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Abstract. Predicting the virulence of new Influenza strains is an impor-
tant problem. The solution to this problem will likely require a combina-
tion of in vitro and in silico tools that are used iteratively. We describe
the agent-based modeling component of this program and report prelim-
inary results from both the in vitro and in silico experiments.

1 Introduction

Influenza, in humans, is caused by a virus that attacks mainly the upper respi-
ratory tract, the nose, throat and bronchi and rarely also the lungs. According
to the World Health Organization (WHO), the annual influenza epidemics affect
from 5% to 15% of the population and are thought to result in 3-5 million cases
of severe illness and 250,000 to 500,000 deaths every year around the world [1].
The rapid spread of H5N1 avian influenza among wild and domestic fowl and
isolated fatal human cases of H5N1 in Eurasia since 1997, has re-awakened inter-
est in the pathogenesis and transmission of influenza A infections [2]. The most
feared strain would mimic the 1918 strain which combined high transmissibil-
ity with high mortality [3, 4]. Virulence of influenza viruses is highly variable,
defined by lethality and person-to-person transmission, but the causes of this
variability are incompletely understood. The early events of influenza replica-
tion in airway tissue, particularly the type and location of early infected cells,
likely determine the outcome of the infection. Rate of airway tissue spread is
controlled by efficiency of viral entry and exit from cells, variable intracellular
interferon activation modulated by the viral NS-1 protein, and by an array of ex-
tracellular innate defenses. Although molecular biology has provided a detailed
understanding of the replication cycle in immortalized cells, influenza replica-
tion in intact tissue among phenotypically diverse epithelial cells of the human
respiratory tract remains poorly understood. We are missing a quantitative ac-
counting of kinetics in the human airway and an explanation for how one strain,
but not a closely related strain, can initiate person-to-person transmission.

Although the viral structure and composition of influenza are known, and
even some dynamical data regarding the viral and antibody titers over the course
of the infection [5–7], key information such as the shape and magnitude of the
viral burst, the length of the viral replication cycle (time between entry of the
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first virus and release of the first produced virus), and the proportion of produc-
tively infectious virions, is either uncorroborated, unknown, or known with poor
precision. This makes modeling influenza from data available in the literature
a near impossibility, and it points to the need for generating experimental data
aimed directly at the needs of both computational and mathematical models.

This paper describes the computer modeling side of a project that is inte-
grating in vitro experiments with computer modeling to address this problem.
We are focusing on the early dynamics of influenza infection in a human air-
way epithelial cell monolayer using both in vitro and computer models. The in
vitro model uses primary human differentiated lung epithelial cells grown in an
air-liquid interface (ALI) culture to document the kinetics of influenza spread
in tissue. The computer model consists of an agent-based model (ABM) im-
plementation of the in vitro system. Its architecture is modular so that more
details can be added whenever data from the in vitro system justifies it. Here,
we will describe the implementation of the computer model and report some
initial simulation results.

To our knowledge, only four mathematical models for influenza dynamics
have ever been proposed. The first and oldest one is from 1976 and consists of
a very basic compartmental model for influenza in experimentally infected mice
[8]. After a gap of 18 years, Bocharov et al. proposed an exhaustive ordinary dif-
ferential equation model based on the basic viral infection model but extended
to include 12 different cell populations described by 60 parameters [9]. More
recently, one of us co-authored a paper presenting another ordinary differen-
tial equation model with very slight modifications from the basic viral infection
model [10] and a second paper presenting a simple ABM for influenza [11]. All
of these models either perform poorly when compared to experimental data or
are too simplistic to capture the dynamics of interest in influenza.

2 Agent-based Modeling

The spatial distribution of agents is an important and often neglected aspect of
influenza dynamics. We capture spatial dynamics through the use of an agent-
based model (also known as an individual-based) cellular automata style model.
Each epithelial cell in the monolayer is represented explicitly, and a computer
program encodes the cell’s behavior and rules for interacting with other cells and
its environment. The cells live on a hexagonal lattice and interact locally with
other cells and virions in their neighborhood following a set of predefined rules.
Thus, the behavior of the low-level entities is pre-specified, and the simulation
is run to observe high-level behaviors (e.g. to determine an epidemic threshold).
This style of modeling emphasizes local interactions, and those interactions in
turn give rise to the large-scale complex dynamics of interest.

This modeling approach can be more detailed than other approaches. The
programs can directly incorporate biological knowledge or hypotheses about low-
level components. Data from multiple experiments can be combined into a single
simulation, to test for consistency across experiments or to identify gaps in our



knowledge. Through its functional specifications of cell behavior, our can po-
tentially bridge the current gap between intracellular descriptions and infection
dynamics models. Similar approaches have been used to model a variety of host-
pathogen systems ranging from general immune system simulation platforms
[12–16] to models of specific diseases including tuberculosis [17, 18], Alzheimer’s
disease [19], cancer [20–25], and HIV [26, 27].

The spatially explicit agent-based approach is an appropriate method for
this project. The ALI is a complex biological system in which many different
defenses (e.g. mucus, cytokines) interact and biologically relevant values cannot
always be measured directly. In addition, recent high-profile publications have
demonstrated that entry of avian and human-adapted influenza viruses into dif-
ferent airway epithelial cells depends on the cell receptor which in turn is de-
pendent on cell type and location in the airway [28, 29]. Our modeling approach
will facilitate the exploration of spatially heterogeneous populations of cells.

3 Influenza Model

Our current model is extremely simple. We plan to gradually add more detail,
ensuring at each step that the additions are justified by our experimental data.
Here, we describe the model as it is currently implemented.

We are modeling influenza dynamics on an epithelial cell monolayer in vitro.
The monolayer is represented as a two-dimensional hexagonal lattice where each
site represents one epithelial cell. The spread of the infection is modeled by
including virions. Rather than treat each virion explicitly, the model instead
considers the concentration of virions by associating a continuous real-valued
variable with each lattice site, which stores the local concentration of virions
at that site. These local concentrations are then allowed to change, following a
discretized version of the diffusion equation with a production term. The rules
governing epithelial cell and virion concentration dynamics are described below.

3.1 Epithelial Cell Dynamics

The epithelial cells can be found in any of the four states shown in Fig. 1, namely
healthy, containing, secreting, and dead. For simplicity, we assume that there is
no cell division or differentiation over the course of the infection. The parameters
responsible for the transition between these states are as follows.

Infection of Epithelial Cells by Virions (k): Each site keeps track of the
number of virions local to the site, Vm,n. But while there are Vm,n virions at site
(m,n) at a given time step, depending on the length of a time step, not all of these
virions necessarily come in contact with the cell, and some may contact it more
than once. Alternatively, a particular strain of virions may not be as successful at
binding the cell’s receptors and being absorbed by the cell. To reflect this reality,
we introduce the parameter k which gives the probability per hour per virion
that a healthy cell will become infected (enter the containing stage). In other
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Fig. 1. The agent-based model’s four states for epithelial cells, (Healthy, Containing,
Secreting, and Dead), and the parameters responsible for controlling the transitions
between these states.

words, k× Vm,n gives the probability that the healthy cell located at site (m,n)
will become infected over the course of an hour. In order to fit experimental
data, we set the rate of infection of cells per virions in our model to k = 8 per
virion at that site per hour.

Duration of the Viral Replication Cycle (τr): This variable represents the
time that elapses between entry of the first successful virion and release of the
first virion produced by the infected cell. From the experiments, we found this
to be about 7 h, and hence we set τr = 7 h in the ABM.

Lifespan of Infectious Cells (τd ± σd): Once infected (containing), a cell
typically lives 24 h–36 h (from experimental observations). Given that the repli-
cation cycle lasts τr = 7 h, this means that once it starts secreting virions, an
infectious cell typically lives 17 h–29 h or about 23± 6 h. Thus, we set the lifes-
pan of each infected cell individually by picking it randomly from a Gaussian
distribution of mean τd = 23 h and standard deviation σd = 6 h. In our ABM,
cell death is taken to mean the time at which cells cease to produce virions.
Note that in vitro, a cell undergoing apoptosis will eventually detach from the
monolayer and will be replaced by a differentiating basal cell. For the moment,
we neglect these processes and reduce their impact by fitting our ABM to ex-
perimental results over no more than the first 25 h after virion deposition.

3.2 Virion Dynamics

As mentioned earlier, virions are not represented explicitly. Instead, we track the
concentration of virions stored as a real-valued continuous variable at each site
of the lattice. The diffusion of virions is then modeled using a finite difference
approximation to the diffusion equation. The continuous diffusion equation of
the concentration of virions, V , is described by

∂V

∂t
= DV ∇2V , (1)



where V is the concentration of virions, ∇2 is the Laplacian, and DV is the
diffusion coefficient. The simulation is run on a hexagonal grid. The geometry
of the grid and the base vectors we chose are illustrated in Fig. 2.
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Fig. 2. Geometry of agent-based model’s hexagonal grid. The honeycomb neighborhood
is identified in gray, and the base vectors m and n are shown and expressed as a function
of ∆x, the grid spacing which is the mean diameter of an epithelial cell.

We can express (1) as a difference equation in the hexagonal coordinates
(m,n) as a function of the 6 honeycomb neighbors as
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such that V t+1
m,n at time t+1 as a function of V t
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V t

nei at time t is given by
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where
∑

nei V
t
nei is the sum of the virion concentration at all 6 honeycomb neigh-

bors at time t.
Because we want to simulate the infection dynamics in an experimental well,

we want the diffusion to obey reflective boundary conditions along the edge
of the well. Namely, we want ∂V

∂j = 0 at a boundary where j is the direction
perpendicular to the boundary. It can be shown that for such a case, (3) becomes
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where Nnei is the number of neighbors a cell really has. Note that for Nnei = 6,
(4) reduces to (3).

The virion-related parameters DV , ∆x, ∆t in (4), and the release rate of
virions, gV , have been set as follows.

Diffusion Rate of Virions (DV ): The diffusion rate or diffusion coefficient for
virions, DV , measures how fast virions spread: the larger DV , the faster virions
will spread to neighboring sites and then to the entire grid. One way to deter-
mine DV from experimental results is to take a measure of the “patchiness” of
the infection, i.e. the tendency of infected cells to be found in batches. The au-
tocorrelation function offers a good measure of patchiness. Hence, we calibrated
DV by visually matching our simulation to the experimental autocorrelation.
We started with DV = 3.18× 10−12 m2/s which is the diffusion rate predicted
by the Stokes-Einstein relation for influenza virions diffusing in plasma at body
temperature. Ultimately, we found that DV = 3.18× 10−15 m2/s, a value 1,000-
fold greater than the Stokes-Einstein diffusion, yielded the best agreement to the
experimental autocorrelation. This is illustrated in Fig. 3 where the experimental
autocorrelation is plotted against simulation results for different values of DV .
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Fig. 3. Autocorrelation at 24 h post-harvest for the experiments (full line, full cir-
cles) compared against the autocorrelation produced by the simulation when using
a diffusion coefficient of DV = 3.18× 10−12 m2/s (dotted line, empty squares), and
DV = 3.18× 10−15 m2/s (dashed line, empty triangles). All parameters are as in Ta-
ble 1 except for the DV = 3.18× 10−12 m2/s simulation where k was set to 4 per
virions per hour to preserve the same fraction of cells infected at 24 h post-harvest.
The autocorrelation have been “normalized” to be one for a lag of zero.



Grid Spacing or Diameter of Epithelial Cells (∆x): The diameter of
epithelial cells was estimated from “en face” and cross-section pictures of the
experimental monolayer. The average epithelial cell diameter was found to be
about 11± 1 µm. We use ∆x = 11 µm.

Duration of a Time Step (∆t): The stability criterion for the finite difference
approximation to the diffusion equation presented in (4) requires that

∆t ≤ (∆x)2

4DV
, (5)

which is a more stringent requirement for larger values of DV or smaller values
of ∆x. We use ∆x = 11 µm which is the diameter of lung epithelial cells, and
DV = 3.18× 10−15 m2 · s−1 such that in order to satisfy the stability criterion,
we need ∆t ≤ 2.6 h. We found that setting ∆t = 2 min satisfies the stability
criterion of the diffusion equation and accurately captures the behaviour of the
system.

Virion Release Rate (gV ): As seen above, τr = 7 h after becoming infected,
an epithelial cell will start secreting virions. In the model, secreting cells release
virions at a constant rate until the cell is considered “dead”, at which time
secretion is instantaneously stopped. This “shape” for the viral burst was chosen
arbitrarily as very little is known about the shape, duration, and magnitude of
the viral burst. We found that setting the release rate of virions by secreting
cells to gV = 0.05 virions per hour per secreting cell in our ABM yields a good
fit of the simulation to the experimental data.

3.3 Setting Up the Model

The infection of the epithelial cell monolayer with influenza virions in our in
vitro experiments proceeds as follows. An inoculum containing 50, 000 competent
virions (or 50, 000 plaque forming unit or pfu) is deposited evenly on the cell
monolayer. The solution is left there for one hour to permit the infection of the
cells and at time t = 0 h, the inoculum is harvested with a pipette. At that
time, not all the virions are removed: some are trapped in the mucus and get
left behind.

To avoid having to model the initial experimental manipulations and the
uncertainty in the viral removal, we start the ABM simulations at time t = 2 h
post-harvest. At that time, a fraction of cells have been infected by the inoculum
and a few virions have been left behind at harvest-time. To account for this fact,
we define two more parameters, V0 and C0, which give the number of virions
per cell and the fraction of cells in the containing stage at time t = 2 h post-
harvest, the initialization time of our simulations. In order to determine the
number of virions per cell, we also defined Ncells, the number of epithelial cells
in the experimental well. Parameters Ncells, V0 and C0 were set as follows.



Number of Epithelial Cells in the Experimental Well. (Ncells): We
computed Ncells, the number of epithelial cells in the experimental well using
the measured diameter of the epithelial cells, ∆x = 11 µm, and the known area
of the experimental well, Awell = 113 mm2. Assuming that the sum of the surface
area of all the epithelial cells fully fills the well’s area and that the surface area
of each cell is roughly circular, such that Acell = π(∆x/2)2, we can compute the
number of epithelial cells in the experimental well

Ncells =
Awell

π (∆x/2)2
(6)

=
113 mm2

π (11 µm/2)2
(7)

∼ 1, 200, 000 cells . (8)

For our ABM, we found that setting the well radius of Rwell = 160 cells, which
corresponds to about 93,000 simulated cells, is sufficient to accurately capture
the behaviour of a full scale simulation.

Initial Number of Virions per Epithelial Cell (V0): At time t = 2 h post-
harvest, the time at which we begin the simulation, 635±273 virions were found
on the monolayer. Hence, we can compute the number of virions per epithelial
cell present on the monolayer at time t = 2 h post-harvest,

V0 =
635 virions

Ncells
(9)

∼ 5.3× 10−4 virions/cell , (10)

which corresponds to the number of virions per cell at initialization time.

Fraction of Cells Initially Infected (C0): The parameter C0 gives the frac-
tion of cells which are initially set to the containing state. Those are the cells that
were infected during incubation with the inoculum. Staining the ALI monolayer
with viral antigen at t = 8 h post-harvest revealed that approximately 1.8% of
the cells contained influenza protein, i.e. were producing virions. Hence, we set
C0 = 0.018 in the ABM such that 1.8% of cells are set to the containing stage
at initialization time.

4 Preliminary Results

In its current implementation, the ABM has 11 parameters shown in Table 1. A
screenshot of the simulation grid is presented in Fig. 4, and Fig. 5 presents the
dynamics of the various cell states and viral titer as a function of time against
preliminary experimental data. We can see that the ABM provides a reasonable
fit to the experimental data.



Table 1. The 11 parameters used in the computer model, with a short description
of their role and their default value. In the Source column, C stands for computed,
M for measured experimentally, L for taken from the literature, and F for parameters
adjusted in order to fit the model to the experiments.

Symbol Description Value Source

Fixed Parameters

Rwell radius of simulation well in # cells 160 cells C (Sect. 3.3)
∆t duration of a time step 2 min/time step C (Sect. 3.2)
∆x grid spacing (diameter of epithelial cells) 11 µm M (Sect. 3.2)
τr duration of the viral replication cycle 7 h L (Sect. 3.2)

τd ± σd infectious cell lifespan (mean ± SD) 23± 6 h C (Sect. 3.1)

Adjusted Parameters

C0 fraction of cells initially infected 0.018 F (Sect. 3.3)
V0 initial dose of virions per cell 5.3× 10−4 virions F (Sect. 3.3)
k infection rate of cells by virions 8 /h F (Sect. 3.1)
gV rate of viral production per cell 0.05 /h F (Sect. 3.2)
DV diffusion rate of virions 3.18× 10−15 m2/s F (Sect. 3.2)

Fig. 4. Screenshot of the simulation taken at 18 h post-harvest for a simulated grid
(well) containing 5, 815 cells using the parameter values presented in Table 1. The
cells are color-coded according to their states as in Fig. 1 with healthy cells in white,
containing cells in green, secreting cells in red, and dead cells in black. The magenta
overlay represents the concentration of virions at each site with more opaque magenta
representing higher concentration of virions.
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Fig. 5. Simulation results using the parameter set presented in Table 1. The lines
represent the fraction of epithelial cells that are healthy (black), containing the virus
(green), secreting the virus (red), or dead (dashed black), as well as the number of
competent virions (or pfu) on the right y-axis (blue). The blue diamonds and the red
circles represent experimental data for the viral titer and the fraction of cells infected,
respectively.

5 Proposed Extensions

As mentioned earlier, the current model is extremely simple, and we plan to
gradually increase the level of detail.

One of the first improvements would be the inclusion of different cell types.
The epithelial cells that make up the simulation grid are assumed to be a homo-
geneous population of cells, with no distinction, for example, between ciliated
and Clara cells. We plan to add more cell types; each cell type would have the
same four states illustrated in Fig. 1, and the transitions between those states
would still be dictated by the same processes, but the value of the parameters
controlling these processes would differ from one cell type to another and from
one virus strain to another. With such a model, we could, for example, explore
differences in the spread of the infection on a sample constituted of 90% cilliated
cells and 10% Clara cells against the spread on a sample constituted of 50%
ciliated cells and 50% Clara cells.

We also plan to break existing parameters into sub-models. Let us illustrate
this process with an example. At the moment, we describe viral release using the
parameter gV which describes the constant rate at which virions are released by
secreting cells. In the future, this simple model of viral release could be replaced
by a much more elaborate intracellular sub-model of viral assembly and release
that takes account of factors such as viral strain and cell type to more accurately



depict the dynamics. These sub-models could either be agent-based simulations
or ordinary differential equations when the spatial distribution of the agents
involved is not critical.

We also would like to refine the process of viral absorption, which is currently
described by the parameter k. It has recently been shown [28, 29] that suscep-
tibility to a particular influenza strain is different depending on the cell type.
For example, human influenza virions preferentially bind to sialic acid (SA)-α-
2,6-Gal terminated saccharides found on the surface of ciliated epithelial cells of
the upper respiratory tract while avian influenza H5N1 prefers (SA)-α-2,3-Gal
found on goblet cells in and around the alveoli [28, 29]. One easy way to take this
type of heterogeneity into consideration would be to define a virion absorption
rate rather than an infection rate, and consider different production rates, gV ,
for each strain of virus and for each cell type. Eventually, the parameter for
the absorption rate of virions, for example, could be broken into a sub-model
describing the molecular processes involved in virion absorption which would
explain in which way virus strains and cell receptors affect its value.

Eventually, when mechanisms such as viral absorption and release have been
modified to take on the form of molecular sub-models, the ABM will be calibrated
against a few different known influenza strains. This will provide pointers as
to which characteristics of an influenza viral strain drive these mechanisms.
Ultimately, we hope to be able to take a newly isolated influenza strain, infect
our in vitro system, and then fit our ABM to the experimental results. Doing
so would reveal the value of the parameters characterizing this particular strain
and hence reveal the lethality and infectivity of that strain.

6 Simulation Platform

The model is implemented on the MASyV (for Multi-Agent System Visualiza-
tion) simulation platform. MASyV facilitates the visualization of simulations
without the user being required to implement a graphical user interface (GUI).
The software uses a client-server architecture with the server providing I/O and
supervisory services to the client ABM simulation. The MASyV package con-
sists of a GUI server, masyv, a non-graphical command-line server for batch runs,
logmasyv, and a message passing library, ma message, containing functions to
be used by the client to communicate with the server. The simulation framework
is written in C and was developed on a Linux (Debian) system.

With the MASyV framework, a user can write a simple two-dimensional
client program in C, create the desired accompanying images for the agents with
a paint program of her/his choice (e.g. GIMP), and connect the model to the
GUI using the functions provided in the message passing library. The flexible
GUI of MASyV, masyv, supports data logging and visualization services, and it
supports the recording of simulations to a wide range of video formats, maxi-
mizing portability and the ability to share simulation results collaborators. The
GUI, masyv, is built using GTK+ widgets and functions. For better graphics
performance, the display screen widget, which displays the client simulation,



uses GtkGLExt’s OpenGL extension which provides an additional application
programming interface (API) enabling GTK+ widgets to rapidly render scenes
rapidly using OpenGL’s graphics acceleration capabilities. Capture of the sim-
ulation run to a movie file requires the software Transcode [30] and the desired
compression codecs be installed on the user’s machine.

For non-graphical batch runs, a command-line interface, logmasyv, is also
implemented. This option is designed to run multiple simulation runs (e.g. for
parameter sweeps on large computer grids). This option requires only that a
C compiler be available, and it eliminates the substantial CPU overhead cost
incurred by the graphical services. Communication between the server program
(either masyv or logmasyv) and the client simulation is done through a Unix
domain socket stream.

MASyV is open source software distributed under the GNU General Public
License (GNU GPL) and is freely available for download from SourceForge [31].
It has a fixed web address, it is well maintained and documented, has an on-
line tutorial, and comes with a “Hello World” client simulation demonstrating
how to implement a new client and how to make use of the message passing
library. MASyV also comes with a few example pre-programmed clients such as
an ant colony laying and following pheromone trails (ma ants) and a localized
viral infection (ma immune) which was used in [11, 32]. Our influenza model was
derived from ma immune and is now distributed with MASyV under the name
ma virions.

7 Conclusion

We have described the implementation of an agent-based simulation built to re-
produce the dynamics of the in vitro infection of a lung epithelial cell monolayer
with an influenza A virus. At this time, model development is still in its pre-
liminary stage, and many details remain to be elucidated. However, preliminary
runs with biologically realistic parameter values have yielded reasonable results
when compared with the currently available experimental data.

Recent results from the in vitro experiments revealed that large numbers
of virions were being trapped by the mucus. While at 1 h post-harvest viral
assays revealed that the experimental well contained about 4, 701± 180 virions,
it contains a mere 635±273 virions only 1 h later at 2 h post-harvest and 720±240
virions at 4 h post-harvest. These new results suggest that trapping of the virions
by the mucus and the absorption of virions by the epithelial cells upon infection
plays a crucial role in controlling the rate of spread of the viral infection. In
light of these new results, we plan to direct our future research towards better
characterizing the role of the mucus in viral trapping and its effect on viral
infectivity.

This recent development is an excellent example of just how much we still
need to learn about influenza infection. It also shows that our strategy of com-
bining in vitro and in silico tools will prove a useful tool in this quest.
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22. González-Garćıa, I., Solé, R.V., Costa, J.: Metapopulation dynamics and spatial
heterogeneity in cancer. PNAS 99(20) (2002) 13085–13089

23. Maley, C.C., Forrest, S.: Exploring the relationship between neutral and selective
mutations in cancer. Artif. Life 6(4) (2000) 325–345

24. Maley, C.C., Forrest, S.: Modeling the role of neutral and selective mutations
in cancer. In Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., eds.:
Artificial Life VII: Proceedings of the 7th International Conference on Artificial
Life, Cambridge, MA, MIT Press (2000) 395–404

25. Maley, C.C., Reid, B.J., Forrest, S.: Cancer prevention strategies that address
the evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and
selection for chemosensitivity. Cancer Epidem. Biomar. 13(8) (2004) 1375–1384

26. Strain, M.C., Richman, D.D., Wong, J.K., Levine, H.: Spatiotemporal dynamics
of HIV propagation. J. Theor. Biol. 218(1) (2002) 85–96

27. Zorzenon dos Santos, R.M., Coutinho, S.: Dynamics of HIV infection: A cellular
automata approach. Phys. Rev. Lett. 87(16) (2001)

28. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y.: Influenza
virus receptors in the human airway. Nature 440(7083) (2006) 435–436

29. van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Oster-
haus, A.D., Kuiken, T.: H5N1 virus attachment to lower respiratory tract. Science
312(5772) (2006) 399 Originally published in Science Express on 23 March 2006.
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