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Abstract

The transformation of normal cells into cancerous cells is an evolu-
tionary process. Populations of precancerous cells reproduce, mutate, and
compete for resources. Some of these mutations eventually lead to cancer.
We calculate the probability of developing cancer under a set of simpli-
fying assumptions and then elaborate these calculations, culminating in
a simple simulation of the cell dynamics. The agent-based model allows
us to examine the interactions of mutations critical for the development
of cancer that are either evolutionarily neutral or selective. We can also
examine the interaction of these mutations with a “mutator phenotype”
derived from mutations that raise the mutation rate for the entire cell.
The simulations suggest that there must be at least two selectively neu-
tral mutations necessary for the development of cancer and that preventive
treatments will be most effective when they increase this number. The
model also suggests that selective mutations facilitate the development of
cancer such that the more selective mutations that are necessary for the
development of cancer, the greater the chance of developing cancer.

1 Cancer

Cancer is an evolutionary problem. This is the basis for both its virulence and
our difficulties in treating it. The dynamics of cancer cells demonstrate the
sufficient conditions for natural selection: heritable variation in the population
and differential reproduction based on that variation. The variation in the
population of precancerous cells [8, 3] arises from the normal process of somatic
mutations as well as the dramatic rise in mutation rates that is characteristic
of the progression to cancer [13, 32]. Differential reproduction of the mutants is



accomplished through phenomena such as the subversion of check points in the
cell cycles of the mutants [40]. Nowell [30] argued for the importance of evolution
in cancer more than two decades ago. Any mutations that redirect more of the
body’s resources to the cancer cells will be selected. This includes the invasion
of new tissues and metastasis. The fact that the population of cells includes
significant heterogeneity means that there are likely to be some cells that are
resistant to any given treatment. Application of most treatments, therefore,
will tend to breed a resistant tumor. Furthermore, since each patient’s cells
evolve through an independent set of mutations and selective environments, the
resulting population of cancer cells in each patient is likely to be unique. This
suggests that general treatments that will work for all, or even most, patients
will be difficult to find. The fact that evolution within a tumor works against
us in cancer means that not only is cancer an evolutionary problem, but that it
will only be solved as an evolutionary problem.

Artificial life provides approaches that are ideal for addressing such evolu-
tionary problems. The field of artificial life has grown up around evolutionary
theory [5, 34, 24, 19|, and for good reason. When we try to examine hetero-
geneous populations of individuals interacting in a spatially structured envi-
ronment, it is difficult to represent and analyze such systems with tractable
mathematics. Computational models can help to extend analytical theory to
the dynamics of systems with heterogeneous populations that are interacting
and evolving. In addition, computational models can help to test the simplifi-
cations necessary to reduce the biological system to a mathematically tractable
formulation. At its best, artificial life models applied to theoretical biology lead
to testable hypotheses.

This paper extends an analytical model of the risk of developing cancer
and derives testable hypotheses about the genetic nature of the development
of cancer from these models. We focus on a type of esophageal cancer known
as esophageal adenocarcinoma, and a precancerous state, which is known as
Barrett’s esophagus [35, 29, 3].

2 Estimating Cancer Risks

Two dominant characteristics of cancer cells are their genetic instability [18] and
uncontrolled proliferation [16]. The most commonly mutated tumor suppressor
gene across all cancers is p53 [41]. The loss of this gene results in genetic insta-
bilities (a form of increased mutation rate), often with the loss or duplication
of entire chromosomes [41, 32, 18]. The appearance of such aneuploid cells in
Barrett’s Esophagus is one of our most reliable indicators of a poor prognosis
[29]. In contrast, pl6 (a.k.a. CDKN2A and INK4a) is a gene thought to be
respounsible for shifting a cell from a proliferative state to a quiescent state (GO)
[40]. Loss of a p16 allele is associated with the spread of cells with that mutation
throughout the Barrett’s region [10, 2, 33]. But, at least in Barrett’s Esophagus,
mutations in both p53 and p16 are not sufficient to cause cancer [3]. How many
other genes are involved and what are their roles?



There is a body of mathematical modeling work which argues that the de-
velopment of cancer is best understood as a sequence of two or more stages or
rate-limiting steps [27, 6, 28, 26, 20, 22, 39]. The two stages might be called
“precancerous” and “malignant.” The two-stage model, shown in Figure 1, in-
volves at least 6 rate parameters: the rate of cells changing from a normal state
to the precancerous state, the rate of reproduction of precancerous cells, the rate
of loss of precancerous cells, the rate of cells changing from the precancerous
to the malignant state, and the rates of reproduction and loss of the malignant
cells. These parameters appear to be sufficient to fit the model to most epi-
demiological data on the incidence of cancer. Moolgavkar [26] argues “without
ancillary biological information there is little point to fitting models postulating
more than two stages to tumor incidence data.” Tt has been shown that models
which fail to include the stochastic birth and death dynamics of cells in the
stages give different results than those models which do include those dynamics
[22]. These stage models, also promoted by experimentalists [7], abstract away
the evolutionary dynamics of cancer. Progression to cancer is seen as a pro-
gression through a linear sequence of stages, rather than a diversification into
a phylogeny of cell lines. However, actual observed orders of events often do
not match the predicted sequence of the linear models [4, 45]. In fact, we do
have ancillary biological information showing the variety of evolutionary paths
mutant clones can take in Barrett’s Esophagus [3]. Furthermore, linear models
do not account for interactions between cells, such as competition for resources.

Pre-
cancer ous,

Death Death

Figure 1: The two-stage model of the development of cancer posits two rate-
limiting steps. Normal cells become pre-cancerous in the first stage and malig-
nant in the second stage. There are 6 rate parameters diagrammed with arrows
that correspond to transitions between the stages, as well as the reproduction
and death rates for the stages. The population of normal cells is assumed to be
essentially stable.

Theoretical work could potentially help guide research in the genetic archi-
tecture of cancer. For example, we could ask, if cancer requires 2 (or more)
selective mutations in genes such as p16, what is the chance of developing can-
cer? Or, if a mutation in a gene such as p53 boosts the mutation rate, how would
this affect the probability of getting cancer? Since we have good epidemiolog-
ical data on the probability of getting cancer, we can then make guesses as to



the number and kind of mutations that are necessary for its development. We
will begin with some simple analytical calculations and incrementally elaborate
them until we are forced to move to a simulation-based model of the evolution
of cancer.

2.1 Loeb’s Paradox

In 1991 Loeb formulated the following paradoxical calculation for the incidence
of cancer. From the literature on human cell cultures he takes a per base pair,
per cell division, mutation rate of 107'° [31, 25, 9, 38]. He estimates that there
are approximately 10! cell divisions in a human lifetime. Finally, there are on
the order of 10° base pairs in the human genome. Putting this together, we
should expect 10710 x 1016 x 10° = 10'® mutations in our cells during a human
lifetime. If we are interested in the incidence of cells with two mutations at any
loci, then this should occur 1079 x 10719 x 10'6 x 10° = 10° times in a human
lifetime. However, if a genetic disease requires 3 mutations to occur in the same
cell, this should happen only once in 10° people. The chance of incurring 4
mutations is astronomically small. If these mutations must occur in specific
loci, such as the coding regions of tumor suppressor genes and oncogenes, then
the probability of developing cancer would be even smaller. Yet we believe
that cancer requires a whole series of mutations [1, 36, 42, 11], and cancer is a
frequent event during human lifespans.

2.2 Mutator Phenotype

One explanation for this paradox, offered in Loeb [21], is the idea of a “mutator”
phenotype. Loeb’s calculation changes if an early mutation, perhaps in p53,
increases the mutation rate in the rest of the cell. Let us assume that the first
event in this progression is a mutation that raises the mutation rate by c,,.
Let pu be the mutation rate per locus per cell generation, k,, the number of
critical genes necessary and sufficient to cause cancer, [, the number of loci in a
critical gene vulnerable to a cancer causing mutation, and let n; be the number
of cells in a human lifetime. To be generous, we will estimate that there are
100 different genes which, if they mutated, might raise the mutation rate. The
expected number of cells that will independently develop cancer should be:

E[Tumors] = ny [1 — (1 — p)2%°) [1 = (1 — epupr)’<] ™" (1)
where (1 — u)!<1% is the chance that a cell avoids a mutation in all 1,100 loci
that would produce the mutator phenotype. Thus 1 — (1 — u)'<!%0 is the prob-
ability that a cell has a mutation in at least one of the 100 genes that lead to
the mutator phenotype. Here ¢, is the increased mutation rate. Loeb esti-
mated ny = 10" and g = 107'%. There are approximately 10% loci in a human
gene at which point a deletion, insertion, or substitution is likely to affect the
polypeptide which that gene encodes. So we will consider I, = 10?. Compari-
son of normal and malignant cell cultures has estimated a change in mutation



rate due to malignancy of 1 to 3 orders of magnitude [38]. If we assume that
cancer requires the initial mutation in the mutator gene and then 3 more mu-
tations, a total number of mutations that was astronomically unlikely in Loeb’s
original estimation, and we assume that the mutator phenotype increases the
mutation rate by 3 orders of magnitude, ¢, = 10, then cancer should develop
in 10"6[1— (1—p)'0"10*](1 = (1= 10-'9103)'%")3 & 0.1 cells in a human’s lifetime.
Figure 2 shows the log;y expected number of cancer cells dependent on k,, the
number of mutations required and ¢, the increase in the mutation rate due
to the mutator phenotype. We have truncated the data at an expected single
tumor because we are interested in the probability of developing cancer at least
once.

Log10 Probability of Cancer

Figure 2: The expected number of cancerous cells that will develop during a
person’s lifetime. Two parameters are examined. The first parameter c,, is the
increase in the mutation rate g due to an initial mutation creating a mutator
phenotype. This was calculated over the range of 10' to 10'°. The second
parameter k,, is the number of mutations that are necessary and sufficient to
cause cancer once the mutator phenotype has appeared, from 1 to 10. The
expected number of cancerous cells has been truncated at 1.

Figure 2 shows that there is only a narrow window of mutation rate and
number of sufficient mutations to develop cancer that result in realistic prob-
abilities for developing cancer. In the United States, the chance of developing
cancer during one’s entire lifetime is approximately 40% [37]. Figure 3 shows
a view of the isocline where the probability of developing cancer is 40%. From
this we can predict the relationship between the change in the mutation rate
due to the emergence of the mutator phenotype and the number of mutations
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Figure 3: The predicted relationship between the increase in mutation rate of a
“mutator phenotype” versus the number of mutations necessary to cause cancer
after the appearance of the mutator phenotype. This an isocline calculated from
Figure 2. This figure assumes a 0.4 probability of developing cancer during
a lifetime. If the development of cancer requires many mutations, then the
mutator phenotype would have to raise the mutation rate by at least 5 orders
of magnitude.

that are sufficient to cause cancer. For example, Figure 3 suggests that if the
development of cancer requires 6 or more mutations after the initial rise in the
mutation rate, then that initial increase must raise the mutation rate by at least
5 orders of magnitude.

2.3 Clonal Expansion

Loeb [21] notes that Nowell [30] proposes another solution to his paradox. Some
mutations can have selective effects and so increase the population of cells with
that mutation [30]. We can elaborate Loeb’s calculations with the assumption
that the necessary mutations along the progression to cancer all have selective
effects. Thus, if a cell incurs such a mutation, it will increase in frequency to
some number n; which is approximately equal to the number of cells in a tumor.
Again p is the mutation rate, k,, the number of critical genes, I, the number
of loci in a critical gene vulnerable to a cancer causing mutation, and ny is the
number of cells in a human lifetime. We will assume that the mutations can
occur in any order.

The chance of the first mutation occurring is 1 minus the chance that it



doesn’t occur:
Prlfirst mutation] = 1 — (1 — p)lehmm (2)

This will cause the cell with that mutation to expand to n; cells. From then
on, each new mutation has n; chances of occurring in a background of cells
carrying all the previous mutations. The probability that the remaining k,,, —1
mutations occur is then:

Prlother mutations] = [1 — (1 — M)lcnt]km*]

(3)
Let us make some reasonable assumptions for the values of I.,n; and k,,. To
estimate n; we will consider Barrett’s Esophagus, a precancerous condition of
the esophagus. Biopsies collected from the neoplastic tissue of patients typically
include 10° cells in a 2mm by 5mm section of epithelium. The entire Barrett’s
region averages approximately a surface area of 50mm by 60mm, or 10 biopsies
by 30 biopsies. So the entire surface area can be sectioned into 300 biopsies of
10% cells, for a total of 3 x 108 cells. Since mutant clones are often observed to
have expanded over the entire Barrett’s region of a patient, it seems reasonable
to set n; = 108. Let us consider the case where k,, = 4 mutations are necessary
to cause cancer. Recall that Loeb calculates the chance of 4 mutations occurring
in the same cell to be astronomically small. Then,

Prlfirst mutation] =1 — (1 — 1071010 ~ 1 (4)

This number is so close to 1 that most computers cannot represent it as anything
other than 1. So many cells are generated in a human lifetime that carry a
mutation at any given locus. The interesting dynamics lie in the sequence of
mutations that follow the first one:

10113

Pr[other mutations] = |1 — (1 —107'7) = 0.99986 (5)

Given our assumptions, we estimate that 4 specific selected mutations are almost
certain to occur in the lifetime of an individual. Of course, our estimates may be
off. Figure 4 shows the probability of suffering cancer as a function of the number
of cells to which selected mutant expands (n;) and the number of selective
mutations necessary and sufficient to cause cancer (k).

Figure 4 shows a precipitous drop in the probability of experiencing cancer
as we reduce our estimate of the number of cells in a tumor from 10® to 10°.
The SEER report from the National Cancer Institute [37] estimates the lifetime
probability of being diagnosed with cancer in the US is 45% for men and 38%
for women (for all races and cancer sites combined). To match this estimate,
our rough calculations suggest that in general cancers would require 3 selected
mutations and those mutant clones would tend to spread to populations of 107
cells. Of course, this is an extremely simplified model of the incidence of cancer.
We have not accounted for any environmental effects, genetic predispositions, or
indeed any mutations that are necessary for cancer but do not spread through
selection. Nevertheless, the elaboration to Loeb’s calculations shows that Now-
ell’s insight does indeed resolve the paradox. We develop cancer because the
cells in the neoplastic tissues are evolving.
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Figure 4: The probability of developing cancer during a person’s lifetime. Two
parameters are examined. The cell population size to which a selected mutant
grows has been calculated over the range of 103 to 10!°. The second parameter
is the number of selected mutations that are necessary and sufficient to cause
cancer, from 1 to 10. These calculations estimate that if the selected population
size is below 108 there is little chance of developing cancer. If it is 108 or above,
a person is guaranteed to develop cancer during their lifetime.

2.4 Both Mutator and Selective Effects

The two elaborations of Loeb’s calculations consider selective and mutator mu-
tations separately. A more realistic view of the development of cancer would
likely consider both selective mutations and mutations that raise the mutation
rate, and their interactions. In addition, there may be “neutral” mutations®
which have no effect on cell proliferation rates or mutation rates and yet are
necessary for the expression of the cancerous phenotype.

Consider the case in which a mutator or neutral mutation arises in a cell
of the tumor. There is no reason to believe that this mutation would spread
rapidly in the tumor. Without a selective advantage, such a mutation would
be unlikely to grow to dominate the entire tumor. In fact, the chance of a
neutral mutation spreading throughout a population of 10® cells by chance is

IWe use the term “neutral mutation” here to indicate that these mutations do not effect
the proliferation of the cell in which they occur. However, we do not mean to imply that
these are silent mutations. On the contrary, we are only interested in the mutations that
are necessary and sufficient for the development of cancer. Thus, in the context of these
investigations, a “neutral” mutation is one that is necessary for the development of cancer
but does not stimulate the expansion of its clone population.



approximately 10~ and requires an average of about 2x 10® cell generations [12].
Meanwhile, if a selective mutation occurred in a cell which lacked the mutator or
neutral mutation, the selective mutation would tend to expand throughout the
tumor and thereby displace the mutant population with the mutator or neutral
mutation. Thus, it is important to keep track of both the cells with the mutator
or neutral mutations, as well as the cells that are free of those mutations but
may yet suffer selective mutations. Each subpopulation can be characterized
by the number of selective, mutator, and neutral mutations it has suffered,
along with its population size. A set of difference equations can describe the
growth dynamics of these subpopulations, as well as mutations that move cells
from one subpopulation to another. But what growth dynamics should we use?
The fundamental dynamic of biological reproduction is exponential. Is this a
reasonable representation of tumor dynamics in humans?

In the esophagus, as in most of the digestive tract, cells along the lining
(epithelium) are constantly being sloughed off and destroyed. These losses are
replenished by the division of stem cells in the lining. In the case of Barrett’s
Esophagus, these cells are precancerous and hyperproliferative. The estimated
turnover time of healthy stem cells in the esophagus is about once a week [23].
Because the cells are spatially structured as a two-dimensional layer (the inner
surface of a cylinder), there are severe spatial constraints restricting exponential
growth. Further, cell division (mitosis) is a local process, and so most new
cells must compete for space with their immediate ancestors. The easiest way
to represent a heterogeneous population of cells growing in a two-dimensional
environment is with a two-dimensional model agent-based model.

2.4.1 The Model

We represented the the states of all the precancerous cells in the lining of the
Barrett’s region of an esophagus. We instantiated this as a two-dimensional
discrete-event simulation in the shape of a column.? That is, we used a two-
dimensional array with “wrap-around” boundaries on the left and right sides,
but not on the top and bottom. The state of a cell in this grid has four compo-
nents: the number of selective mutations it has suffered (0-S, given the input
parameter S), the number of neutral mutations it has suffered (0-NN, given the
input parameter N), whether or not it has suffered a mutation that increases
its mutation rate (a “mutator” mutation), and the number of time steps until
it divides (0-16). The population of cells is updated serially each time step. A
time step which represents approximately half a day. Of course, the real system
of cells would be more closely approximated by a parallel simulation. How-
ever, since mutations are rare, stochastic events, and spatial competition is also
based on a stochastic process, a parallel simulation would probably not differ
measurably from this serial approximation. The complexity and computational
expense of a parallel simulation was not justified in this case.

2The C+4 source code is available upon request from the corresponding author at
cmaley@alum.mit.edu.



The time until the next reproduction (mitotic) event for each cell is drawn
from a normal probability distribution with a mean of 8 time steps and a stan-
dard deviation of 2 time steps. We chose 4 days as the mean time to mitosis in
the Barrett’s cells because we wanted to use a power of 2 and, unlike the nor-
mal squamous cells of the esophagus that turn over every 7 days, Barrett’s cells
are hyperproliferative. Each selective mutation has the effect of increasing the
replication rate of the cell. We experimented with doubling the rate of mitosis
for every selective event, as well as merely decreasing the mean time to mitosis
by one time step for each selective mutation. In the former case a cell that
has incurred 2 selective mutations reproduces 4 times as fast as a normal cell.?
In the later case, a cell with 2 selective mutations would, on average, divide
after 6 time steps. To determine when a cell divides, we generate a random
number, z, between 0 and 1 with uniform probability. We then calculate if
is less than or equal to the cumulative probability of mitosis from age 0 to n,
z < Prcyldivision], and find the smallest n for which this is true. We store
this number n in the cell’s data structure as the number of time steps until
the cell will divide. This value is decremented every time step until it reaches
0, at which point we let the cell divide. Normally, calculating the cumulative
probability distribution (Pr<y[division]) is done by integrating the probability
density function from 0 to n. However, there is no known closed form solution
to the integral of the normal distribution. The integral of the normal distribu-
tion has been solved numerically, and is recorded in a table in most statistics
text books. We therefore, stored the cumulative probability distribution of the
normal curve in a static array, A, and performed the calculation of when a cell
would divide by iterating (with n = 1 to 16) through the array until z < A[n].

When a cell divides, the new cell has a 50% chance of displacing one of
the 9 cells, selected with uniform probability, in the 3 by 3 cell neighborhood
centered on the parental cell. Thus, there is a 1 in 9 chance that the new cell
will compete for space with the parental cell. If random choice of a neighbor
results in a location off the top or bottom of the array, a cell on the edge of the
array is selected in its stead.

A run of the model began with all cells free of mutations. With each time step
representing 12 hours, we ran the model for 54,000 time steps (approximately
74 years), or a human lifetime. This put practical limitations on the number of
cells we could model, with a maximum of 1024 by 1024 (10%) cells. In the future
we hope to model more realistic tumor sizes with approximately 108 cells with
more sophisticated algorithms.

We model the mutation rate as a Bernoulli process. The probability of a cell
changing state is

Prlmutation] = 1 — (1 — p)(StN+M)leny — p (6)

where p = 10710 is the mutation rate per base pair per cell generation, S, N,
and M are the numbers of selective, neutral, and mutator genes sufficient and
necessary to cause cancer if mutated, I, = 103 is the number of critical base pairs

3This is why we chose a power of 2 for the mean time until mitosis.
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(loci) in each gene at which a mutation could have a carcinogenic effect. In most
cases, we assume that these mutations “knock out” the gene by either turning
it off or destroying the functional effects of the normal protein produced by the
unmutated gene. The last parameter, n, = 2, is the number of independent
pathways to cancer. This is an estimate of the number of genes in which a
mutation will have the same carcinogenic effect. If a cell had at least one
mutator gene mutated then p increased by 102 (or 102 in some experiments).
This parameter for the increase in the mutation rate was called ¢,, in our earlier
calculations. We primarily experimented with parameters S, N, and M, with
some exploration of u,l. and the degree of increase in pu due to the mutator
phenotype, ¢,,. A cell was called malignant if it had S selective mutations
and N neutral mutations. We assumed that the mutator phenotype was not
necessary for malignancy but only played a facilitating role through the increase
in the mutation rate of the selective and neutral genes.

A Bernoulli process can be simulated by calculating the interarrival time
for the next success. That is, instead of flipping a biased coin with probability
of success P for each trial of the Bernoulli process, we can ask when the next
success will happen. The probability mass function for the interarrival time k,
the number of trials up to and including the next success, of a Bernoulli process
is the geometric distribution:

Prlk] = P(1 - P)*! (7)

for £ = 1,2,.... The expected value of k is E[k] = 1/P. When P is very
small, as it is for most mutation rates, this function drops off very gradually.
In this case, for the purposes of efficiency, it is reasonable to approximate Pr[k]
as a uniform distribution from 0 to 2/P, which has the same expected value
E[k] = 1/P although a smaller variance. We calculated this with a single call
to the pseudorandom number generator, using a version of Knuth’s subtractive
method [17, pp. 171-172] to generate the pseudorandom numbers. We assume
that the processes of DNA synthesis and cell division are the primary causes of
mutations. Thus, in our model mutations only occur at cell division [32, 46].
Mutations have an equal probability of occurring in the new or parental cell. A
mutation has an equal probability of occurring in any of the genes (selective,
neutral, and mutator). If it occurred in a gene that had already been mutated,
there was no effect. Genes were only allowed to mutate from the normal state
to the mutated state.

At the end of a run we measured the proportion of cells that suffered enough
mutations to cause cancer (S and N). We ran the model at least 50 times for
each parameter setting. A grey-scale picture of the model in the midst of a run
is shown in Figure 5.

2.4.2 Results

A run of the model was considered to have led to cancer if the final population
had at least 1 cell with the mutations required for malignancy (S selective muta-
tions and N neutral mutations). Figures 6 and 7 show the resulting probability
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Figure 5: A view of the model running. The cells are color coded by lineage.
The lighter grey lineages share an ancestor that suffered a selective mutation.
This mutant clone is in the process of sweeping through the entire tissue.

of developing cancer as a function of the number of selective mutations S and
neutral mutations N necessary and sufficient for developing cancer. Figure 6
shows the probabilities when there is no mutator gene to raise the background
mutation rate. Figure 7 shows the results of the same parameter configura-
tions when there is a mutator gene that may also mutate and thereby raise the
mutation rate by 3 orders of magnitude. In these runs of the model, selective
mutations halve the average time to mitosis.

Figure 8 is an extraction of a single curve from Figures 6 and 7 where N = 1.
Figure 8 also shows the 90% confidence intervals around these curves calculated
by treating the probability of developing cancer as a Bernoulli process. When
there is no mutator gene in the system, the probability of developing cancer
decreases with the number of selective mutations that are required. This seems
reasonable in light of our earlier calculations. However, in the presence of a
mutator gene that can raise the mutation rate at any time, the probability
of developing cancer actually increases with the number of necessary selective
mutations.

Figure 9 shows the result of changing the simulated effect of the mutator
phenotype. The default effect of raising the mutation rate by 3 orders of mag-
nitude in the mutator phenotype ¢,;, = 1000 is probably unrealistically high.
When the mutator phenotype was set to be only 2 orders of magnitude greater
than the normal mutation rate we observed cancer in only 4% of the runs.

12
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Figure 6: A plot of the probability of developing cancer as a function of the
number of selective and neutral mutations necessary and sufficient to cause the
disease. These probabilities have been calculated in the absences of a mutator
gene. The probabilities are dominated by the number of neutral mutations
that are necessary. The probabilities were calculated by at least 50 runs of the
agent-based model with only 4096 cells.

We considered a reduction in the effect of a selective mutation. Instead of
halving the time to mitosis, what would happen if a selective mutation only
reduced the average time to mitosis by 1 time step? With ¢, = 100 and
= 10719, none of the runs resulted in cancer. We experimented with S = 1
to 8, and N = 1 to 4. In all cases, no cancer was observed.

We then considered raising the base mutation rate p. Figure 10 shows the
effect of changing the mutation rate when S = 2, N = 1, and selective mutations
halve the time to mitosis. Under our less dramatic parameter settings, where
selective mutations reduce the time to mitosis by 1 time step, we observe cancer
in almost all cases with g = 10", In this case, we only ran the model for 32,000
time steps (approximately 40 years), which may be a more accurate estimate
of the amount of time a person might suffer from Barrett’s Esophagus. The
results can be seen in Figure 11. In this case we extended the exploration of
parameter space to as many as 8 selective mutations and 4 neutral mutations
that are assumed to be both necessary and sufficient to cause cancer. Note
that while requiring more neutral mutations for cancer reduces the probability
of developing cancer, increasing the number of necessary selective mutations
actually raises the probability of developing cancer.

13
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Figure 7: A plot of the probability of developing cancer as a function of the
number of selective and neutral mutations necessary and sufficient to cause the
disease. These probabilities have been calculated in the presence of a mutator
gene that raises the background mutation rate from 107'° to 10~7 when it is
mutated. The mutator gene has the same probability of mutation as the other
genes, and thus the background mutation rate may change at any time during
the run of the model. This contrasts with Figure 2 in which we assumed that
the mutator gene had been mutated before the other genes. Note that the
probability of developing cancer rises with the number of selective mutations
involved irrespective of the number of necessary neutral mutations.

Our explorations of other parameters in the system all show a relationship
between the parameters and the probability of developing cancer that is either
linear or sub-linear. In all of these cases we assume that 1 neutral and 2 selective
mutations is necessary and sufficient for the development of cancer. These
explorations were performed with selective mutations halving the average time
to mitosis. The exponents for these relationships were derived from the slope
of the line that was fit to the log transformation of the data. It should be
noted that in all cases the line was fit with only 3 or 4 data points, and so the
results should be taken only as a qualitative indication of the dynamics of the
system. Figures 12 and 9 are log-log plots of the relationship of the parameter
to the probability of developing cancer. Figures 10 and 13 had to be plotted
as a log-linear plots due to the calculated 0 probability of developing cancer
in some instances. Figure 12 shows that the probability of developing cancer
increases as a square root (in the presence of a mutator gene) or linear function

14



The Effect of a Mutator Gene
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Figure 8: The interaction of mutator and selective genes. The solid lines show
the probability of developing cancer as a function of the number of necessary
selective mutations. In all cases 1 neutral mutation was required. Both solid
lines are surrounded by their 90% confidence intervals shown in dotted lines for
the mutator case and dashed lines for the case without a mutator gene. The
confidence interval for the mutator case is shaded in grey. There is a synergy
between large numbers of necessary selective genes and the mutator gene. In
the presence of a mutator gene, the probability of developing cancer actually
increases with the number of necessary selective genes. In this case the process
of developing cancer has a sort of positive feedback effect that quickly generates
malignant cells. In the absence of a mutator gene the probability of developing
cancer goes down with the number of necessary selective genes.

(in the absence of a mutator gene) of the number of cells produced by a selective
mutation. Figure 10 shows that the probability of developing cancer increases
in proportion to the square root of the mutation rate. Figure 9 shows that this
probability also increases in proportion to cube root of the change in mutation
rate caused by a mutation in the mutator gene, i.e., the difference between
the normal and the mutator phenotype. Finally, Figure 13 shows that the
probability of developing cancer increases roughly in proportion to the number
of base pairs in the genes at which a mutation can have a carcinogenic effect.
Of course, since probabilities are bounded at 0 and 1, these relationships may
break down as they near those boundaries.

One of the major limitations of these exploration is the size of the system.
It is much easier to explore parameter space when you are simulating only
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The Severity of the Mutator Phenotype
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Figure 9: A log-log plot with %90 confidence intervals of the results from ad-
justing the effect of the mutator phenotype. The horizontal axis shows the
change in the background mutation rate caused by a mutation in the mutator
gene. The probability of developing cancer increases in proportion to the cube
root (exponent = 0.3) of the change in the mutation rate due to the mutator
phenotype.

4096 cells compared to simulating a realistic number of cells. We have not yet
optimized the code for the simulation of 10® cells. However, we did collect some
data on a 1024 by 1024 cell system (=~ 10° cells). These runs take about a
day to complete 54,000 time steps. We completed 6 runs of the model for each
combination of S = 1to 4, and N =1 or 2. We ran these both with and without
the potential for a mutator phenotype, where the mutator phenotype raised the
mutation rate by 3 orders of magnitude (¢,, = 1000). In the absence of a mutator
phenotype, cancer develops when only 1 neutral mutation is required, regardless
of the number of selective mutations required. Cancer never emerged when 2
neutral mutations were required. In the presence of the mutator phenotype,
cancer developed under all the possible combinations of necessary selective and
neutral mutations. All of these experiments utilized a mutation rate of 10~'°
per base pair, per cell generation.
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Figure 10: A log-linear plot with %90 confidence intervals of the effect of chang-
ing the background mutation rate p. The increase in the chance of developing
cancer is roughly proportional to the increase in the mutation rate. If we fit
a line to the log-transform of the axes, ignoring the 0 value, the probability of
developing cancer is proportional to the square root of the mutation rate (the

slope = 0.5).
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Probability of Cancer with the Mutator Phenotype
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Figure 11: The effect of running the model with 1 to 8 selective mutations
and 1 to 4 neutral mutations necessary to develop cancer. Each data point
is generated from 100 runs of the model over 32,000 time steps. In this case
a selective mutation only reduced the generation time by 1 time step. The
mutation rate was set to g = 1072 and the mutator phenotype had a mutation
rate of 1077,
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Figure 12: The effect of running the simulation with more cells. The values
on the horizontal axis represent the number of cells that is produced through
the clonal expansion of a selective mutation, or roughly the number of cells in
the precancerous tissue. Again the 90% confidence intervals are plotted around
each solid line and the interval with the mutator gene is shaded in grey. There
is some indication that as the number of cells in the system rises, the effect
of the mutator gene diminishes, but the confidence intervals generally overlap
and so little of significance can be asserted. The slope of the best fit line for
the mutator case is 0.5, indicating that the probability of developing cancer is
proportional to the square root of the number of cells in a tumor. The slope for
the non-mutator case is 1.1, indicating that in the absence of a mutator gene,
the probability of developing cancer rises in proportion to the number of cells
in a tumor.
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The Effect of the Number of Critical Loci
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Figure 13: A log-linear plot with %90 confidence intervals of the effect of varying
the assumed number of base-pairs or loci in a gene at which a mutation could
have a carcinogenic effect. In the case of a tumor suppressor gene, this would
correspond to the number of different mutations that could knock out the gene.
It is difficult to fit a line to the log transform of the data since 1 of the 3 data
points is 0. If we guess that the probability of getting cancer when each gene
has 102 critical loci is between 0.01 and 0 (we only ran the model 50 times so
we lack the resolution to distinguish probabilities this low), and replace that 0
value with 0.005, the slope of the line is 1. Thus, the probability of developing
cancer is roughly proportional to this number of critical loci in a gene.
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3 Discussion

Other researchers have studied the relative merits of the two solutions to Loeb’s
paradox [43, 44]. Tomlinson et al. [44] concluded that selective mutations alone
are sufficient to explain the mutations observed in cancer. In their investigation
of the mutator phenotype, they investigated the case where either 2 or 6 neutral
mutations were necessary to cause cancer [44]. They assumed the mutator
phenotype raised the mutation rate from 10~ to 10~*. They found that in the
case of requiring 2 neutral mutations, cancer often developed before the mutator
phenotype appeared, but with 6 required mutations, the mutator phenotype
would appear before cancer. They argue that the importance of a mutator cell
will be wiped out if any of the other mutations have selective effects. Our results
do not support this. The presence of a few selective mutations amongst many
neutral mutations has little effect. However, the combination of selective and
mutator mutations dramatically increases the probability of developing cancer,
as is shown in Figure 8.

An important aspect of both the analysis of selective and mutator mutations
in cancer is that the parameters of the predictions are observable and thus
the predictions are experimentally testable. Data is becoming available on the
population sizes of cells with selective mutations, and it is becoming feasible to
measure the mutation rate in cells with mutator phenotypes, perhaps through
the loss of p53. Similarly, it should be possible to derive accurate measurements
of the number of critical loci in any given gene relevant to the development of
cancer. In the model we assumed this number was about 103 for all genes, an
estimate that could be improved significantly. In the foreseeable future we will
be able to reduce the ranges of the significant parameters in the model when
information about the number and kinds of mutations that are sufficient for the
development of cancer is determined.

Our simulation of the development of cancer is only a toy model and as such
it avoids many of the known complexities of the biological system. We have
implicitly assumed that each mutation is independent of the others, and so can
occur in any order. Further, we have not explicitly represented the phenomenon
of dominance in which a recessive phenotype might require two mutations before
it appeared. However, this could be represented by the combination of a neutral
mutation, which occurs first, and a selective mutation, which would follow the
neutral mutation. We have also ignored the effects of cell senescence. Most cells
stop dividing after some number of divisions have shortened the telomeres to
the point where they no longer protect the ends of the chromosomes.

Only one type of selective effect has been modeled. However, mutations
can have strong selective effects without changing the generation time of a cell.
Mutants that tend to compete successfully for space, either by displacing their
neighbors or by resisting displacement by future competitors, would also spread
in the population. There are probably a variety of other genetic innovations that
would have beneficial phenotypic effects. Most of these could be represented and
explored in an elaborated model.

Our model of the mutator phenotype is probably inappropriate. We have
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modeled the mutator phenotype as a dramatic boost in the background mu-
tation rate. This assumes that mutations occur independently throughout the
genome. However, the knockout of our archetypal candidate for a mutator gene,
pb3, seems to cause the loss (and gain) of whole chromosomes as well as the pre-
vention of DNA repair. In the case of chromosome loss, mutations in genes are
not independent and tend to occur in massive clusters. Furthermore, we have
not modeled the effects of deleterious mutations. We would expect an increase
in the background mutation rate to also increase the frequency of deleterious
mutations, which would result in a selective disadvantage, and sometimes fatal,
effect on the host cell.

Finally, we have completely ignored the immune response. We know that the
human immune system sometimes attacks precancerous and cancerous cells [15],
but the details of these dynamics are still unknown. The immune system would
clearly have selective effects on the populations of cells. The immune system
could lower the probability of developing cancer relative to our estimates.

The simplifications of our models and our ignorance of realistic parameter
values prevent us from making highly focused experimental predictions. How-
ever, the qualitative behaviors of the models do lead to two predictions:

Prediction 1 The development of cancer requires at least 2 selectively neutral
mutations.

Our model of 2'6 cells with 1 neutral and 2 selective mutations sufficient for
developing cancer, in the presence of a mutator gene, led to a cancer incidence
of 35%. Our simulations with 10° cells requiring only 1 neutral mutation always
produced cancer, regardless of the number of selective mutations required. With
a more realistic number of cells in a tumor, perhaps 108, the simulated incidence
of cancer would be unrealistically high. Requiring more selective mutations only
makes the incidence of cancer higher. Thus, cancer must require more than 1
selectively neutral mutations.

Prediction 2 The number of selective mutations necessary for the development
of cancer is positively correlated with the number of neutral mutations.

The model shows that the probability of getting cancer actually rises with the
number of selective mutations that are possible. This seems counter-intuitive.
How could the requirement for more mutational events actually raise the chance
of getting cancer? The answer lies in the interaction between selective sweeps
and the neutral mutations. In the absence of a selective sweep, a neutral muta-
tion is likely to be lost from the cell population due to random fluctuations in
the subpopulation carrying that mutation. However, if a neutral mutation can
hitchhike along with a selective mutation, the neutral mutation is much more
likely to be preserved in the tumor. This hitchhiking might occur in one of two
ways. On the one hand, selective sweeps incur a large number of cell divisions
and, consequently, many opportunities for the generation of more neutral mu-
tations. This may lead to the generation of a neutral mutation in the midst
of a selective sweep and thereby spread the neutral mutation through a large
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portion of the tumor. On the other hand, a selective mutation may occur in a
cell that already has a neutral mutation, and thereby drive the spread of the
neutral mutation throughout the tumor. The later case is less likely than the
former case because there would usually be only a small target population of
cells carrying a neutral mutation. It is unlikely that a selective mutation would
arise in such a small population.

If the development of cancer requires a large number of neutral mutation
bottlenecks, then a large number of selective mutations are necessary to facilitate
the passage through these bottlenecks. With few neutral mutations necessary
for cancer, there is no need to generate selective mutations in order to progress
to cancer. Thus, we predict that the number of neutral and selective mutations
necessary and sufficient for cancer are correlated.

What insights might we derive from these results for the treatment or pre-
vention of cancer? All of the analyses suggest that neutral mutations are the
bottleneck in the development of cancer. This is not surprising given the low
probability of a neutral mutation spreading through the population and the large
amount of time that this requires. The role of neutral mutations as bottlenecks
in the development of cancer implies that an effective prevention program would
be one which would add at least one additional neutral mutation to the set of
necessary mutations for the development of cancer. In other words, we should
try to add bottlenecks to the development of cancer. This might, for exam-
ple, be achieved by treatments for which the precancerous cells would have to
generate recessive mutations in order to escape the treatment and to progress
on towards cancer. If the susceptible phenotype is completely dominant, then
a mutation in one of the two alleles of a homozygous dominant cell will have
no phenotypic effect and will thus be selectively neutral. Similarly, cocktails of
multiple drugs [14] that require mutations at multiple sites in order to develop
resistance to all of the drugs in the cocktail should be particularly effective.
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