in small chronologically consecutive
groups, and comparing the means produced by the two sampling methdds-tailed, two sample t-test between
these two samples gives a P-value of 0.19. Thus the probability s theans are different is insignificant.

The expected false positive rates and standard deviations are showar Sidor varying sizes of the normal
database. The data shown are for the Mpr , with £ = 10, andC' = 4. Similar results were obtained with ther
data collected at UNM (data not shown).

To summarize, the lowest expected false positive rate in figuré®®1is+ 0.004. This is about 1 false positive in
every 100 jobs, or, on the MIT system, an average of 2 false positetedgy. This rate was computed for a normal
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database of 700 jobs, with 2066 jobs in the test set. From figure fale positive rate appears to be leveling off.
However, when we increase the size of the normal database to 1400 jalshi¢men in the figure), with a test set of
1366 jobs, the rate drops 005 £ 0.002, which is one false positive per day. We are hesitant to draw too many
conclusions from these data because they are derived from a single piarogbich we have only one true positive
(an intrusion), and so we cannot get an accurate measure of false negatthesfadse positive rate we could expect

if we had to detect several different intrusions. Furthermore, althateghave done tests to check for stationarity, we
cannot be absolutely sure that there are no time-dependent effects in the data.

If we build the normal database chronologically from the first 706G jabhd compare that to the remaining 2066
jobs, we get a false positive rate@f04 for a sequence length of 10. Although this is within the bootstisgpidution,
there is a probability of only.05 of getting a false positive rate that low when the jobs are randomécted. So it
may be that there are temporal dependencies not detected by our tests foastgtitman on- line system, normal
would be constructed from the first jobs encountered, and so in this easewld expect lower false positive rates.

It is worth noting that these false positive rates are computed fostaisyin which we have only spent 3 or 4 days
collecting normal behavior. Provided the size of the normal database dbgsow indefinitely, we could expect our
false positive rates to reduce as we spend more days on normal colledtisrnis Tlustrated by the fact that when we
increase the size of the normal database to include 1400 jobs (7 dayi&iselpositive rate halves. Furthermore, even
if we use all of the normal behavior traced over two weeks to build themabdatabase, the threshold for detection of
thel pr cp intrusion does not drop (see table 6).

5.3 Analysis of False Positives

We looked at the sequences which were responsible for the false pogitiyessan idea of what could be causing rare
but acceptable behavior. We investigated several false positives anddousdal circumstances behind all of them,
including:

1. Trying to print on a machine where the filelev/ pri nt er did not exist. This file is a named local socket
that connects td pd running on the machine. Apparentlyr would place a job in the queue, but could not
communicate with pd. Itis unclear whether pd indicated an error. It is likely that the job did not print.

2. Printing from symbolic linksI pr was told to print a file in the current directory using the -s flag. It seem
that the file to be printed was actually a symbolic link to another fild, o followed the symbolic link to the
original file, and then placed a symbolic link to the real file in the splir@ctory.

3. Printing from a separately administered machine with a very differeriigroation.
4. Trying to print a job so large thatpr ran out of disk space for the log file.

When the normal database is built chronologically, there are only 6 faisiives, 3 of which are caused by the
first case (1) above, and 3 of which are caused by the second case (2).

Are these really false positives? A false positive is some sort of agloktbehavior that is classified as anomalous.
If the behavior is unacceptable, even if it is not caused by an intrusiomnyouméd want to know about it, because it
indicates that the system is not functioning properly or efficientlyn®dl and 4 above are both instances of irregular
behavior symptomatic of a problem with the system; both indicatéitions that need to be rectified. In this sense,
neither 1 nor 4 are false positives. This kind of analysis indicates tivaactual false positive rate is lower than the
reported values, for example, in the case of a chronological normal, theenof false positives would be reduced
from 6 to 3.
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6 Discussion

The previous two sections have presented evidence that short sequesgstenf calls are good discriminators be-
tween normal and abnormal operating characteristics of several common UNj¥kaptse. In essence, we have found
a regularity in executing programs that is highly likely to be pdyagt by intrusive activities. These results are inter-
esting for several reasons: They suggest a possible implementatiofopatlightweight intrusion-detection system;
the techniques might be applicable to security problems in other congnahbsettings; they illustrate the value of
studying the empirical behavior of actual systems; and they suggestegstfor approaching other on-line problems
in computing that are not well solved by conventional methods.

Although the results presented in sections 4 and 5 are suggestive, muehteating needs to be completed
to validate the approach. In particular, extensive testing on a widegtyasf UNIX programs being subjected to
large numbers of different kinds of intrusions is desirable. For eadhede programs, we would ideally like to
have results both in controlled environments (in which we could argd numbers of intrusions) and in live user
environments. Overall, we expect that discrimination will be morgadik in highly stressed environments (high user
loads, overloaded networks, etc.) in which many exceptional conditiomaiaesl. Furthermore, we would like to test
these ideas in different operating systems, such as Windows NT. Recerfigwesuccessfully detected intrusions in
two other programs: A buffer overflow in thd ock program running in Linux, and a symbolic link vulnerability in
theswi nst al | program running under HP-UX [7]

However, there are some logistical problems associated with collectirgimdive user environments. Most
operating systems are not shipped with robust tracing facilities, anduak as possible, we would like to collect
data in standardized environments. It is difficult to justify instajlicode with known vulnerabilities (needed to run
large numbers of different intrusions) in a production environm#nts putting the user community at risk of real
intrusions. Finally, there are no obvious stopping criteria. Eagistem is slightly different—when can we say that
we have collected enough data on enough different programs in enougtedifénvironments?

Assuming that more detailed experiments confirm our results, therelaostaf systems-engineering questions
that need to be addressed before an IDS based on these principles coulddraempld and deployed. First, what
combination of synthetic and actual behavior should be collected to defioenzal database? In many user envi-
ronments, certain (legitimate) features of programs might be seldom aisédo a database generated from live user
traces might contain false positives, whereas constructing a synthetlzadatappropriately could prevent these false
positives. It would also be much easier to distribute an IDS that didetuire a lot of customization at the time it
is installed— -an IDS should make systems administration easier natrhartus, the collection of real usage data
at install- time would have to be highly automated. A related complinaichow to guarantee that no intrusions
take place during the collection of normal behavior. Second, which UNbBgm@mms should be monitored, and how
(and when) should databases be switched when different processes are stated@ldNise a completely different
database for each program—earlier we emphasized that normal behavior foertiffieograms is significantly dif-
ferent (ranging from 40% to 80%). However, these percentages also ilmgdlyitere is much behavior in common
between different programs, and so in a running implementation we iinégaible to reduce resource requirements by
exploiting this commonality. Finally, we envision our IDS as a riiale, on-line system that could potentially dis-
cover and interrupt some intrusions before they were successful edsiflity of this is highly dependent on efficient
design and implementation of both the tracing facility and the algosttirat detect mismatches.

Our emphasis has been on determining if our approach can be successful at allerg/aotoo concerned
with efficiency issues in this paper. However, for the system to be abtletect intrusions in real-time—as they

4This data was collected by Mark Crosbie, at Hewlett Packard
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are happening—uwill require careful attention to efficiency issues. As tastiep towards this we have analyzed the
complexity of our algorithm, although we have not been able to medtsuedficiency in a production environment.
Should the implementation prove too inefficient, there are numerayslifications we could experiment with, such
as looking only at specific kinds of calls, or only at every tenth call, etc.

An important question in the context of an IDS is what response id4 aqg®opriate once a possible intrusion
has been detected. This is a deep topic and largely beyond the scope of ourMapetDS respond by sending
an alarm to a human operator. In the long run, however, we believe thaeiponse side will have to be largely
automated if IDS technology is going to be widely deployed. We haveesswigdence that intrusions generate highly
regular signatures, so it might be possible to store these sigisdtar known intrusions and respond more aggressively
when those signatures are detected. Then for new anomalies more cautions eatilnl be taken. One advantage of
monitoring at the process level is that a wide range of responsessibfmsanging from shutting down the computer
completely (most radical) to simply running the process at lower fpyiori

The method we propose is not a panacea—it will certainly miss some fofrmgrusions. One example is race
condition attacks, which typically involve stealing a resource (such de)acfieated by a program running as root,
before the program has had a chance to restrict access to the resource. It {h@cess does not detect an unusual
error state, a normal set of system calls will be made, defeating our methiloel: €&amples of intrusions that would
be missed are password hijacking (when one user masquerades as anothergsirdwhih a user violates policy
without using privileged processes.

The idea of looking at short sequences of behavior is quite general arnd bagpplicable to several other se-
curity problems. For example, people have suggested applying thadaeho several other computational systems,
including: The Java virtual machine, the CORBA distributed objestesy, security for ATM switches, and network
security. For each of these potential applications, it will be necessarydigsttermine empirically whether simple
definitions (analogous to sequences of system calls) give a clear and compatirggf normal behavior, and then
to determine if the signature is perturbed by intrusive behavior.

Our approach is similar to several other approaches, although the differamcesstical. Ko et al [26] have also
chosen the level of privileged processes, but they characterize the bebbaqrivileged process by a program
specification or policy, which is a description of what the program khba able to do. This policy is derived from
the program code and so requires specialized knowledge of program funéffidimg a policy can be prone to the
same sorts of errors as writing the program, i.e. it is hard to guaratectness. Most importantly, from our
perspective, such a policy could easily include behavior that is legatdiuntormal because it is hard to determine
beforehand what behavior should be normal. We avoid these issuesatingrthe program as a black box, and relying
purely on empirical observation to ascertain program behavior. Anothedikerence is that we rely exclusively on
sequencing information, unlike the specification approach, which nrsnitdividual operations. However, there are
other approaches, such as TIM [35], that consider sequencing informatiese Biffer from our approach in that they
look at the domain of user behavior, and use a probabilitistic approaaetecting anomalies. Because our results
are sufficiently promising the added complexity of using probabdiseems unnecessary. It is possible that our simple
deterministic approach is successful because because our data is wellrsttulftthis is the case, it may well be that
probabilities are necessary in less structured domains, such as user hehavio

In earlier papers, we have advocated a comprehensive approach to computey $eaait on a collection of
organizing principles derived from our study of the immune systeth [Bhe immune-system perspective has certainly
influenced many of our design decisions, but in this paper we are emphasiriogete computational mechanisms
and largely ignoring the immune system connection. Details of how qanoagh to IDS fits into the overall immune-
system vision are given in [15]. Extensions are suggested by analogy.

An important bias underlying our approach is that modern computers argple@siystems” in the sense that they
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are comprised of a large number of components, many of which interachearlly. These components are continually
evolving, as well as the environments in which they are embedded, tlees, @d the programmers who implement
them. This complexity threatens to overwhelm design strategies baseshctiiohal decomposition. Furthermore, it
implies that although we design and build computers, we do not necgasatiérstand how they behave. An example
of this is the fact that the normal behavior of a highly complex paogsuch asendnmai | can be captured by such
a small number of system call sequences—it would have been hard to preslidRther than making assumptions
about how we believe that programs or users will behave, or tryingaspecify their behavior (and being surprised),
this paper asks the question: What behavior do we observe? That is,evexialing artifacts and study their behavior
rigorously. Although such an approach might be dismissed as "merelyrieaiprather than theoretical, our point is
that we need to spend more time asking to what extent our existingeset@scribe our existing artifacts.

7 Conclusions

We presented a method for anomaly intrusion detection at the process Ma@hal was defined in terms of short
sequences of system calls executed by running privileged processes. @llasmfmormal behavior, which consisted
of unique sequences of length 10, were remarkably compact, for exampkeititerai | database contained only
1318 such sequences. Three measures were used to detect abnormal behaviatiasgifreim profiles of normal.
These measures allowed us to successfully detect several classes of abnormiat,iablding: Intrusions in the
UNIX programssendnmi | , | pr andf t pd; failed intrusion attempts againsendnmi | ; and error conditions in
sendnmai | . We studied two different methods of accumulating normal profiles: Gengnabrmal synthetically by
attempting to exercise the program in as many modes of normal operati@ssiblp, and tracing a process in a live
user environment. In the latter case we have analyzed the data for falsegso$ur false positive rates fopr were
about 1 in every 100 print jobs (and explainable in terms of systetlgmus), but these results are tentative because
we did not have sufficient data for a comprehensive analysis. In futaretend to expand our base of intrusions
and gather more data for more processes running in real environments,Gvget more realistic estimates of false
positive and false negative rates.
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Appendix 1
This appendix gives more detailed descriptions of intrusions and esratitions that we tested against.

sunsendmailcp: The sunsendmailcp script uses a special command line option to sanskrai | to append an
email message to a file. By using this script on a file such.ashost s, a local user may obtain root access.

syslogd: Thesysl ogd attack uses theys| og interface to overflow a buffer isendmai | . A message is sent to
thesendmai | on the victim machine, causing it to log a very long, specially created errcsages The log
entry overflows a buffer isendmai | , replacing part of thesendmai | 's running image with the attacker’s
machine code. The new code is then executed, causing the standard I/O sbwneal shell to be attached to
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a port. The attacker may then attach to this port at his or her leisure. Thikathn be run either locally or
remotely; we have tested both modes. We also varied the number of comissunel$ as root after a successful
attack.

decode: In oldersendnmi | installations, the alias database contains an entry called “decode,” whichagsolv
uudecode, a UNIX program that converts a binary file encoded in plain text intoriginal form and name.
uudecode respects absolute filenames, so if a file “bar.uu” says that the original filkome/foo/.rhosts” then
whenuudecode is given “bar.uu,” it will attempt to create foo'sr host s file. sendnai | will generally
runuudecode as the semi-privileged user daemon, so email sent to decode cannot ovanyrftke on the
system; however, if the target file happens to be world-writable, dvede alias entry allows these files to be
modified by a remote user.

Iprcp: Thel pr cp attack script uselspr to replace the contents of an arbitrary file with those of another. Ttaslatt
exploits the fact that older versionslopr use only 1000 different names for printer queue files, and they do not
remove the old queue files before reusing them. The attack consistsinfidgit to place a symbolic link to
the victim file in the queue, incrementihgr 's counter 1000 times, and then printing the new file, overwriting
the victim file’s contents.

ftpd: Thisis a configuration problen. f t pd is misconfigured at compile time, allowing users SITE EXEC access
to/ bi n. Users can then run executables suchash with root privilege.

unsuccessful intrusions: sm5x, sm565a.

forwarding loops: A local forwarding loops occurs isendai | when a set o8HOVE/ . f or war d files form a
logical circle. We considered the simplest case, shown in table 7.

Appendix 2

This appendix describes briefly how synthetic normals were generatéd fat andl pr .

The synthetid t pd was generated by tracing the executiorf bfpd, using every option on thiet pd man page
at least once.

The synthetid pr was generated by tracing the following typesladr jobs: Printing a text file, printing a
postscript file, attempting to print a nonexistent file, printingséweral different printers, printing with and without
burst pages, printing with symbolic links (the -s option).

Acknowledgements

The authors gratefully acknowledge support from the Defense AdvanceshiRRbsProjects Agency (grant NO0014-
96-1-0680), the Office of Naval Research (grant NO0014-95-1-026%),the National Science Foundation (grant
IR-9157644). Some of this work was performed whilst the authasevat the MIT Artificial Intelligence Labora-
tory, where a very helpful support staff provided a good environreméxperimentation. Many people have con-
tributed important ideas and suggestions for this paper, includingckley, A. Koseresow, B. Sanchez, B. LeBaron,
P. D’haeseleer, A. B. Maccabe, K. McCurly, N. Minar, G. Hunsicker and M. Ceosbome of the data presented in
tables 4 and 5 were generated with the help of L. Rogers and T. Longstaéf Gtmputer Emergency Response Team
(CERT).

21



Tables

22



Type of Behavior # of Mail Messages
message length 12
number of messages 70
message content 6
subject

sender/receiver

different mailers

forwarding

bounced mail

gueuing

vacation

Total 11

N Sl N

Table 1: Number of messages of each type used to generate systhetoni | normal. Each number in the table
indicates the number of variants used, for example, we used 12 differesageekengths.

process Database Size N

sendmail 1318
lpr 198
ftpd 1017
Table 2: Normal database si2éfor sequence length of 10, feendnmai | , | pr andf t pd.

Process Number Mismatches %Mismatchegz

Is 42 75 0.6
Is -l 134 91 1.0
Is -a 44 76 0.6
ps 539 97 0.6
pS -ux 1123 99 0.6
finger 67 83 0.6
ping 41 57 0.6
ftp 271 90 0.7
pine 430 77 1.0

Table 3: Distinguishingendmnai | from other processes. Each column reports results for a single anormagais
sures: Mismatches (column 2), percentage of mismatches over a trace (coluand &olumn 4). The results shown

are for a sequence lengthef= 10. There are no mismatches agaisenhdnai | itself because the database includes
all variations.
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Anomaly Number Mismatches % Mismatches  S4

syslogd 248 - 529 17-30 0.7
sunsendmailcp 92 25 0.6
decode 7-22 1-2 0.2-05
Iprcp 242 9 0.5
ftpd 496 38 0.7
Table 4: Detection of successful intrusions &@ndmai | , | pr andf t pd. The data for the syslogd attack show

the results of tracingendmai | (rather than tracingysl ogd itself). The three columns list the results for various

anomalous measures, from mismatches, percentage of mismatches over a §acénteome cases the columns list
a range of values, from minimum to maximum. The results aré fer10.

Anomaly Number Mismatches % Mismatches S,
sm565a 54 22 0.6
Sm5x 472 33 0.6
forward loop 21-108 10-18 0.4-0.6

Table 5: Detection of unsuccessful intrusions and error conditionsdadnai | . The three columns list the results
for various anomalous measures, from mismatches, percentage of mismatehagrace, t&5 4. The results are for
k = 10.

UNM MIT
Number of hosts 1 77
Number of printjobs 1234 2766
Time period (weeks) 13 2
DB SizeN 569 876
Detection of Iprcp:
# mismatches 11009 11006
% mismatches 7 7
Sa 04 04

Table 6: Comparison dfpr normals collected at MIT and at UNM. These results aréfer 10.

Email address .forward file
foo@hostl bar@host2
bar@host2 foo@hostl

Table 7: Forward loop.

24



Figure Captions

Figure 1: An Example of a forest of system call sequence trees.

Figure 2:5,4 plotted against sequence lengthFrom this plot we infer that sequence length makes little difference
once we have a length of at least 6.

Figure 3. Anomaly profile for a run of theysl ogd intrusion. The data represents a trace of system calls that is a
concatenation of 5 forkeslendrnai | processes. Th&, value for this intrusion is 0.7, i.e. the highest point reached
on the y-axis.

Figure 4: Growth of database size fopr normal collected at MIT. The x-axis indicates the number of print jobs
tried, and the y-axis indicates the number of unique sequeNdaghe normal database.

Figure 5: Bootstrap estimate of change in expected false positive ratemsl database size increases.
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