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tThe transformation of normal 
ells into 
an
erous 
ells is an evolu-tionary pro
ess. Populations of pre
an
erous 
ells reprodu
e, mutate, and
ompete for resour
es. Some of these mutations eventually lead to 
an
er.We 
al
ulate the probability of developing 
an
er under a set of simpli-fying assumptions and then elaborate these 
al
ulations, 
ulminating ina simple simulation of the 
ell dynami
s. The agent-based model allowsus to examine the intera
tions of mutations 
riti
al for the developmentof 
an
er that are either evolutionarily neutral or sele
tive. We 
an alsoexamine the intera
tion of these mutations with a \mutator phenotype"derived from mutations that raise the mutation rate for the entire 
ell.The simulations suggest that there must be at least two sele
tively neu-tral mutations ne
essary for the development of 
an
er and that preventivetreatments will be most e�e
tive when they in
rease this number. Themodel also suggests that sele
tive mutations fa
ilitate the development of
an
er su
h that the more sele
tive mutations that are ne
essary for thedevelopment of 
an
er, the greater the 
han
e of developing 
an
er.1 Can
erCan
er is an evolutionary problem. This is the basis for both its virulen
e andour diÆ
ulties in treating it. The dynami
s of 
an
er 
ells demonstrate thesuÆ
ient 
onditions for natural sele
tion: heritable variation in the populationand di�erential reprodu
tion based on that variation. The variation in thepopulation of pre
an
erous 
ells [8, 3℄ arises from the normal pro
ess of somati
mutations as well as the dramati
 rise in mutation rates that is 
hara
teristi
of the progression to 
an
er [13, 32℄. Di�erential reprodu
tion of the mutants is1



a

omplished through phenomena su
h as the subversion of 
he
k points in the
ell 
y
les of the mutants [40℄. Nowell [30℄ argued for the importan
e of evolutionin 
an
er more than two de
ades ago. Any mutations that redire
t more of thebody's resour
es to the 
an
er 
ells will be sele
ted. This in
ludes the invasionof new tissues and metastasis. The fa
t that the population of 
ells in
ludessigni�
ant heterogeneity means that there are likely to be some 
ells that areresistant to any given treatment. Appli
ation of most treatments, therefore,will tend to breed a resistant tumor. Furthermore, sin
e ea
h patient's 
ellsevolve through an independent set of mutations and sele
tive environments, theresulting population of 
an
er 
ells in ea
h patient is likely to be unique. Thissuggests that general treatments that will work for all, or even most, patientswill be diÆ
ult to �nd. The fa
t that evolution within a tumor works againstus in 
an
er means that not only is 
an
er an evolutionary problem, but that itwill only be solved as an evolutionary problem.Arti�
ial life provides approa
hes that are ideal for addressing su
h evolu-tionary problems. The �eld of arti�
ial life has grown up around evolutionarytheory [5, 34, 24, 19℄, and for good reason. When we try to examine hetero-geneous populations of individuals intera
ting in a spatially stru
tured envi-ronment, it is diÆ
ult to represent and analyze su
h systems with tra
tablemathemati
s. Computational models 
an help to extend analyti
al theory tothe dynami
s of systems with heterogeneous populations that are intera
tingand evolving. In addition, 
omputational models 
an help to test the simpli�-
ations ne
essary to redu
e the biologi
al system to a mathemati
ally tra
tableformulation. At its best, arti�
ial life models applied to theoreti
al biology leadto testable hypotheses.This paper extends an analyti
al model of the risk of developing 
an
erand derives testable hypotheses about the geneti
 nature of the developmentof 
an
er from these models. We fo
us on a type of esophageal 
an
er knownas esophageal adeno
ar
inoma, and a pre
an
erous state, whi
h is known asBarrett's esophagus [35, 29, 3℄.2 Estimating Can
er RisksTwo dominant 
hara
teristi
s of 
an
er 
ells are their geneti
 instability [18℄ andun
ontrolled proliferation [16℄. The most 
ommonly mutated tumor suppressorgene a
ross all 
an
ers is p53 [41℄. The loss of this gene results in geneti
 insta-bilities (a form of in
reased mutation rate), often with the loss or dupli
ationof entire 
hromosomes [41, 32, 18℄. The appearan
e of su
h aneuploid 
ells inBarrett's Esophagus is one of our most reliable indi
ators of a poor prognosis[29℄. In 
ontrast, p16 (a.k.a. CDKN2A and INK4a) is a gene thought to beresponsible for shifting a 
ell from a proliferative state to a quies
ent state (G0)[40℄. Loss of a p16 allele is asso
iated with the spread of 
ells with that mutationthroughout the Barrett's region [10, 2, 33℄. But, at least in Barrett's Esophagus,mutations in both p53 and p16 are not suÆ
ient to 
ause 
an
er [3℄. How manyother genes are involved and what are their roles?2



There is a body of mathemati
al modeling work whi
h argues that the de-velopment of 
an
er is best understood as a sequen
e of two or more stages orrate-limiting steps [27, 6, 28, 26, 20, 22, 39℄. The two stages might be 
alled\pre
an
erous" and \malignant." The two-stage model, shown in Figure 1, in-volves at least 6 rate parameters: the rate of 
ells 
hanging from a normal stateto the pre
an
erous state, the rate of reprodu
tion of pre
an
erous 
ells, the rateof loss of pre
an
erous 
ells, the rate of 
ells 
hanging from the pre
an
erousto the malignant state, and the rates of reprodu
tion and loss of the malignant
ells. These parameters appear to be suÆ
ient to �t the model to most epi-demiologi
al data on the in
iden
e of 
an
er. Moolgavkar [26℄ argues \withoutan
illary biologi
al information there is little point to �tting models postulatingmore than two stages to tumor in
iden
e data." It has been shown that modelswhi
h fail to in
lude the sto
hasti
 birth and death dynami
s of 
ells in thestages give di�erent results than those models whi
h do in
lude those dynami
s[22℄. These stage models, also promoted by experimentalists [7℄, abstra
t awaythe evolutionary dynami
s of 
an
er. Progression to 
an
er is seen as a pro-gression through a linear sequen
e of stages, rather than a diversi�
ation intoa phylogeny of 
ell lines. However, a
tual observed orders of events often donot mat
h the predi
ted sequen
e of the linear models [4, 45℄. In fa
t, we dohave an
illary biologi
al information showing the variety of evolutionary pathsmutant 
lones 
an take in Barrett's Esophagus [3℄. Furthermore, linear modelsdo not a

ount for intera
tions between 
ells, su
h as 
ompetition for resour
es.
Death Death

cancerous
Pre-

MalignantNormal

Figure 1: The two-stage model of the development of 
an
er posits two rate-limiting steps. Normal 
ells be
ome pre-
an
erous in the �rst stage and malig-nant in the se
ond stage. There are 6 rate parameters diagrammed with arrowsthat 
orrespond to transitions between the stages, as well as the reprodu
tionand death rates for the stages. The population of normal 
ells is assumed to beessentially stable.Theoreti
al work 
ould potentially help guide resear
h in the geneti
 ar
hi-te
ture of 
an
er. For example, we 
ould ask, if 
an
er requires 2 (or more)sele
tive mutations in genes su
h as p16, what is the 
han
e of developing 
an-
er? Or, if a mutation in a gene su
h as p53 boosts the mutation rate, how wouldthis a�e
t the probability of getting 
an
er? Sin
e we have good epidemiolog-i
al data on the probability of getting 
an
er, we 
an then make guesses as to3



the number and kind of mutations that are ne
essary for its development. Wewill begin with some simple analyti
al 
al
ulations and in
rementally elaboratethem until we are for
ed to move to a simulation-based model of the evolutionof 
an
er.2.1 Loeb's ParadoxIn 1991 Loeb formulated the following paradoxi
al 
al
ulation for the in
iden
eof 
an
er. From the literature on human 
ell 
ultures he takes a per base pair,per 
ell division, mutation rate of 10�10 [31, 25, 9, 38℄. He estimates that thereare approximately 1016 
ell divisions in a human lifetime. Finally, there are onthe order of 109 base pairs in the human genome. Putting this together, weshould expe
t 10�10� 1016� 109 = 1015 mutations in our 
ells during a humanlifetime. If we are interested in the in
iden
e of 
ells with two mutations at anylo
i, then this should o

ur 10�10� 10�10� 1016� 109 = 105 times in a humanlifetime. However, if a geneti
 disease requires 3 mutations to o

ur in the same
ell, this should happen only on
e in 105 people. The 
han
e of in
urring 4mutations is astronomi
ally small. If these mutations must o

ur in spe
i�
lo
i, su
h as the 
oding regions of tumor suppressor genes and on
ogenes, thenthe probability of developing 
an
er would be even smaller. Yet we believethat 
an
er requires a whole series of mutations [1, 36, 42, 11℄, and 
an
er is afrequent event during human lifespans.2.2 Mutator PhenotypeOne explanation for this paradox, o�ered in Loeb [21℄, is the idea of a \mutator"phenotype. Loeb's 
al
ulation 
hanges if an early mutation, perhaps in p53,in
reases the mutation rate in the rest of the 
ell. Let us assume that the �rstevent in this progression is a mutation that raises the mutation rate by 
m.Let � be the mutation rate per lo
us per 
ell generation, km the number of
riti
al genes ne
essary and suÆ
ient to 
ause 
an
er, l
 the number of lo
i in a
riti
al gene vulnerable to a 
an
er 
ausing mutation, and let nb be the numberof 
ells in a human lifetime. To be generous, we will estimate that there are100 di�erent genes whi
h, if they mutated, might raise the mutation rate. Theexpe
ted number of 
ells that will independently develop 
an
er should be:E[Tumors℄ = nb �1� (1� �)l
100� �1� (1� 
m�)l
�km (1)where (1 � �)l
100 is the 
han
e that a 
ell avoids a mutation in all l
100 lo
ithat would produ
e the mutator phenotype. Thus 1� (1� �)l
100 is the prob-ability that a 
ell has a mutation in at least one of the 100 genes that lead tothe mutator phenotype. Here 
m� is the in
reased mutation rate. Loeb esti-mated nb = 1016 and � = 10�10. There are approximately 103 lo
i in a humangene at whi
h point a deletion, insertion, or substitution is likely to a�e
t thepolypeptide whi
h that gene en
odes. So we will 
onsider l
 = 103. Compari-son of normal and malignant 
ell 
ultures has estimated a 
hange in mutation4



rate due to malignan
y of 1 to 3 orders of magnitude [38℄. If we assume that
an
er requires the initial mutation in the mutator gene and then 3 more mu-tations, a total number of mutations that was astronomi
ally unlikely in Loeb'soriginal estimation, and we assume that the mutator phenotype in
reases themutation rate by 3 orders of magnitude, 
m = 103, then 
an
er should developin 1016[1�(1��)103102 ℄(1�(1�10�10103)103)3 � 0:1 
ells in a human's lifetime.Figure 2 shows the log10 expe
ted number of 
an
er 
ells dependent on km thenumber of mutations required and 
m the in
rease in the mutation rate dueto the mutator phenotype. We have trun
ated the data at an expe
ted singletumor be
ause we are interested in the probability of developing 
an
er at leaston
e.
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ted number of 
an
erous 
ells that will develop during aperson's lifetime. Two parameters are examined. The �rst parameter 
m is thein
rease in the mutation rate � due to an initial mutation 
reating a mutatorphenotype. This was 
al
ulated over the range of 101 to 1010. The se
ondparameter km is the number of mutations that are ne
essary and suÆ
ient to
ause 
an
er on
e the mutator phenotype has appeared, from 1 to 10. Theexpe
ted number of 
an
erous 
ells has been trun
ated at 1.Figure 2 shows that there is only a narrow window of mutation rate andnumber of suÆ
ient mutations to develop 
an
er that result in realisti
 prob-abilities for developing 
an
er. In the United States, the 
han
e of developing
an
er during one's entire lifetime is approximately 40% [37℄. Figure 3 showsa view of the iso
line where the probability of developing 
an
er is 40%. Fromthis we 
an predi
t the relationship between the 
hange in the mutation ratedue to the emergen
e of the mutator phenotype and the number of mutations5
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Figure 3: The predi
ted relationship between the in
rease in mutation rate of a\mutator phenotype" versus the number of mutations ne
essary to 
ause 
an
erafter the appearan
e of the mutator phenotype. This an iso
line 
al
ulated fromFigure 2. This �gure assumes a 0.4 probability of developing 
an
er duringa lifetime. If the development of 
an
er requires many mutations, then themutator phenotype would have to raise the mutation rate by at least 5 ordersof magnitude.that are suÆ
ient to 
ause 
an
er. For example, Figure 3 suggests that if thedevelopment of 
an
er requires 6 or more mutations after the initial rise in themutation rate, then that initial in
rease must raise the mutation rate by at least5 orders of magnitude.2.3 Clonal ExpansionLoeb [21℄ notes that Nowell [30℄ proposes another solution to his paradox. Somemutations 
an have sele
tive e�e
ts and so in
rease the population of 
ells withthat mutation [30℄. We 
an elaborate Loeb's 
al
ulations with the assumptionthat the ne
essary mutations along the progression to 
an
er all have sele
tivee�e
ts. Thus, if a 
ell in
urs su
h a mutation, it will in
rease in frequen
y tosome number nt whi
h is approximately equal to the number of 
ells in a tumor.Again � is the mutation rate, km the number of 
riti
al genes, l
 the numberof lo
i in a 
riti
al gene vulnerable to a 
an
er 
ausing mutation, and nb is thenumber of 
ells in a human lifetime. We will assume that the mutations 
ano

ur in any order.The 
han
e of the �rst mutation o

urring is 1 minus the 
han
e that it6



doesn't o

ur: Pr[�rst mutation℄ = 1� (1� �)l
kmnb (2)This will 
ause the 
ell with that mutation to expand to nt 
ells. From thenon, ea
h new mutation has nt 
han
es of o

urring in a ba
kground of 
ells
arrying all the previous mutations. The probability that the remaining km� 1mutations o

ur is then:Pr[other mutations℄ = �1� (1� �)l
nt�km�1 (3)Let us make some reasonable assumptions for the values of l
; nt and km. Toestimate nt we will 
onsider Barrett's Esophagus, a pre
an
erous 
ondition ofthe esophagus. Biopsies 
olle
ted from the neoplasti
 tissue of patients typi
allyin
lude 106 
ells in a 2mm by 5mm se
tion of epithelium. The entire Barrett'sregion averages approximately a surfa
e area of 50mm by 60mm, or 10 biopsiesby 30 biopsies. So the entire surfa
e area 
an be se
tioned into 300 biopsies of106 
ells, for a total of 3� 108 
ells. Sin
e mutant 
lones are often observed tohave expanded over the entire Barrett's region of a patient, it seems reasonableto set nt = 108. Let us 
onsider the 
ase where km = 4 mutations are ne
essaryto 
ause 
an
er. Re
all that Loeb 
al
ulates the 
han
e of 4 mutations o

urringin the same 
ell to be astronomi
ally small. Then,Pr[�rst mutation℄ = 1� (1� 10�10)4�1019 � 1 (4)This number is so 
lose to 1 that most 
omputers 
annot represent it as anythingother than 1. So many 
ells are generated in a human lifetime that 
arry amutation at any given lo
us. The interesting dynami
s lie in the sequen
e ofmutations that follow the �rst one:Pr[other mutations℄ = h1� (1� 10�10)1011i3 = 0:99986 (5)Given our assumptions, we estimate that 4 spe
i�
 sele
ted mutations are almost
ertain to o

ur in the lifetime of an individual. Of 
ourse, our estimates may beo�. Figure 4 shows the probability of su�ering 
an
er as a fun
tion of the numberof 
ells to whi
h sele
ted mutant expands (nt) and the number of sele
tivemutations ne
essary and suÆ
ient to 
ause 
an
er (km).Figure 4 shows a pre
ipitous drop in the probability of experien
ing 
an
eras we redu
e our estimate of the number of 
ells in a tumor from 108 to 106.The SEER report from the National Can
er Institute [37℄ estimates the lifetimeprobability of being diagnosed with 
an
er in the US is 45% for men and 38%for women (for all ra
es and 
an
er sites 
ombined). To mat
h this estimate,our rough 
al
ulations suggest that in general 
an
ers would require 3 sele
tedmutations and those mutant 
lones would tend to spread to populations of 107
ells. Of 
ourse, this is an extremely simpli�ed model of the in
iden
e of 
an
er.We have not a

ounted for any environmental e�e
ts, geneti
 predispositions, orindeed any mutations that are ne
essary for 
an
er but do not spread throughsele
tion. Nevertheless, the elaboration to Loeb's 
al
ulations shows that Now-ell's insight does indeed resolve the paradox. We develop 
an
er be
ause the
ells in the neoplasti
 tissues are evolving.7
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 CellsFigure 4: The probability of developing 
an
er during a person's lifetime. Twoparameters are examined. The 
ell population size to whi
h a sele
ted mutantgrows has been 
al
ulated over the range of 103 to 1010. The se
ond parameteris the number of sele
ted mutations that are ne
essary and suÆ
ient to 
ause
an
er, from 1 to 10. These 
al
ulations estimate that if the sele
ted populationsize is below 106 there is little 
han
e of developing 
an
er. If it is 108 or above,a person is guaranteed to develop 
an
er during their lifetime.2.4 Both Mutator and Sele
tive E�e
tsThe two elaborations of Loeb's 
al
ulations 
onsider sele
tive and mutator mu-tations separately. A more realisti
 view of the development of 
an
er wouldlikely 
onsider both sele
tive mutations and mutations that raise the mutationrate, and their intera
tions. In addition, there may be \neutral" mutations1whi
h have no e�e
t on 
ell proliferation rates or mutation rates and yet arene
essary for the expression of the 
an
erous phenotype.Consider the 
ase in whi
h a mutator or neutral mutation arises in a 
ellof the tumor. There is no reason to believe that this mutation would spreadrapidly in the tumor. Without a sele
tive advantage, su
h a mutation wouldbe unlikely to grow to dominate the entire tumor. In fa
t, the 
han
e of aneutral mutation spreading throughout a population of 108 
ells by 
han
e is1We use the term \neutral mutation" here to indi
ate that these mutations do not e�e
tthe proliferation of the 
ell in whi
h they o

ur. However, we do not mean to imply thatthese are silent mutations. On the 
ontrary, we are only interested in the mutations thatare ne
essary and suÆ
ient for the development of 
an
er. Thus, in the 
ontext of theseinvestigations, a \neutral" mutation is one that is ne
essary for the development of 
an
erbut does not stimulate the expansion of its 
lone population.8



approximately 10�8 and requires an average of about 2�108 
ell generations [12℄.Meanwhile, if a sele
tive mutation o

urred in a 
ell whi
h la
ked the mutator orneutral mutation, the sele
tive mutation would tend to expand throughout thetumor and thereby displa
e the mutant population with the mutator or neutralmutation. Thus, it is important to keep tra
k of both the 
ells with the mutatoror neutral mutations, as well as the 
ells that are free of those mutations butmay yet su�er sele
tive mutations. Ea
h subpopulation 
an be 
hara
terizedby the number of sele
tive, mutator, and neutral mutations it has su�ered,along with its population size. A set of di�eren
e equations 
an des
ribe thegrowth dynami
s of these subpopulations, as well as mutations that move 
ellsfrom one subpopulation to another. But what growth dynami
s should we use?The fundamental dynami
 of biologi
al reprodu
tion is exponential. Is this areasonable representation of tumor dynami
s in humans?In the esophagus, as in most of the digestive tra
t, 
ells along the lining(epithelium) are 
onstantly being sloughed o� and destroyed. These losses arereplenished by the division of stem 
ells in the lining. In the 
ase of Barrett'sEsophagus, these 
ells are pre
an
erous and hyperproliferative. The estimatedturnover time of healthy stem 
ells in the esophagus is about on
e a week [23℄.Be
ause the 
ells are spatially stru
tured as a two-dimensional layer (the innersurfa
e of a 
ylinder), there are severe spatial 
onstraints restri
ting exponentialgrowth. Further, 
ell division (mitosis) is a lo
al pro
ess, and so most new
ells must 
ompete for spa
e with their immediate an
estors. The easiest wayto represent a heterogeneous population of 
ells growing in a two-dimensionalenvironment is with a two-dimensional model agent-based model.2.4.1 The ModelWe represented the the states of all the pre
an
erous 
ells in the lining of theBarrett's region of an esophagus. We instantiated this as a two-dimensionaldis
rete-event simulation in the shape of a 
olumn.2 That is, we used a two-dimensional array with \wrap-around" boundaries on the left and right sides,but not on the top and bottom. The state of a 
ell in this grid has four 
ompo-nents: the number of sele
tive mutations it has su�ered (0-S, given the inputparameter S), the number of neutral mutations it has su�ered (0-N , given theinput parameter N), whether or not it has su�ered a mutation that in
reasesits mutation rate (a \mutator" mutation), and the number of time steps untilit divides (0-16). The population of 
ells is updated serially ea
h time step. Atime step whi
h represents approximately half a day. Of 
ourse, the real systemof 
ells would be more 
losely approximated by a parallel simulation. How-ever, sin
e mutations are rare, sto
hasti
 events, and spatial 
ompetition is alsobased on a sto
hasti
 pro
ess, a parallel simulation would probably not di�ermeasurably from this serial approximation. The 
omplexity and 
omputationalexpense of a parallel simulation was not justi�ed in this 
ase.2The C++ sour
e 
ode is available upon request from the 
orresponding author at
maley�alum.mit.edu. 9



The time until the next reprodu
tion (mitoti
) event for ea
h 
ell is drawnfrom a normal probability distribution with a mean of 8 time steps and a stan-dard deviation of 2 time steps. We 
hose 4 days as the mean time to mitosis inthe Barrett's 
ells be
ause we wanted to use a power of 2 and, unlike the nor-mal squamous 
ells of the esophagus that turn over every 7 days, Barrett's 
ellsare hyperproliferative. Ea
h sele
tive mutation has the e�e
t of in
reasing therepli
ation rate of the 
ell. We experimented with doubling the rate of mitosisfor every sele
tive event, as well as merely de
reasing the mean time to mitosisby one time step for ea
h sele
tive mutation. In the former 
ase a 
ell thathas in
urred 2 sele
tive mutations reprodu
es 4 times as fast as a normal 
ell.3In the later 
ase, a 
ell with 2 sele
tive mutations would, on average, divideafter 6 time steps. To determine when a 
ell divides, we generate a randomnumber, x, between 0 and 1 with uniform probability. We then 
al
ulate if xis less than or equal to the 
umulative probability of mitosis from age 0 to n,x � Pr�n[division℄, and �nd the smallest n for whi
h this is true. We storethis number n in the 
ell's data stru
ture as the number of time steps untilthe 
ell will divide. This value is de
remented every time step until it rea
hes0, at whi
h point we let the 
ell divide. Normally, 
al
ulating the 
umulativeprobability distribution (Pr�n[division℄) is done by integrating the probabilitydensity fun
tion from 0 to n. However, there is no known 
losed form solutionto the integral of the normal distribution. The integral of the normal distribu-tion has been solved numeri
ally, and is re
orded in a table in most statisti
stext books. We therefore, stored the 
umulative probability distribution of thenormal 
urve in a stati
 array, A, and performed the 
al
ulation of when a 
ellwould divide by iterating (with n = 1 to 16) through the array until x � A[n℄.When a 
ell divides, the new 
ell has a 50% 
han
e of displa
ing one ofthe 9 
ells, sele
ted with uniform probability, in the 3 by 3 
ell neighborhood
entered on the parental 
ell. Thus, there is a 1 in 9 
han
e that the new 
ellwill 
ompete for spa
e with the parental 
ell. If random 
hoi
e of a neighborresults in a lo
ation o� the top or bottom of the array, a 
ell on the edge of thearray is sele
ted in its stead.A run of the model began with all 
ells free of mutations. With ea
h time steprepresenting 12 hours, we ran the model for 54,000 time steps (approximately74 years), or a human lifetime. This put pra
ti
al limitations on the number of
ells we 
ould model, with a maximum of 1024 by 1024 (106) 
ells. In the futurewe hope to model more realisti
 tumor sizes with approximately 108 
ells withmore sophisti
ated algorithms.We model the mutation rate as a Bernoulli pro
ess. The probability of a 
ell
hanging state isPr[mutation℄ = 1� (1� �)(S+N+M)l
np = P (6)where � = 10�10 is the mutation rate per base pair per 
ell generation, S;N;and M are the numbers of sele
tive, neutral, and mutator genes suÆ
ient andne
essary to 
ause 
an
er if mutated, l
 = 103 is the number of 
riti
al base pairs3This is why we 
hose a power of 2 for the mean time until mitosis.10



(lo
i) in ea
h gene at whi
h a mutation 
ould have a 
ar
inogeni
 e�e
t. In most
ases, we assume that these mutations \kno
k out" the gene by either turningit o� or destroying the fun
tional e�e
ts of the normal protein produ
ed by theunmutated gene. The last parameter, np = 2, is the number of independentpathways to 
an
er. This is an estimate of the number of genes in whi
h amutation will have the same 
ar
inogeni
 e�e
t. If a 
ell had at least onemutator gene mutated then � in
reased by 103 (or 102 in some experiments).This parameter for the in
rease in the mutation rate was 
alled 
m in our earlier
al
ulations. We primarily experimented with parameters S;N; and M , withsome exploration of �; l
 and the degree of in
rease in � due to the mutatorphenotype, 
m. A 
ell was 
alled malignant if it had S sele
tive mutationsand N neutral mutations. We assumed that the mutator phenotype was notne
essary for malignan
y but only played a fa
ilitating role through the in
reasein the mutation rate of the sele
tive and neutral genes.A Bernoulli pro
ess 
an be simulated by 
al
ulating the interarrival timefor the next su

ess. That is, instead of 
ipping a biased 
oin with probabilityof su

ess P for ea
h trial of the Bernoulli pro
ess, we 
an ask when the nextsu

ess will happen. The probability mass fun
tion for the interarrival time k,the number of trials up to and in
luding the next su

ess, of a Bernoulli pro
essis the geometri
 distribution:Pr[k℄ = P (1� P )k�1 (7)for k = 1; 2; : : : . The expe
ted value of k is E[k℄ = 1=P . When P is verysmall, as it is for most mutation rates, this fun
tion drops o� very gradually.In this 
ase, for the purposes of eÆ
ien
y, it is reasonable to approximate Pr[k℄as a uniform distribution from 0 to 2=P , whi
h has the same expe
ted valueE[k℄ = 1=P although a smaller varian
e. We 
al
ulated this with a single 
allto the pseudorandom number generator, using a version of Knuth's subtra
tivemethod [17, pp. 171{172℄ to generate the pseudorandom numbers. We assumethat the pro
esses of DNA synthesis and 
ell division are the primary 
auses ofmutations. Thus, in our model mutations only o

ur at 
ell division [32, 46℄.Mutations have an equal probability of o

urring in the new or parental 
ell. Amutation has an equal probability of o

urring in any of the genes (sele
tive,neutral, and mutator). If it o

urred in a gene that had already been mutated,there was no e�e
t. Genes were only allowed to mutate from the normal stateto the mutated state.At the end of a run we measured the proportion of 
ells that su�ered enoughmutations to 
ause 
an
er (S and N). We ran the model at least 50 times forea
h parameter setting. A grey-s
ale pi
ture of the model in the midst of a runis shown in Figure 5.2.4.2 ResultsA run of the model was 
onsidered to have led to 
an
er if the �nal populationhad at least 1 
ell with the mutations required for malignan
y (S sele
tive muta-tions and N neutral mutations). Figures 6 and 7 show the resulting probability11



Figure 5: A view of the model running. The 
ells are 
olor 
oded by lineage.The lighter grey lineages share an an
estor that su�ered a sele
tive mutation.This mutant 
lone is in the pro
ess of sweeping through the entire tissue.of developing 
an
er as a fun
tion of the number of sele
tive mutations S andneutral mutations N ne
essary and suÆ
ient for developing 
an
er. Figure 6shows the probabilities when there is no mutator gene to raise the ba
kgroundmutation rate. Figure 7 shows the results of the same parameter 
on�gura-tions when there is a mutator gene that may also mutate and thereby raise themutation rate by 3 orders of magnitude. In these runs of the model, sele
tivemutations halve the average time to mitosis.Figure 8 is an extra
tion of a single 
urve from Figures 6 and 7 where N = 1.Figure 8 also shows the 90% 
on�den
e intervals around these 
urves 
al
ulatedby treating the probability of developing 
an
er as a Bernoulli pro
ess. Whenthere is no mutator gene in the system, the probability of developing 
an
erde
reases with the number of sele
tive mutations that are required. This seemsreasonable in light of our earlier 
al
ulations. However, in the presen
e of amutator gene that 
an raise the mutation rate at any time, the probabilityof developing 
an
er a
tually in
reases with the number of ne
essary sele
tivemutations.Figure 9 shows the result of 
hanging the simulated e�e
t of the mutatorphenotype. The default e�e
t of raising the mutation rate by 3 orders of mag-nitude in the mutator phenotype 
m = 1000 is probably unrealisti
ally high.When the mutator phenotype was set to be only 2 orders of magnitude greaterthan the normal mutation rate we observed 
an
er in only 4% of the runs.12
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Neutral MutationsFigure 6: A plot of the probability of developing 
an
er as a fun
tion of thenumber of sele
tive and neutral mutations ne
essary and suÆ
ient to 
ause thedisease. These probabilities have been 
al
ulated in the absen
es of a mutatorgene. The probabilities are dominated by the number of neutral mutationsthat are ne
essary. The probabilities were 
al
ulated by at least 50 runs of theagent-based model with only 4096 
ells.We 
onsidered a redu
tion in the e�e
t of a sele
tive mutation. Instead ofhalving the time to mitosis, what would happen if a sele
tive mutation onlyredu
ed the average time to mitosis by 1 time step? With 
m = 100 and� = 10�10, none of the runs resulted in 
an
er. We experimented with S = 1to 8, and N = 1 to 4. In all 
ases, no 
an
er was observed.We then 
onsidered raising the base mutation rate �. Figure 10 shows thee�e
t of 
hanging the mutation rate when S = 2, N = 1, and sele
tive mutationshalve the time to mitosis. Under our less dramati
 parameter settings, wheresele
tive mutations redu
e the time to mitosis by 1 time step, we observe 
an
erin almost all 
ases with � = 10�9. In this 
ase, we only ran the model for 32,000time steps (approximately 40 years), whi
h may be a more a

urate estimateof the amount of time a person might su�er from Barrett's Esophagus. Theresults 
an be seen in Figure 11. In this 
ase we extended the exploration ofparameter spa
e to as many as 8 sele
tive mutations and 4 neutral mutationsthat are assumed to be both ne
essary and suÆ
ient to 
ause 
an
er. Notethat while requiring more neutral mutations for 
an
er redu
es the probabilityof developing 
an
er, in
reasing the number of ne
essary sele
tive mutationsa
tually raises the probability of developing 
an
er.13
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Neutral MutationsFigure 7: A plot of the probability of developing 
an
er as a fun
tion of thenumber of sele
tive and neutral mutations ne
essary and suÆ
ient to 
ause thedisease. These probabilities have been 
al
ulated in the presen
e of a mutatorgene that raises the ba
kground mutation rate from 10�10 to 10�7 when it ismutated. The mutator gene has the same probability of mutation as the othergenes, and thus the ba
kground mutation rate may 
hange at any time duringthe run of the model. This 
ontrasts with Figure 2 in whi
h we assumed thatthe mutator gene had been mutated before the other genes. Note that theprobability of developing 
an
er rises with the number of sele
tive mutationsinvolved irrespe
tive of the number of ne
essary neutral mutations.Our explorations of other parameters in the system all show a relationshipbetween the parameters and the probability of developing 
an
er that is eitherlinear or sub-linear. In all of these 
ases we assume that 1 neutral and 2 sele
tivemutations is ne
essary and suÆ
ient for the development of 
an
er. Theseexplorations were performed with sele
tive mutations halving the average timeto mitosis. The exponents for these relationships were derived from the slopeof the line that was �t to the log transformation of the data. It should benoted that in all 
ases the line was �t with only 3 or 4 data points, and so theresults should be taken only as a qualitative indi
ation of the dynami
s of thesystem. Figures 12 and 9 are log-log plots of the relationship of the parameterto the probability of developing 
an
er. Figures 10 and 13 had to be plottedas a log-linear plots due to the 
al
ulated 0 probability of developing 
an
erin some instan
es. Figure 12 shows that the probability of developing 
an
erin
reases as a square root (in the presen
e of a mutator gene) or linear fun
tion14
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Figure 8: The intera
tion of mutator and sele
tive genes. The solid lines showthe probability of developing 
an
er as a fun
tion of the number of ne
essarysele
tive mutations. In all 
ases 1 neutral mutation was required. Both solidlines are surrounded by their 90% 
on�den
e intervals shown in dotted lines forthe mutator 
ase and dashed lines for the 
ase without a mutator gene. The
on�den
e interval for the mutator 
ase is shaded in grey. There is a synergybetween large numbers of ne
essary sele
tive genes and the mutator gene. Inthe presen
e of a mutator gene, the probability of developing 
an
er a
tuallyin
reases with the number of ne
essary sele
tive genes. In this 
ase the pro
essof developing 
an
er has a sort of positive feedba
k e�e
t that qui
kly generatesmalignant 
ells. In the absen
e of a mutator gene the probability of developing
an
er goes down with the number of ne
essary sele
tive genes.(in the absen
e of a mutator gene) of the number of 
ells produ
ed by a sele
tivemutation. Figure 10 shows that the probability of developing 
an
er in
reasesin proportion to the square root of the mutation rate. Figure 9 shows that thisprobability also in
reases in proportion to 
ube root of the 
hange in mutationrate 
aused by a mutation in the mutator gene, i.e., the di�eren
e betweenthe normal and the mutator phenotype. Finally, Figure 13 shows that theprobability of developing 
an
er in
reases roughly in proportion to the numberof base pairs in the genes at whi
h a mutation 
an have a 
ar
inogeni
 e�e
t.Of 
ourse, sin
e probabilities are bounded at 0 and 1, these relationships maybreak down as they near those boundaries.One of the major limitations of these exploration is the size of the system.It is mu
h easier to explore parameter spa
e when you are simulating only15
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Figure 9: A log-log plot with %90 
on�den
e intervals of the results from ad-justing the e�e
t of the mutator phenotype. The horizontal axis shows the
hange in the ba
kground mutation rate 
aused by a mutation in the mutatorgene. The probability of developing 
an
er in
reases in proportion to the 
uberoot (exponent = 0.3) of the 
hange in the mutation rate due to the mutatorphenotype.4096 
ells 
ompared to simulating a realisti
 number of 
ells. We have not yetoptimized the 
ode for the simulation of 108 
ells. However, we did 
olle
t somedata on a 1024 by 1024 
ell system (� 106 
ells). These runs take about aday to 
omplete 54,000 time steps. We 
ompleted 6 runs of the model for ea
h
ombination of S = 1 to 4, and N = 1 or 2. We ran these both with and withoutthe potential for a mutator phenotype, where the mutator phenotype raised themutation rate by 3 orders of magnitude (
m = 1000). In the absen
e of a mutatorphenotype, 
an
er develops when only 1 neutral mutation is required, regardlessof the number of sele
tive mutations required. Can
er never emerged when 2neutral mutations were required. In the presen
e of the mutator phenotype,
an
er developed under all the possible 
ombinations of ne
essary sele
tive andneutral mutations. All of these experiments utilized a mutation rate of 10�10per base pair, per 
ell generation.
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rease in the 
han
e of developing
an
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Figure 12: The e�e
t of running the simulation with more 
ells. The valueson the horizontal axis represent the number of 
ells that is produ
ed throughthe 
lonal expansion of a sele
tive mutation, or roughly the number of 
ells inthe pre
an
erous tissue. Again the 90% 
on�den
e intervals are plotted aroundea
h solid line and the interval with the mutator gene is shaded in grey. Thereis some indi
ation that as the number of 
ells in the system rises, the e�e
tof the mutator gene diminishes, but the 
on�den
e intervals generally overlapand so little of signi�
an
e 
an be asserted. The slope of the best �t line forthe mutator 
ase is 0.5, indi
ating that the probability of developing 
an
er isproportional to the square root of the number of 
ells in a tumor. The slope forthe non-mutator 
ase is 1.1, indi
ating that in the absen
e of a mutator gene,the probability of developing 
an
er rises in proportion to the number of 
ellsin a tumor.
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Figure 13: A log-linear plot with %90 
on�den
e intervals of the e�e
t of varyingthe assumed number of base-pairs or lo
i in a gene at whi
h a mutation 
ouldhave a 
ar
inogeni
 e�e
t. In the 
ase of a tumor suppressor gene, this would
orrespond to the number of di�erent mutations that 
ould kno
k out the gene.It is diÆ
ult to �t a line to the log transform of the data sin
e 1 of the 3 datapoints is 0. If we guess that the probability of getting 
an
er when ea
h genehas 102 
riti
al lo
i is between 0.01 and 0 (we only ran the model 50 times sowe la
k the resolution to distinguish probabilities this low), and repla
e that 0value with 0.005, the slope of the line is 1. Thus, the probability of developing
an
er is roughly proportional to this number of 
riti
al lo
i in a gene.
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3 Dis
ussionOther resear
hers have studied the relative merits of the two solutions to Loeb'sparadox [43, 44℄. Tomlinson et al. [44℄ 
on
luded that sele
tive mutations aloneare suÆ
ient to explain the mutations observed in 
an
er. In their investigationof the mutator phenotype, they investigated the 
ase where either 2 or 6 neutralmutations were ne
essary to 
ause 
an
er [44℄. They assumed the mutatorphenotype raised the mutation rate from 10�8 to 10�4. They found that in the
ase of requiring 2 neutral mutations, 
an
er often developed before the mutatorphenotype appeared, but with 6 required mutations, the mutator phenotypewould appear before 
an
er. They argue that the importan
e of a mutator 
ellwill be wiped out if any of the other mutations have sele
tive e�e
ts. Our resultsdo not support this. The presen
e of a few sele
tive mutations amongst manyneutral mutations has little e�e
t. However, the 
ombination of sele
tive andmutator mutations dramati
ally in
reases the probability of developing 
an
er,as is shown in Figure 8.An important aspe
t of both the analysis of sele
tive and mutator mutationsin 
an
er is that the parameters of the predi
tions are observable and thusthe predi
tions are experimentally testable. Data is be
oming available on thepopulation sizes of 
ells with sele
tive mutations, and it is be
oming feasible tomeasure the mutation rate in 
ells with mutator phenotypes, perhaps throughthe loss of p53. Similarly, it should be possible to derive a

urate measurementsof the number of 
riti
al lo
i in any given gene relevant to the development of
an
er. In the model we assumed this number was about 103 for all genes, anestimate that 
ould be improved signi�
antly. In the foreseeable future we willbe able to redu
e the ranges of the signi�
ant parameters in the model wheninformation about the number and kinds of mutations that are suÆ
ient for thedevelopment of 
an
er is determined.Our simulation of the development of 
an
er is only a toy model and as su
hit avoids many of the known 
omplexities of the biologi
al system. We haveimpli
itly assumed that ea
h mutation is independent of the others, and so 
ano

ur in any order. Further, we have not expli
itly represented the phenomenonof dominan
e in whi
h a re
essive phenotype might require two mutations beforeit appeared. However, this 
ould be represented by the 
ombination of a neutralmutation, whi
h o

urs �rst, and a sele
tive mutation, whi
h would follow theneutral mutation. We have also ignored the e�e
ts of 
ell senes
en
e. Most 
ellsstop dividing after some number of divisions have shortened the telomeres tothe point where they no longer prote
t the ends of the 
hromosomes.Only one type of sele
tive e�e
t has been modeled. However, mutations
an have strong sele
tive e�e
ts without 
hanging the generation time of a 
ell.Mutants that tend to 
ompete su

essfully for spa
e, either by displa
ing theirneighbors or by resisting displa
ement by future 
ompetitors, would also spreadin the population. There are probably a variety of other geneti
 innovations thatwould have bene�
ial phenotypi
 e�e
ts. Most of these 
ould be represented andexplored in an elaborated model.Our model of the mutator phenotype is probably inappropriate. We have21



modeled the mutator phenotype as a dramati
 boost in the ba
kground mu-tation rate. This assumes that mutations o

ur independently throughout thegenome. However, the kno
kout of our ar
hetypal 
andidate for a mutator gene,p53, seems to 
ause the loss (and gain) of whole 
hromosomes as well as the pre-vention of DNA repair. In the 
ase of 
hromosome loss, mutations in genes arenot independent and tend to o

ur in massive 
lusters. Furthermore, we havenot modeled the e�e
ts of deleterious mutations. We would expe
t an in
reasein the ba
kground mutation rate to also in
rease the frequen
y of deleteriousmutations, whi
h would result in a sele
tive disadvantage, and sometimes fatal,e�e
t on the host 
ell.Finally, we have 
ompletely ignored the immune response. We know that thehuman immune system sometimes atta
ks pre
an
erous and 
an
erous 
ells [15℄,but the details of these dynami
s are still unknown. The immune system would
learly have sele
tive e�e
ts on the populations of 
ells. The immune system
ould lower the probability of developing 
an
er relative to our estimates.The simpli�
ations of our models and our ignoran
e of realisti
 parametervalues prevent us from making highly fo
used experimental predi
tions. How-ever, the qualitative behaviors of the models do lead to two predi
tions:Predi
tion 1 The development of 
an
er requires at least 2 sele
tively neutralmutations.Our model of 216 
ells with 1 neutral and 2 sele
tive mutations suÆ
ient fordeveloping 
an
er, in the presen
e of a mutator gene, led to a 
an
er in
iden
eof 35%. Our simulations with 106 
ells requiring only 1 neutral mutation alwaysprodu
ed 
an
er, regardless of the number of sele
tive mutations required. Witha more realisti
 number of 
ells in a tumor, perhaps 108, the simulated in
iden
eof 
an
er would be unrealisti
ally high. Requiring more sele
tive mutations onlymakes the in
iden
e of 
an
er higher. Thus, 
an
er must require more than 1sele
tively neutral mutations.Predi
tion 2 The number of sele
tive mutations ne
essary for the developmentof 
an
er is positively 
orrelated with the number of neutral mutations.The model shows that the probability of getting 
an
er a
tually rises with thenumber of sele
tive mutations that are possible. This seems 
ounter-intuitive.How 
ould the requirement for more mutational events a
tually raise the 
han
eof getting 
an
er? The answer lies in the intera
tion between sele
tive sweepsand the neutral mutations. In the absen
e of a sele
tive sweep, a neutral muta-tion is likely to be lost from the 
ell population due to random 
u
tuations inthe subpopulation 
arrying that mutation. However, if a neutral mutation 
anhit
hhike along with a sele
tive mutation, the neutral mutation is mu
h morelikely to be preserved in the tumor. This hit
hhiking might o

ur in one of twoways. On the one hand, sele
tive sweeps in
ur a large number of 
ell divisionsand, 
onsequently, many opportunities for the generation of more neutral mu-tations. This may lead to the generation of a neutral mutation in the midstof a sele
tive sweep and thereby spread the neutral mutation through a large22



portion of the tumor. On the other hand, a sele
tive mutation may o

ur in a
ell that already has a neutral mutation, and thereby drive the spread of theneutral mutation throughout the tumor. The later 
ase is less likely than theformer 
ase be
ause there would usually be only a small target population of
ells 
arrying a neutral mutation. It is unlikely that a sele
tive mutation wouldarise in su
h a small population.If the development of 
an
er requires a large number of neutral mutationbottlene
ks, then a large number of sele
tive mutations are ne
essary to fa
ilitatethe passage through these bottlene
ks. With few neutral mutations ne
essaryfor 
an
er, there is no need to generate sele
tive mutations in order to progressto 
an
er. Thus, we predi
t that the number of neutral and sele
tive mutationsne
essary and suÆ
ient for 
an
er are 
orrelated.What insights might we derive from these results for the treatment or pre-vention of 
an
er? All of the analyses suggest that neutral mutations are thebottlene
k in the development of 
an
er. This is not surprising given the lowprobability of a neutral mutation spreading through the population and the largeamount of time that this requires. The role of neutral mutations as bottlene
ksin the development of 
an
er implies that an e�e
tive prevention program wouldbe one whi
h would add at least one additional neutral mutation to the set ofne
essary mutations for the development of 
an
er. In other words, we shouldtry to add bottlene
ks to the development of 
an
er. This might, for exam-ple, be a
hieved by treatments for whi
h the pre
an
erous 
ells would have togenerate re
essive mutations in order to es
ape the treatment and to progresson towards 
an
er. If the sus
eptible phenotype is 
ompletely dominant, thena mutation in one of the two alleles of a homozygous dominant 
ell will haveno phenotypi
 e�e
t and will thus be sele
tively neutral. Similarly, 
o
ktails ofmultiple drugs [14℄ that require mutations at multiple sites in order to developresistan
e to all of the drugs in the 
o
ktail should be parti
ularly e�e
tive.The authors gratefully a
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