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We describe a method of implementing efficient computer simulations of immune
systems that have a large number of unique B- and/or T-cell clones. The method
uses an implementation technique called lazy evaluation to create the illusion that all
clones are being simulated, while only actually simulating a much smaller number
of clones that can respond to the antigens in the simulation. The method is effective
because only 0.001-0.01% of clones can typically be stimulated by an antigen, and
because many simulations involve only a small number of distinct antigens. A lazy
simulation of a realistic number of clones and 10 distinct antigens is 1000 times
faster and 10 000 times smaller than a conventional simulation —making simulations
of immune systems with realistic-size repertoires computationally tractable.
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1. INTRODUCTION

The B- and T-cell repertoires of vertebrate immune systems can recognize and
respond to almost all foreign antigens, even laboratory-derived ones that almost
surely have never been seen in evolutionary history. The repertoire can also dis-
tinguish, to a fine level of detail, between foreign antigens and the components of
the body it protects. To achieve this broad, yet detailed, coverage, the immune
system maintains a large number of highly specific clones, where a clone is a set of
cells derived from a single precursor and which almost assuredly has a unique B-
or T-cell receptor. In this paper we discuss only the B-cell repertoire; however, the
method is also applicable to the T-cell repertoire.
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The murine B-cell repertoire maintains 107-108 distinct clones (Kohler, 1976;
Klinman et al., 1976; Klinman et al., 1977), each of which typically can be stim-
ulated by only 10~°-~10~* of all possible antigens (Nossal and Ada, 1971; Edel-
man, 1974; Jerne, 1974). In order for an antigen to stimulate a B-cell it must bind
to antigen-specific receptors on the surface of the B-cell.

The binding affinity between receptors and antigens is based on complementarity
at the molecular level. Perelson and Oster (1979) introduced an abstract model of
binding in which molecules are considered as points in a ‘shape space’ and affinity
is measured as a function of the distance between such points. Modelers have used
a variety of methods to represent molecules in shape space. Segel and Perelson
(1988) and DeBoer et al. (1992b) examined one- and two-dimensional shape spaces
in which the shape of molecules was represented by one or two real numbers, e.g.,
the depth, or depth and width, of a binding cleft or protrusion on a molecule.
Affinity was then measured as a function of the Euclidean distance’ between the
shapes. Seiden and Celada (1992), Forrest and Perelson (1991), and Perelson et al.
(1996) [after Farmer et al. (1986)], represented molecules as strings of 8, 32, and
64 bits, respectively, and measured affinity as a function of the Hamming distance*
(or a variation on it) between them. Weisbuch and Oprea (1994) and Detours et
al. (1996) represented molecules as strings of digits chosen from a 4- and 16-letter
alphabet, respectively. Smith et al. (1997b) determined that representing molecules
as strings of 20 symbols, with each symbol chosen from a four-letter alphabet, and
affinity measured as a function of Hamming distance, as well as using a realistic-
size repertoire of 107 B-cell clones, gave good fits to immunological data important
for a model of cross-reactive memory.

To make simulations of 107 clones computationally tractable, we use a technique
called lazy evaluation (Friedman and Wise, 1976; Henderson and Morris, 1976).
This technique (as illustrated in the next section) delays calculations, and the build-
ing of data structures, until they are needed. When not all calculations and data
structures affect the result of a program, and when the relevant ones can be iden-
tified efficiently, lazy evaluation can result in significant savings in run time and
memory usage. In the case of the immune system, lazy evaluation can be effective
because only 0.001-0.01% of all clones are usually stimulated by any particular
antigen, and because many simulations involve only a small number of distinct
antigens.

Lazy evaluation can be programmed explicitly in traditional programming lan-
guages, or implicitly by using languages in which all evaluations are performed
lazily (Turner, 1979, 1985; Hudak et al., 1992). Lazy evaluation has been applied

TThe Euclidean distance is the familiar square root of the sum of the squares of the differences
in each dimension. The Euclidean distance between receptors a1, a; . ..a, and by, by ... by, is
«/leisn (@i — bi)?

#The Hamming distance is a count of the number of locations in which the receptors differ. The
Hamming distance between the receptors ABDCCDADDA and ABACCDADCA is 2 because they
differ in the two underlined locations.
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Figure 1. (a), In an eager simulation, all clones (x) are generated at the start of the
simulation. (b) and (c), When antigens (e) are introduced, clones already exist and no new
ones need to be generated.
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Figure 2. (a), In a lazy simulation, no clones are generated at the start of the simulation.
(b), When an antigen (e) is introduced, the simulation is temporarily halted while clones
(x) within its ball of stimulation are created. (c), When the ball of stimulation of a new
antigen intersects that of an existing antigen, no additional clones need to be generated in
the intersection as it has already been adequately populated.

in numerous domains including: animation (Elliott and Hudak, 1997), simulation
of integrated circuits (Dunne et al., 1993) [and a production simulator based on
Yoshino et al. (1987)], sound synthesis (Dannenberg et al., 1992), and dictionary
look-up (Lucas, 1995). In this paper we describe how lazy evaluation can be pro-
grammed explicitly in models of the immune system.

2. ALGORITHM

In a conventional eager approach to immune-system simulation, computation
time is taken and memory space explicitly allocated to generate all clones at the
start of the simulation [Fig. 1(a)]. When an antigen is introduced, the clones that
can be stimulated by it [said to be within its ball of stimulation (Perelson and
Oster, 1979)] already exist and the simulation proceeds [Fig. 1(b)]. In the modified
lazy simulation, no clones are generated at the start of the simulation (Fig. 2a).
Instead, when an antigen is introduced, the simulation is suspended while clones
within the ball of stimulation of the antigen are generated [Fig. 2(b)]. In this way,
all clones that could be stimulated by the antigen appear and act as in an eager
simulation. The absence of the remaining clones has no effect on the simulation
other than making it run faster and take less memory. Clones must not be added
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When a new antigen is added to the simulation

loop for i from O to r do
loop for j from 1 to num-clones(i) do
let clone = mutate(center, i)
if {clone is outside the ball of stimulation
of all previously added antigens}
then {add clone to the simulation}

where r is the radius of a ball of stimulation;

where num-clones(i) produces a random number from the binomial
distribution B(n, p;), where n is the number of clones in an eager simulation,
and p; is the probability that a clone is a radius i from an antigen;

and where mutate(center, i) mutates i distinct locations of the
string representing the center of the ball of stimulation.

Figure 3. Pseudo-code describing the lazy algorithm for generating clones.

to regions of a ball of stimulation where they have already been created by the
introduction of previous antigens—this would result in too many clones in the
intersections of balls of stimulation [Fig. 2(c)].

For a lazy simulation to be functionally equivalent to an eager simulation, clones
generated within a ball of stimulation must be added in the same distribution they
would have had in an eager simulation. The correct distribution depends on how
receptors and antigens are represented, and how affinity between them is measured.
Here we describe a lazy algorithm for receptors represented as strings of symbols,
and affinity measured as a function of the Hamming distance between receptors. In
an eager simulation using this representation, receptors are generated by choosing
each symbol from a uniform distribution—loosely mimicking the random genetic
process used by vertebrate immune systems to generate clonal diversity (Leder,
1991).

For the lazy simulation, clones must be generated only within balls of stimulation.
To do this we develop a method to generate clones at radius i from the center of a
ball of stimulation, and then repeat the method at radii O through r, where r is the
radius of a ball of stimulation. The probability, p;, that a randomly selected clone
in an eager simulation is radius i from the center of a ball is given by

-OFI

where d is the number of symbols in the string representation of the receptor, and
k is the number of possible symbols at each location in the string. Further, in an
eager simulation with # clones, the probability of j clones at radius i is given by
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the binomial

B(n, pi) = (7) Y {(1-p}7.

Thus, the number of clones, f, to generate at radius i from the center of a ball should
be sampled from this binomial distribution. Each of the f clones is generated by
changing i distinct symbols in the string that represents the receptor at the center
of the ball of stimulation.

To avoid multiply generating clones in the intersections of balls of stimulation,
each new clone is added to the lazy repertoire only if it is outside the balls of
stimulation of all antigens already in the simulation. In the next two sections we
verify that the lazy algorithm generates clones in the same distributions as the eager
algorithm, and compare the algorithmic costs of the lazy and eager algorithms.

3. VERIFICATION

We generated a complex test case to check whether the lazy algorithm generates
clones in the same distributions as the eager algorithm, especially in the case of mul-
tiply overlapping balls of stimulation. Following Smith et al. (1997b), molecules in
the test were represented by strings of 20 symbols, each symbol was chosen from a
four-letter alphabet, and balls of stimulation had radius 5. A seed antigen was gen-
erated by randomly selecting each of its symbols from a uniform distribution, and
10 test antigens were generated in a cluster around the seed. Each test antigen was
generated by mutating m randomly selected unique symbols of the seed, where m
was chosen from a uniform distribution in the range 0-3 so the balls of stimulation
of the test antigens would have intersections of various sizes. Clones were gener-
ated, according to the lazy algorithm, and the number of clones at radii 0-5 for each
antigen were counted. The experiment was replicated 100 000 times. For 10000
of these experiments, the algorithm was metered to record the balls of stimulation
that a newly generated clone fell within. These data were used to determine how
much of each ball of stimulation was populated with clones generated by previous
antigens.

Table 1 shows that the 10 antigens were at varying Hamming distances from each
other and thus had varying overlaps. Table 2 shows that these overlaps resulted
in many different proportions of balls of stimulation being populated by clones
generated by prior antigens, and were thus a reasonable test of the lazy algorithm.
Figure 4 shows that the observed and expected distributions are the same when
compared visually, and Table 3 shows they are the same when compared statistically.
Thus, the lazy algorithm worked correctly.
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Table 1. The pairwise Hamming distances between the 10 test antigens used in the experi-

mental verification of the algorithm.

Hamming distance to other antigens?

Antigen 1 2 3 4 5 6 7 8 9 10 Antigen string
1 0 4 2 1 4 4 2 3 3 2 CCBDDDBCCCABDCCDADAD
2 4 0 4 3 6 6 4 4 5 4 BCBDDDBCCCADDCCDAAAC
3 2 4 0 1 3 4 2 3 3 2 CCBDDDBCCCABACCDADAC
4 1 3 1 0 3 3 1 2 2 1 CCBDDDBCCCABDCCDADAC
5 4 6 3 3 0 6 4 5 5 4 CCCDDDBCCCABCCCDDDAC
6 4 6 4 3 6 0 3 4 5 3 CCBCDDBCCCBBDCCCADAC
7 2 4 2 1 4 3 0 1 3 2 CCBDDDBCCCDBDCCDADAC
8 3 4 3 2 5 4 1 0 4 3 CCBDDDBCCCDBDCCDACAC
9 3 53 2 5 5 3 4 0 3 CCBDDCDCCCABDCCDADAC
10 2 4 2 1 4 3 2 3 3 0 CCBBDDBCCCABDCCDADAC

“The table is symmetric about the main diagonal because Hamming distance is commutative.
The table shows that the antigens were at various Hamming distances from each other.

Table 2. Overlaps in the balls of stimulation of the 10 test antigens?

Proportion of clones generated by each antigen

Antigen 1 2 3 4 5 6 7 8 9 10
1 1.00 — — — — — — — — —
2 0.05 0.95 — — - — — — — —
3 021 003 077 — — — — — — —
4 033 006 017 045 — — — — — —
5 005 001 006 002 08 — — — — —
6 005 001 003 005 000 08 — — — —
7 021 003 009 013 001 002 051 — — —
8 0.10 003 005 009 001 002 0.14 057 — —
9 001 001 005 010 001 001 002 001 071 —

10 021 003 009 013 001 002 005 001 002 044

“This shows that the balls of stimulation of the 10 test antigens all overlapped
each other; thus, many of the clones within a ball of stimulation were generated
by the lazy algorithm operating on prior overlapping antigens. The proportions
generated by each antigen are shown in this table. For example, for the fourth
antigen, on average, 0.33 of the clones in its ball of stimulation were already
generated by the first antigen, 0.06 by the second antigen, 0.17 by the third
antigen, and 0.45 were generated de novo by the lazy algorithm on injection
of the fourth antigen. The data were calculated by metering the lazy algorithm
to record which balls of stimulation a newly generated clone fell within. The
varying proportions suggest that the 10 antigens were a reasonable test of the
lazy algorithm.

Table 3. Results of the x2 goodness-of-fit tests on the observed and expected istributions

of clones.
Observed )(2 goodness-of-fit values for each antigen at each radius? Degrees Critical
Radius 1 2 3 4 5 6 7 8 9 10 of freedom x2
1 0.00 0.11 0.00 1.34 0.23 0.04 0.11 023 1.02 0.12 1 384
2 436 1.50 0.89 3.08 1.19 261 171 4.55 048 1.04 2 599
3 5.15 3.06 5.40 043 0.60 2.14 4.13 4.87 320 1.69 4 949
4 13.57 10.68 2236 17.71 6.44 11.24 12.10 733 17.46 10.08 12 21.03
5 3947 44 .45 31.72 31.74 4525 39.95 35.96 48.35 28.22 54.58 40 55.76

@Al observed x2

2

values (except one) were below their respective critical x“ value. Thus, there is no evidence (p = 0.05) for rejecting

the hypothesis that the observed data were in their expected distributions, and we conclude the lazy algorithm worked correctly. The one exception

(antigen 3, radius 4) appears to be a Type I error, due to statistical variation, because its x

2 value was less than the critical value when

the experiment was repeated. One such error in 20 tests is to be expected at p = 0.05. The data used were from the same 100 000 simulations used
to make the plots of Fig. 4. Not enough clones were generated at radius 0 (8 in 100 000 simulations) to perform the test.
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Figure 4. The expected (dashed curve) and observed (solid impulses) distributions of the
number of clones at radii 4 and 5 from antigens 1 and 10. These data were collected from
the application of the lazy algorithm to the sequential introduction of the 10 test antigens in
100 000 independent simulations and counting the number of clones at each radius within the
ball of stimulation of each antigen. Antigens 1 and 10 are shown because they had the least
and most number of clones, respectively, generated by prior antigens. Plots showing the
distributions for the other antigens, and other radii, showed similar visual correspondence
between the observed and expected distributions.

4. ALGORITHMIC COST

In this section we compare the algorithmic cost of the lazy and eager algorithms.
The number of clones generated in a lazy simulation is g X p x n, where g is the
number of distinct antigens in the simulation, p is the proportion of the repertoire
that can be stimulated by an antigen, and 7 is the total number of clones in the eager
simulation. Each of these clones needs to be checked to see if it falls within the ball
of stimulation of any previously added antigen. Thus, the total number of checks
after adding g antigens is

-1
on Z (g(g ))
0<j<g

If we assume that the cost of generating a clone is approximately the same as the
cost of checking if a clone is in the ball of stimulation of an antigen, then the total
cost of generating the lazy repertoire for g antigens is

se=-1 _&+eg
2 2

gpn +
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Figure 5. A comparison of the algorithmic cost of creating the B-cell repertoire by the lazy
and eager algorithms. The algorithmic cost was measured as the sum of the number of
clones generated plus the number of checks that a clone was within the ball of stimulation
of an antigen. Calculations were done for a realistic-size repertoire with n = 107 and
p= 1075, The lazy algorithm costs less than the eager algorithm when there are less than
447 distinct antigens in a simulation, and costs 1000 times less when there are less than 10
distinct antigens in the simulation.

The cost of the eager method is 7 because it generates n clones and does not have
to do any checks. Comparing the cost of the lazy and eager algorithms, the lazy

method is more efficient than the eager method when g is less than approximately
2

P

For a realistic-size repertoire with n = 107 and p = 107>, in a simulation with
10 distinct antigens, the lazy algorithm will create less than 0.01% of the clone
repertoire at 0.1% of the cost of the eager algorithm. For less than 447 distinct
antigens, and the same realistic-size repertoire, the lazy algorithm is lower cost
than the eager algorithm (Fig. 5). Simulations of more than 447 antigens, which
would probably include simulations of immune networks, would be more efficient
using an eager algorithm.

When there are more than 10 distinct antigens in a realistic-size simulation, most
of the algorithmic cost of the lazy method is in the g2 comparisons of new clones
with previously added antigens. In simulations involving hundreds of antigens, this
g2 cost could be reduced by various methods. One method is to compare clones
only against antigens that are within distance 2r of the antigen for which clones are
being generated. The algorithm still works correctly because antigens at greater
than 2r distance cannot have intersecting balls of stimulation. In this case, the g2
comparisons become a worst case, and the actual number of comparisons depends
on the distances between the antigens in the simulation. Another method to reduce
the g comparisons is to generate clones in a ball larger than a ball of stimulation
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and thus avoid lazy generation for any future antigens whose balls of stimulation
fall completely within the previously generated larger balls. This second method is
effective when the antigens are tightly clustered.

5. DISCUSSION

We have described an algorithm that uses lazy evaluation to generate only the
subset of clones that can be stimulated by the antigens introduced into a simula-
tion. Because this subset is typically a tiny proportion of the clone repertoire, the
algorithm permits the efficient simulation of realistic-size repertoires. Correctness
of the algorithm was checked by showing that, in a test case of 10 overlapping
antigens, the algorithm produced clones in the same distributions as an eager algo-
rithm. Analysis of the algorithm showed, in simulations of realistic-size repertoires
involving less than 10 distinct antigens, that less than 0.01% of the expressed reper-
toire was created at less than 0.1% of the cost of creating a complete repertoire. We
have implemented a lazy simulation of the humoral immune response that uses a
realistic-size repertoire with a steady-state size of 107 B-cell clones and a turnover
of 5 x 10° B-cell clones every 6 h (Smith ez al., 1997a). Simulations of the sequen-
tial infection by three antigens that have overlapping balls of stimulation, over a
simulated period of 200 days, takes less than 2 min of CPU time, running in Lisp,
on a Sun Ultra 2/2300.

The algorithm we described is specific for models in which receptors are repre-
sented as strings of symbols and affinity is calculated as a function of the Hamming
distance between receptors. The method could also be applied to other repre-
sentations of receptors and other methods of calculating affinity, by changing the
calculation of the probability distribution of clones within a ball of stimulation and
the method of generating clones within a ball of stimulation. The method is ap-
plicable to both agent-based models in which each cell is represented individually,
and to differential equation-based models in which each clone is represented by a
differential equation.

Some neural network and associative memory models have similar structure and
function to the immune system models discussed above (Smith et al., 1996). Thus,
the lazy method can also be applied to implementation of such models. In particular,
the method can be applied without modification to the Sparse Distributed Memory
(SDM) model (Kanerva, 1988). The method can also be applied, with modifications
similar to those described for other representations of receptors, to the Cerebellar
Model Arithmetic Computer (Albus, 1981), the Theory of Cerebellar Cortex (Marr,
1969), WISARD (Aleksander et al., 1984), and variations on SDM (Jaeckel, 1989a,
b). Danforth (1997) used a lazy-like method, and a modified SDM learning rule
(Danforth, 1991), to improve the performance of SDM. Danforth’s method adds
at most one hard location (the SDM equivalent of a clone) on each write to the
memory, at the exact location of the write. This is in contrast to the cluster of hard



656 D.J. Smith et al.

locations that would be added by our method. Both methods significantly reduce
the number of hard locations in a simulation (compared with an equivalent eager
simulation), and distribute hard locations in accordance with the distribution of
addresses used to write to the memory. Danforth’s method modifies the behavior
of the SDM; our method leaves the behavior unchanged, and only modifies the
implementation.

General immune system models that include clones with receptors have been
simulated with the order of 10° clones (DeBoer and Perelson, 1991; Celada and
Seiden, 1996; Detours et al., 1996). Lattice-based cellular models that use only
one or two bits to represent the concentration of highly simplified clones, and
measure affinity by neighborhood on the lattice, have simulated 10* clones (DeBoer
et al., 1992a), and 10® clones (Stauffer and Sahimi, 1994) (the latter on a Cray—
YMP). The lazy evaluation method presented here is the first to permit realistic-size
repertoires of 107—108 clones for general immune-system models.
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