
Exploring the Relationship between Neutral andSeletive Mutations in CanerC. C. Maley1;2 and S. Forrest2;3(maley�alum.mit.edu and forrest�s.unm.edu)1Fred Huthinson Caner Researh Center1100 Fairview Ave. N., Seattle, WA, 981092Department of Computer Siene, UNM, Albuquerque, NM 871313Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501January 23, 2001AbstratThe transformation of normal ells into anerous ells is an evolu-tionary proess. Populations of preanerous ells reprodue, mutate, andompete for resoures. Some of these mutations eventually lead to aner.We alulate the probability of developing aner under a set of simpli-fying assumptions and then elaborate these alulations, ulminating ina simple simulation of the ell dynamis. The agent-based model allowsus to examine the interations of mutations ritial for the developmentof aner that are either evolutionarily neutral or seletive. We an alsoexamine the interation of these mutations with a \mutator phenotype"derived from mutations that raise the mutation rate for the entire ell.The simulations suggest that there must be at least two seletively neu-tral mutations neessary for the development of aner and that preventivetreatments will be most e�etive when they inrease this number. Themodel also suggests that seletive mutations failitate the development ofaner suh that the more seletive mutations that are neessary for thedevelopment of aner, the greater the hane of developing aner.1 CanerCaner is an evolutionary problem. This is the basis for both its virulene andour diÆulties in treating it. The dynamis of aner ells demonstrate thesuÆient onditions for natural seletion: heritable variation in the populationand di�erential reprodution based on that variation. The variation in thepopulation of preanerous ells [8, 3℄ arises from the normal proess of somatimutations as well as the dramati rise in mutation rates that is harateristiof the progression to aner [13, 32℄. Di�erential reprodution of the mutants is1



aomplished through phenomena suh as the subversion of hek points in theell yles of the mutants [40℄. Nowell [30℄ argued for the importane of evolutionin aner more than two deades ago. Any mutations that rediret more of thebody's resoures to the aner ells will be seleted. This inludes the invasionof new tissues and metastasis. The fat that the population of ells inludessigni�ant heterogeneity means that there are likely to be some ells that areresistant to any given treatment. Appliation of most treatments, therefore,will tend to breed a resistant tumor. Furthermore, sine eah patient's ellsevolve through an independent set of mutations and seletive environments, theresulting population of aner ells in eah patient is likely to be unique. Thissuggests that general treatments that will work for all, or even most, patientswill be diÆult to �nd. The fat that evolution within a tumor works againstus in aner means that not only is aner an evolutionary problem, but that itwill only be solved as an evolutionary problem.Arti�ial life provides approahes that are ideal for addressing suh evolu-tionary problems. The �eld of arti�ial life has grown up around evolutionarytheory [5, 34, 24, 19℄, and for good reason. When we try to examine hetero-geneous populations of individuals interating in a spatially strutured envi-ronment, it is diÆult to represent and analyze suh systems with tratablemathematis. Computational models an help to extend analytial theory tothe dynamis of systems with heterogeneous populations that are interatingand evolving. In addition, omputational models an help to test the simpli�-ations neessary to redue the biologial system to a mathematially tratableformulation. At its best, arti�ial life models applied to theoretial biology leadto testable hypotheses.This paper extends an analytial model of the risk of developing anerand derives testable hypotheses about the geneti nature of the developmentof aner from these models. We fous on a type of esophageal aner knownas esophageal adenoarinoma, and a preanerous state, whih is known asBarrett's esophagus [35, 29, 3℄.2 Estimating Caner RisksTwo dominant harateristis of aner ells are their geneti instability [18℄ andunontrolled proliferation [16℄. The most ommonly mutated tumor suppressorgene aross all aners is p53 [41℄. The loss of this gene results in geneti insta-bilities (a form of inreased mutation rate), often with the loss or dupliationof entire hromosomes [41, 32, 18℄. The appearane of suh aneuploid ells inBarrett's Esophagus is one of our most reliable indiators of a poor prognosis[29℄. In ontrast, p16 (a.k.a. CDKN2A and INK4a) is a gene thought to beresponsible for shifting a ell from a proliferative state to a quiesent state (G0)[40℄. Loss of a p16 allele is assoiated with the spread of ells with that mutationthroughout the Barrett's region [10, 2, 33℄. But, at least in Barrett's Esophagus,mutations in both p53 and p16 are not suÆient to ause aner [3℄. How manyother genes are involved and what are their roles?2



There is a body of mathematial modeling work whih argues that the de-velopment of aner is best understood as a sequene of two or more stages orrate-limiting steps [27, 6, 28, 26, 20, 22, 39℄. The two stages might be alled\preanerous" and \malignant." The two-stage model, shown in Figure 1, in-volves at least 6 rate parameters: the rate of ells hanging from a normal stateto the preanerous state, the rate of reprodution of preanerous ells, the rateof loss of preanerous ells, the rate of ells hanging from the preanerousto the malignant state, and the rates of reprodution and loss of the malignantells. These parameters appear to be suÆient to �t the model to most epi-demiologial data on the inidene of aner. Moolgavkar [26℄ argues \withoutanillary biologial information there is little point to �tting models postulatingmore than two stages to tumor inidene data." It has been shown that modelswhih fail to inlude the stohasti birth and death dynamis of ells in thestages give di�erent results than those models whih do inlude those dynamis[22℄. These stage models, also promoted by experimentalists [7℄, abstrat awaythe evolutionary dynamis of aner. Progression to aner is seen as a pro-gression through a linear sequene of stages, rather than a diversi�ation intoa phylogeny of ell lines. However, atual observed orders of events often donot math the predited sequene of the linear models [4, 45℄. In fat, we dohave anillary biologial information showing the variety of evolutionary pathsmutant lones an take in Barrett's Esophagus [3℄. Furthermore, linear modelsdo not aount for interations between ells, suh as ompetition for resoures.
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Figure 1: The two-stage model of the development of aner posits two rate-limiting steps. Normal ells beome pre-anerous in the �rst stage and malig-nant in the seond stage. There are 6 rate parameters diagrammed with arrowsthat orrespond to transitions between the stages, as well as the reprodutionand death rates for the stages. The population of normal ells is assumed to beessentially stable.Theoretial work ould potentially help guide researh in the geneti arhi-teture of aner. For example, we ould ask, if aner requires 2 (or more)seletive mutations in genes suh as p16, what is the hane of developing an-er? Or, if a mutation in a gene suh as p53 boosts the mutation rate, how wouldthis a�et the probability of getting aner? Sine we have good epidemiolog-ial data on the probability of getting aner, we an then make guesses as to3



the number and kind of mutations that are neessary for its development. Wewill begin with some simple analytial alulations and inrementally elaboratethem until we are fored to move to a simulation-based model of the evolutionof aner.2.1 Loeb's ParadoxIn 1991 Loeb formulated the following paradoxial alulation for the inideneof aner. From the literature on human ell ultures he takes a per base pair,per ell division, mutation rate of 10�10 [31, 25, 9, 38℄. He estimates that thereare approximately 1016 ell divisions in a human lifetime. Finally, there are onthe order of 109 base pairs in the human genome. Putting this together, weshould expet 10�10� 1016� 109 = 1015 mutations in our ells during a humanlifetime. If we are interested in the inidene of ells with two mutations at anyloi, then this should our 10�10� 10�10� 1016� 109 = 105 times in a humanlifetime. However, if a geneti disease requires 3 mutations to our in the sameell, this should happen only one in 105 people. The hane of inurring 4mutations is astronomially small. If these mutations must our in spei�loi, suh as the oding regions of tumor suppressor genes and onogenes, thenthe probability of developing aner would be even smaller. Yet we believethat aner requires a whole series of mutations [1, 36, 42, 11℄, and aner is afrequent event during human lifespans.2.2 Mutator PhenotypeOne explanation for this paradox, o�ered in Loeb [21℄, is the idea of a \mutator"phenotype. Loeb's alulation hanges if an early mutation, perhaps in p53,inreases the mutation rate in the rest of the ell. Let us assume that the �rstevent in this progression is a mutation that raises the mutation rate by m.Let � be the mutation rate per lous per ell generation, km the number ofritial genes neessary and suÆient to ause aner, l the number of loi in aritial gene vulnerable to a aner ausing mutation, and let nb be the numberof ells in a human lifetime. To be generous, we will estimate that there are100 di�erent genes whih, if they mutated, might raise the mutation rate. Theexpeted number of ells that will independently develop aner should be:E[Tumors℄ = nb �1� (1� �)l100� �1� (1� m�)l�km (1)where (1 � �)l100 is the hane that a ell avoids a mutation in all l100 loithat would produe the mutator phenotype. Thus 1� (1� �)l100 is the prob-ability that a ell has a mutation in at least one of the 100 genes that lead tothe mutator phenotype. Here m� is the inreased mutation rate. Loeb esti-mated nb = 1016 and � = 10�10. There are approximately 103 loi in a humangene at whih point a deletion, insertion, or substitution is likely to a�et thepolypeptide whih that gene enodes. So we will onsider l = 103. Compari-son of normal and malignant ell ultures has estimated a hange in mutation4



rate due to malignany of 1 to 3 orders of magnitude [38℄. If we assume thataner requires the initial mutation in the mutator gene and then 3 more mu-tations, a total number of mutations that was astronomially unlikely in Loeb'soriginal estimation, and we assume that the mutator phenotype inreases themutation rate by 3 orders of magnitude, m = 103, then aner should developin 1016[1�(1��)103102 ℄(1�(1�10�10103)103)3 � 0:1 ells in a human's lifetime.Figure 2 shows the log10 expeted number of aner ells dependent on km thenumber of mutations required and m the inrease in the mutation rate dueto the mutator phenotype. We have trunated the data at an expeted singletumor beause we are interested in the probability of developing aner at leastone.
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doesn't our: Pr[�rst mutation℄ = 1� (1� �)lkmnb (2)This will ause the ell with that mutation to expand to nt ells. From thenon, eah new mutation has nt hanes of ourring in a bakground of ellsarrying all the previous mutations. The probability that the remaining km� 1mutations our is then:Pr[other mutations℄ = �1� (1� �)lnt�km�1 (3)Let us make some reasonable assumptions for the values of l; nt and km. Toestimate nt we will onsider Barrett's Esophagus, a preanerous ondition ofthe esophagus. Biopsies olleted from the neoplasti tissue of patients typiallyinlude 106 ells in a 2mm by 5mm setion of epithelium. The entire Barrett'sregion averages approximately a surfae area of 50mm by 60mm, or 10 biopsiesby 30 biopsies. So the entire surfae area an be setioned into 300 biopsies of106 ells, for a total of 3� 108 ells. Sine mutant lones are often observed tohave expanded over the entire Barrett's region of a patient, it seems reasonableto set nt = 108. Let us onsider the ase where km = 4 mutations are neessaryto ause aner. Reall that Loeb alulates the hane of 4 mutations ourringin the same ell to be astronomially small. Then,Pr[�rst mutation℄ = 1� (1� 10�10)4�1019 � 1 (4)This number is so lose to 1 that most omputers annot represent it as anythingother than 1. So many ells are generated in a human lifetime that arry amutation at any given lous. The interesting dynamis lie in the sequene ofmutations that follow the �rst one:Pr[other mutations℄ = h1� (1� 10�10)1011i3 = 0:99986 (5)Given our assumptions, we estimate that 4 spei� seleted mutations are almostertain to our in the lifetime of an individual. Of ourse, our estimates may beo�. Figure 4 shows the probability of su�ering aner as a funtion of the numberof ells to whih seleted mutant expands (nt) and the number of seletivemutations neessary and suÆient to ause aner (km).Figure 4 shows a preipitous drop in the probability of experiening aneras we redue our estimate of the number of ells in a tumor from 108 to 106.The SEER report from the National Caner Institute [37℄ estimates the lifetimeprobability of being diagnosed with aner in the US is 45% for men and 38%for women (for all raes and aner sites ombined). To math this estimate,our rough alulations suggest that in general aners would require 3 seletedmutations and those mutant lones would tend to spread to populations of 107ells. Of ourse, this is an extremely simpli�ed model of the inidene of aner.We have not aounted for any environmental e�ets, geneti predispositions, orindeed any mutations that are neessary for aner but do not spread throughseletion. Nevertheless, the elaboration to Loeb's alulations shows that Now-ell's insight does indeed resolve the paradox. We develop aner beause theells in the neoplasti tissues are evolving.7
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 CellsFigure 4: The probability of developing aner during a person's lifetime. Twoparameters are examined. The ell population size to whih a seleted mutantgrows has been alulated over the range of 103 to 1010. The seond parameteris the number of seleted mutations that are neessary and suÆient to auseaner, from 1 to 10. These alulations estimate that if the seleted populationsize is below 106 there is little hane of developing aner. If it is 108 or above,a person is guaranteed to develop aner during their lifetime.2.4 Both Mutator and Seletive E�etsThe two elaborations of Loeb's alulations onsider seletive and mutator mu-tations separately. A more realisti view of the development of aner wouldlikely onsider both seletive mutations and mutations that raise the mutationrate, and their interations. In addition, there may be \neutral" mutations1whih have no e�et on ell proliferation rates or mutation rates and yet areneessary for the expression of the anerous phenotype.Consider the ase in whih a mutator or neutral mutation arises in a ellof the tumor. There is no reason to believe that this mutation would spreadrapidly in the tumor. Without a seletive advantage, suh a mutation wouldbe unlikely to grow to dominate the entire tumor. In fat, the hane of aneutral mutation spreading throughout a population of 108 ells by hane is1We use the term \neutral mutation" here to indiate that these mutations do not e�etthe proliferation of the ell in whih they our. However, we do not mean to imply thatthese are silent mutations. On the ontrary, we are only interested in the mutations thatare neessary and suÆient for the development of aner. Thus, in the ontext of theseinvestigations, a \neutral" mutation is one that is neessary for the development of anerbut does not stimulate the expansion of its lone population.8



approximately 10�8 and requires an average of about 2�108 ell generations [12℄.Meanwhile, if a seletive mutation ourred in a ell whih laked the mutator orneutral mutation, the seletive mutation would tend to expand throughout thetumor and thereby displae the mutant population with the mutator or neutralmutation. Thus, it is important to keep trak of both the ells with the mutatoror neutral mutations, as well as the ells that are free of those mutations butmay yet su�er seletive mutations. Eah subpopulation an be haraterizedby the number of seletive, mutator, and neutral mutations it has su�ered,along with its population size. A set of di�erene equations an desribe thegrowth dynamis of these subpopulations, as well as mutations that move ellsfrom one subpopulation to another. But what growth dynamis should we use?The fundamental dynami of biologial reprodution is exponential. Is this areasonable representation of tumor dynamis in humans?In the esophagus, as in most of the digestive trat, ells along the lining(epithelium) are onstantly being sloughed o� and destroyed. These losses arereplenished by the division of stem ells in the lining. In the ase of Barrett'sEsophagus, these ells are preanerous and hyperproliferative. The estimatedturnover time of healthy stem ells in the esophagus is about one a week [23℄.Beause the ells are spatially strutured as a two-dimensional layer (the innersurfae of a ylinder), there are severe spatial onstraints restriting exponentialgrowth. Further, ell division (mitosis) is a loal proess, and so most newells must ompete for spae with their immediate anestors. The easiest wayto represent a heterogeneous population of ells growing in a two-dimensionalenvironment is with a two-dimensional model agent-based model.2.4.1 The ModelWe represented the the states of all the preanerous ells in the lining of theBarrett's region of an esophagus. We instantiated this as a two-dimensionaldisrete-event simulation in the shape of a olumn.2 That is, we used a two-dimensional array with \wrap-around" boundaries on the left and right sides,but not on the top and bottom. The state of a ell in this grid has four ompo-nents: the number of seletive mutations it has su�ered (0-S, given the inputparameter S), the number of neutral mutations it has su�ered (0-N , given theinput parameter N), whether or not it has su�ered a mutation that inreasesits mutation rate (a \mutator" mutation), and the number of time steps untilit divides (0-16). The population of ells is updated serially eah time step. Atime step whih represents approximately half a day. Of ourse, the real systemof ells would be more losely approximated by a parallel simulation. How-ever, sine mutations are rare, stohasti events, and spatial ompetition is alsobased on a stohasti proess, a parallel simulation would probably not di�ermeasurably from this serial approximation. The omplexity and omputationalexpense of a parallel simulation was not justi�ed in this ase.2The C++ soure ode is available upon request from the orresponding author atmaley�alum.mit.edu. 9



The time until the next reprodution (mitoti) event for eah ell is drawnfrom a normal probability distribution with a mean of 8 time steps and a stan-dard deviation of 2 time steps. We hose 4 days as the mean time to mitosis inthe Barrett's ells beause we wanted to use a power of 2 and, unlike the nor-mal squamous ells of the esophagus that turn over every 7 days, Barrett's ellsare hyperproliferative. Eah seletive mutation has the e�et of inreasing therepliation rate of the ell. We experimented with doubling the rate of mitosisfor every seletive event, as well as merely dereasing the mean time to mitosisby one time step for eah seletive mutation. In the former ase a ell thathas inurred 2 seletive mutations reprodues 4 times as fast as a normal ell.3In the later ase, a ell with 2 seletive mutations would, on average, divideafter 6 time steps. To determine when a ell divides, we generate a randomnumber, x, between 0 and 1 with uniform probability. We then alulate if xis less than or equal to the umulative probability of mitosis from age 0 to n,x � Pr�n[division℄, and �nd the smallest n for whih this is true. We storethis number n in the ell's data struture as the number of time steps untilthe ell will divide. This value is deremented every time step until it reahes0, at whih point we let the ell divide. Normally, alulating the umulativeprobability distribution (Pr�n[division℄) is done by integrating the probabilitydensity funtion from 0 to n. However, there is no known losed form solutionto the integral of the normal distribution. The integral of the normal distribu-tion has been solved numerially, and is reorded in a table in most statististext books. We therefore, stored the umulative probability distribution of thenormal urve in a stati array, A, and performed the alulation of when a ellwould divide by iterating (with n = 1 to 16) through the array until x � A[n℄.When a ell divides, the new ell has a 50% hane of displaing one ofthe 9 ells, seleted with uniform probability, in the 3 by 3 ell neighborhoodentered on the parental ell. Thus, there is a 1 in 9 hane that the new ellwill ompete for spae with the parental ell. If random hoie of a neighborresults in a loation o� the top or bottom of the array, a ell on the edge of thearray is seleted in its stead.A run of the model began with all ells free of mutations. With eah time steprepresenting 12 hours, we ran the model for 54,000 time steps (approximately74 years), or a human lifetime. This put pratial limitations on the number ofells we ould model, with a maximum of 1024 by 1024 (106) ells. In the futurewe hope to model more realisti tumor sizes with approximately 108 ells withmore sophistiated algorithms.We model the mutation rate as a Bernoulli proess. The probability of a ellhanging state isPr[mutation℄ = 1� (1� �)(S+N+M)lnp = P (6)where � = 10�10 is the mutation rate per base pair per ell generation, S;N;and M are the numbers of seletive, neutral, and mutator genes suÆient andneessary to ause aner if mutated, l = 103 is the number of ritial base pairs3This is why we hose a power of 2 for the mean time until mitosis.10



(loi) in eah gene at whih a mutation ould have a arinogeni e�et. In mostases, we assume that these mutations \knok out" the gene by either turningit o� or destroying the funtional e�ets of the normal protein produed by theunmutated gene. The last parameter, np = 2, is the number of independentpathways to aner. This is an estimate of the number of genes in whih amutation will have the same arinogeni e�et. If a ell had at least onemutator gene mutated then � inreased by 103 (or 102 in some experiments).This parameter for the inrease in the mutation rate was alled m in our earlieralulations. We primarily experimented with parameters S;N; and M , withsome exploration of �; l and the degree of inrease in � due to the mutatorphenotype, m. A ell was alled malignant if it had S seletive mutationsand N neutral mutations. We assumed that the mutator phenotype was notneessary for malignany but only played a failitating role through the inreasein the mutation rate of the seletive and neutral genes.A Bernoulli proess an be simulated by alulating the interarrival timefor the next suess. That is, instead of ipping a biased oin with probabilityof suess P for eah trial of the Bernoulli proess, we an ask when the nextsuess will happen. The probability mass funtion for the interarrival time k,the number of trials up to and inluding the next suess, of a Bernoulli proessis the geometri distribution:Pr[k℄ = P (1� P )k�1 (7)for k = 1; 2; : : : . The expeted value of k is E[k℄ = 1=P . When P is verysmall, as it is for most mutation rates, this funtion drops o� very gradually.In this ase, for the purposes of eÆieny, it is reasonable to approximate Pr[k℄as a uniform distribution from 0 to 2=P , whih has the same expeted valueE[k℄ = 1=P although a smaller variane. We alulated this with a single allto the pseudorandom number generator, using a version of Knuth's subtrativemethod [17, pp. 171{172℄ to generate the pseudorandom numbers. We assumethat the proesses of DNA synthesis and ell division are the primary auses ofmutations. Thus, in our model mutations only our at ell division [32, 46℄.Mutations have an equal probability of ourring in the new or parental ell. Amutation has an equal probability of ourring in any of the genes (seletive,neutral, and mutator). If it ourred in a gene that had already been mutated,there was no e�et. Genes were only allowed to mutate from the normal stateto the mutated state.At the end of a run we measured the proportion of ells that su�ered enoughmutations to ause aner (S and N). We ran the model at least 50 times foreah parameter setting. A grey-sale piture of the model in the midst of a runis shown in Figure 5.2.4.2 ResultsA run of the model was onsidered to have led to aner if the �nal populationhad at least 1 ell with the mutations required for malignany (S seletive muta-tions and N neutral mutations). Figures 6 and 7 show the resulting probability11



Figure 5: A view of the model running. The ells are olor oded by lineage.The lighter grey lineages share an anestor that su�ered a seletive mutation.This mutant lone is in the proess of sweeping through the entire tissue.of developing aner as a funtion of the number of seletive mutations S andneutral mutations N neessary and suÆient for developing aner. Figure 6shows the probabilities when there is no mutator gene to raise the bakgroundmutation rate. Figure 7 shows the results of the same parameter on�gura-tions when there is a mutator gene that may also mutate and thereby raise themutation rate by 3 orders of magnitude. In these runs of the model, seletivemutations halve the average time to mitosis.Figure 8 is an extration of a single urve from Figures 6 and 7 where N = 1.Figure 8 also shows the 90% on�dene intervals around these urves alulatedby treating the probability of developing aner as a Bernoulli proess. Whenthere is no mutator gene in the system, the probability of developing anerdereases with the number of seletive mutations that are required. This seemsreasonable in light of our earlier alulations. However, in the presene of amutator gene that an raise the mutation rate at any time, the probabilityof developing aner atually inreases with the number of neessary seletivemutations.Figure 9 shows the result of hanging the simulated e�et of the mutatorphenotype. The default e�et of raising the mutation rate by 3 orders of mag-nitude in the mutator phenotype m = 1000 is probably unrealistially high.When the mutator phenotype was set to be only 2 orders of magnitude greaterthan the normal mutation rate we observed aner in only 4% of the runs.12
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3 DisussionOther researhers have studied the relative merits of the two solutions to Loeb'sparadox [43, 44℄. Tomlinson et al. [44℄ onluded that seletive mutations aloneare suÆient to explain the mutations observed in aner. In their investigationof the mutator phenotype, they investigated the ase where either 2 or 6 neutralmutations were neessary to ause aner [44℄. They assumed the mutatorphenotype raised the mutation rate from 10�8 to 10�4. They found that in thease of requiring 2 neutral mutations, aner often developed before the mutatorphenotype appeared, but with 6 required mutations, the mutator phenotypewould appear before aner. They argue that the importane of a mutator ellwill be wiped out if any of the other mutations have seletive e�ets. Our resultsdo not support this. The presene of a few seletive mutations amongst manyneutral mutations has little e�et. However, the ombination of seletive andmutator mutations dramatially inreases the probability of developing aner,as is shown in Figure 8.An important aspet of both the analysis of seletive and mutator mutationsin aner is that the parameters of the preditions are observable and thusthe preditions are experimentally testable. Data is beoming available on thepopulation sizes of ells with seletive mutations, and it is beoming feasible tomeasure the mutation rate in ells with mutator phenotypes, perhaps throughthe loss of p53. Similarly, it should be possible to derive aurate measurementsof the number of ritial loi in any given gene relevant to the development ofaner. In the model we assumed this number was about 103 for all genes, anestimate that ould be improved signi�antly. In the foreseeable future we willbe able to redue the ranges of the signi�ant parameters in the model wheninformation about the number and kinds of mutations that are suÆient for thedevelopment of aner is determined.Our simulation of the development of aner is only a toy model and as suhit avoids many of the known omplexities of the biologial system. We haveimpliitly assumed that eah mutation is independent of the others, and so anour in any order. Further, we have not expliitly represented the phenomenonof dominane in whih a reessive phenotype might require two mutations beforeit appeared. However, this ould be represented by the ombination of a neutralmutation, whih ours �rst, and a seletive mutation, whih would follow theneutral mutation. We have also ignored the e�ets of ell senesene. Most ellsstop dividing after some number of divisions have shortened the telomeres tothe point where they no longer protet the ends of the hromosomes.Only one type of seletive e�et has been modeled. However, mutationsan have strong seletive e�ets without hanging the generation time of a ell.Mutants that tend to ompete suessfully for spae, either by displaing theirneighbors or by resisting displaement by future ompetitors, would also spreadin the population. There are probably a variety of other geneti innovations thatwould have bene�ial phenotypi e�ets. Most of these ould be represented andexplored in an elaborated model.Our model of the mutator phenotype is probably inappropriate. We have21



modeled the mutator phenotype as a dramati boost in the bakground mu-tation rate. This assumes that mutations our independently throughout thegenome. However, the knokout of our arhetypal andidate for a mutator gene,p53, seems to ause the loss (and gain) of whole hromosomes as well as the pre-vention of DNA repair. In the ase of hromosome loss, mutations in genes arenot independent and tend to our in massive lusters. Furthermore, we havenot modeled the e�ets of deleterious mutations. We would expet an inreasein the bakground mutation rate to also inrease the frequeny of deleteriousmutations, whih would result in a seletive disadvantage, and sometimes fatal,e�et on the host ell.Finally, we have ompletely ignored the immune response. We know that thehuman immune system sometimes attaks preanerous and anerous ells [15℄,but the details of these dynamis are still unknown. The immune system wouldlearly have seletive e�ets on the populations of ells. The immune systemould lower the probability of developing aner relative to our estimates.The simpli�ations of our models and our ignorane of realisti parametervalues prevent us from making highly foused experimental preditions. How-ever, the qualitative behaviors of the models do lead to two preditions:Predition 1 The development of aner requires at least 2 seletively neutralmutations.Our model of 216 ells with 1 neutral and 2 seletive mutations suÆient fordeveloping aner, in the presene of a mutator gene, led to a aner inideneof 35%. Our simulations with 106 ells requiring only 1 neutral mutation alwaysprodued aner, regardless of the number of seletive mutations required. Witha more realisti number of ells in a tumor, perhaps 108, the simulated inideneof aner would be unrealistially high. Requiring more seletive mutations onlymakes the inidene of aner higher. Thus, aner must require more than 1seletively neutral mutations.Predition 2 The number of seletive mutations neessary for the developmentof aner is positively orrelated with the number of neutral mutations.The model shows that the probability of getting aner atually rises with thenumber of seletive mutations that are possible. This seems ounter-intuitive.How ould the requirement for more mutational events atually raise the haneof getting aner? The answer lies in the interation between seletive sweepsand the neutral mutations. In the absene of a seletive sweep, a neutral muta-tion is likely to be lost from the ell population due to random utuations inthe subpopulation arrying that mutation. However, if a neutral mutation anhithhike along with a seletive mutation, the neutral mutation is muh morelikely to be preserved in the tumor. This hithhiking might our in one of twoways. On the one hand, seletive sweeps inur a large number of ell divisionsand, onsequently, many opportunities for the generation of more neutral mu-tations. This may lead to the generation of a neutral mutation in the midstof a seletive sweep and thereby spread the neutral mutation through a large22



portion of the tumor. On the other hand, a seletive mutation may our in aell that already has a neutral mutation, and thereby drive the spread of theneutral mutation throughout the tumor. The later ase is less likely than theformer ase beause there would usually be only a small target population ofells arrying a neutral mutation. It is unlikely that a seletive mutation wouldarise in suh a small population.If the development of aner requires a large number of neutral mutationbottleneks, then a large number of seletive mutations are neessary to failitatethe passage through these bottleneks. With few neutral mutations neessaryfor aner, there is no need to generate seletive mutations in order to progressto aner. Thus, we predit that the number of neutral and seletive mutationsneessary and suÆient for aner are orrelated.What insights might we derive from these results for the treatment or pre-vention of aner? All of the analyses suggest that neutral mutations are thebottlenek in the development of aner. This is not surprising given the lowprobability of a neutral mutation spreading through the population and the largeamount of time that this requires. The role of neutral mutations as bottleneksin the development of aner implies that an e�etive prevention program wouldbe one whih would add at least one additional neutral mutation to the set ofneessary mutations for the development of aner. In other words, we shouldtry to add bottleneks to the development of aner. This might, for exam-ple, be ahieved by treatments for whih the preanerous ells would have togenerate reessive mutations in order to esape the treatment and to progresson towards aner. If the suseptible phenotype is ompletely dominant, thena mutation in one of the two alleles of a homozygous dominant ell will haveno phenotypi e�et and will thus be seletively neutral. Similarly, oktails ofmultiple drugs [14℄ that require mutations at multiple sites in order to developresistane to all of the drugs in the oktail should be partiularly e�etive.The authors gratefully aknowledge the support of the National Siene Foun-dation (grants IRI-9711199 and CDA-9503064), the OÆe of Naval Researh(grant N00014-99-1-0417), and the Intel Corporation. Thanks to Terry Jonesfor oding Knuth's pseudorandom number generator, Keith Wiley for writingthe GUI (and apturing it in the at), the UNM adaptive group and two anony-mous referees for their omments. A speial thanks to Miller Maley for his advieon modeling probabilisti proesses. We would also like to thank the Brian Reidlab at the Fred Huthinson Caner Researh Center for their welome, enthusi-asm, and generous ollaboration. Without their support, this paper ould nothave been written.Referenes[1℄ P. Armitage and R. Doll. The age distribution of aner and a multi-stagetheory of arinogenesis. British Journal of Caner, 8:1{12, 1954.23
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