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Abstract—Accurately predicting object lifetimes is important for improving memory management systems. Current garbage collectors

make relatively coarse-grained predictions (e.g., “short-lived” versus “long-lived”) and rely on application-independent heuristics

related to the local characteristics of an allocation. This paper introduces a prediction method which is fully precise and makes its

predictions based on application-specific training rather than application-independent heuristics. By “fully precise” we mean that the

granularity of predictions is equal to the smallest unit of allocation. The method described here is the first to combine high precision and

efficiency in a single lifetime predictor. Fully precise prediction enables us, for the first time, to study zero-lifetime objects. The paper

reports results showing that zero-lifetime objects comprise a significant fraction of object allocations in benchmark programs for the

Java programming language and that they are correlated with their allocation context (the call stack and allocation site). Beyond zero-

lifetime objects, the paper reports results on predicting longer lived objects, where, in some cases, it is possible to predict the lifetime of

objects based on their allocation context (the call stack and allocation site) well. For the SPEC benchmark programs, the number of

dynamically allocated objects whose call sites have accurate predictors ranges from 0.2 percent to 61 percent. This method could

potentially improve the performance of garbage collectors. The paper proposes a death-ordered collector (DOC) and analyzes its

implementation overheads and its best possible performance. The study shows how memory performance could be enhanced using

the extra information provided by fully precise prediction.

Index Terms—Object lifetimes, workload characterization, pretenuring, object-oriented programming languages, garbage collection,

program behavior.
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1 INTRODUCTION

GARBAGE-COLLECTED languages, such as C# and Java, are
increasingly important. Garbage collection (GC) im-

proves developers’ productivity by removing the need for
explicit memory reclamation, thereby eliminating a
significant source of programming error. However,
garbage-collected languages incur increased overhead
and, consequently, improvement in their performance is
essential to the continuing success of these languages.
Many algorithms have been proposed over the several
decades since GC was invented, but their performance
has been heavily application dependent. For example,
Fitzgerald and Tarditi showed that a garbage collector
must be tuned to fit a program [1]. Another approach
relies on larger heap sizes and simply runs the collection
algorithms less frequently. However, this does not always
result in better performance [2]. GC algorithms typically
make certain assumptions about the lifetimes of the
application’s objects and tailor the collection algorithm to
these assumptions. If the assumptions are not borne out,
poor performance is the outcome. What is needed is the
ability to make accurate and precise predictions about
object lifetimes and to incorporate these predictions into a
general GC algorithm that works well for a wide range of
applications.

The overhead of GC, compared to explicit deallocation,
arises from the cost of identifying which objects are still
active (live) and which are no longer needed (dead). GC
algorithms, therefore, go to some lengths to collect regions
of memory that are mostly dead. The ideal garbage collector
would collect regions where all the objects died recently so
that heap space is not wasted by dead objects and living
objects are not processed unnecessarily. To do this, the
allocator would need to know the exact death time of an
object at the time it was allocated and then it could allocate
it to a region occupied by objects with the same death time.
To date, this has been accomplished only in a limited way
by a process called “pretenuring.” Pretenuring algorithms
make coarse predictions of object lifetimes, predicting
which allocations will result in long-lived objects and then
allocating them to regions that are not frequently collected.
For example, in Blackburn et al.’s pretenuring scheme [3],
objects are allocated into short-lived, long-lived, and eternal
regions. As this paper will show, the inability to predict
lifetimes precisely is an obstacle to the ideal garbage
collector.

Modern language runtime environments provide a
wealth of profiling mechanisms to investigate the state of
an application. In virtual machine (VM) environments such
as C# and Java, profiling is an important part of the (JIT)
compilation process and may be exploited to improve the
performance of all VM components. In this paper, we show
how allocation-site information available to the VM can be
leveraged to improve object lifetime prediction and how
that ability might be exploited by the JIT compiler and
collection system.

The organization of this paper is as follows: First, we
demonstrate that there is a significant correlation between
the state of the stack at an allocation point and the allocated

880 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

. H. Inoue is with the School of Computer Science, Carleton University,
Herzberg Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6
Canada. E-mail: hinoue@ccsl.carleton.ca.

. D. Stefanovi�c and S. Forrest are with the Department of Computer Science,
MSC01 1130, 1 University of New Mexico, Albuquerque, NM 87131-
0001. E-mail: {darko, forrest}@cs.unm.edu.

Manuscript received 19 Dec. 2003; revised 16 Dec. 2004; accepted 7 Dec.
2005; published online 22 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0291-1203.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



object’s lifetime. Next, we describe how this information
can be used to predict object lifetimes at the time they are
allocated. We then show that a significant proportion of
objects have zero lifetime. Next, we analyze the behavior of
a hypothetical hybrid GC (the death-ordered collector) that
uses our prediction method, examining its implementation
overheads and describing its best-case behavior. Finally, we
compare our results with related work and discuss other
potential applications.

2 OBJECT LIFETIME PREDICTION

Our approach is inspired by Barrett and Zorn’s work on
object lifetime prediction in C applications [4]. In particular,
both methods use similar information, the predictors are
constructed similarly using runtime profiling, and we have
adopted their “self prediction” test. In addition, we have
made several extensions. First, we are using a garbage
collected language, Java, in which deallocation is implicit.
Second, we have introduced fully precise prediction; Barrett
and Zorn used only two bins—short and long-lived. Finally,
we have conducted a more detailed analysis, the contents of
which form the bulk of this paper.

As mentioned earlier, one goal of object lifetime
prediction is to improve performance by providing runtime
advice to the memory allocation subsystem about an
object’s likely lifetime at the time it is allocated. Similarly
to Barrett and Zorn, we accomplish this by constructing an
object lifetime predictor, which bases its predictions on
information available at allocation time. This includes the
context of the allocation request, namely, the dynamic
sequence of method calls that led to the request, and the
actual type of the object being allocated. We refer to this
information as the allocation context; if the observed lifetimes
of all objects with the same allocation context are identical,
then the predictor should predict that value at runtime for
all objects allocated at the site.

We have not yet integrated our predictor into the
memory allocation subsystem, so our testing is trace-driven
and not performed at runtime. If fully implemented, our
system would operate similarly to other profile-driven
optimization systems. First, a small training run would be
used to generate the predictor, instead of logging the trace.
Subsequent runs would then use the predictor for the
various optimizations discussed below.

We consider two circumstances for prediction: self
prediction and true prediction. Self prediction [4] uses the
same program trace for training (predictor construction) as
for testing (predictor use). Self prediction provides an initial
test of the hypothesis that allocation contexts are good
predictors of object lifetimes. Although self prediction is not
predicting anything new, it allows us to study the extent to
which the state of the stack is correlated with the lifetime of
the object allocated at that point. This provides evidence
that true prediction is possible. True prediction is the more
realistic case in which one small training trace is used to
construct the predictor and a different larger trace (gener-
ated from the same program but using different inputs) is
used for testing. If self prediction performance is poor, then
true prediction is unlikely to succeed. But, accurate self
prediction does not necessarily imply successful true

prediction. Although we have not analyzed it in detail,

we expect that this latter case is most likely to occur in

heavily data-driven programs.
The load on the memory-management subsystem is

determined by heap allocation and death events and it is

independent of other computational effects of the program.

Therefore, the lifetime of an object in GC studies is

determined by the number of bytes of new memory that

are allocated between its birth and its death. More

specifically, object lifetime is defined as the sum of the

sizes of other objects allocated between the given object’s

allocation and death and it is expressed in bytes or words.
We evaluate predictor performance using four quantita-

tive measures: precision, coverage, accuracy, and size:

. Precision is the granularity of the prediction in bytes. A
fully precise predictor has precision of 1 byte, e.g., it
might predict that a certain allocation site always
yields objects with a lifetime of 10,304 bytes. A less
precise predictor might predict from a set of geome-
trically proportioned bins, such as 8,192-16,383 (we
refer to these as granulated predictors), or, as we
mentioned before, from a small set of bins such as
short-lived, long-lived, and eternal. Our aim is to
achieve high precision (narrow ranges). In practice,
the ideal precision will depend on how the memory
allocation subsystem exploits the predictions.

. Coverage is the percentage of objects for which the
predictor makes a prediction. We construct the
predictors so that they make predictions only for
allocation contexts that can be predicted with high
confidence. Thus, in some cases, the predictor will
make no prediction, rather than one that is unlikely
to be correct, and the memory allocation subsystem
will need a fallback allocation strategy for these
cases. Although the decision to predict is made per
allocation site, the natural measure of coverage is the
percentage of actual object allocation events that are
predicted (a dynamic count) rather than the percen-
tage of sites at which a prediction can be made (a
static count). Ideally, coverage should be as high as
possible.

. Accuracy is the percentage of predicted objects which
are predicted correctly. That is, among all the objects
allocated at runtime for which a prediction is made,
some will have a true lifetime that falls in the same
range as the predicted lifetime; the range is defined
by the precision parameter. Accuracy should be as
high as possible.

. Size is the number of entries in the predictor, where
an entry consists of a descriptor of an allocation site
and the prediction for that site. Because the predictor
incurs space and time overhead at runtime, smaller
sizes are better.

There are interesting trade-offs among precision, cover-

age, accuracy, and size. For example, a predictor must

choose between coverage and precision. Increasing the

predictor size (adding more entries) allows either greater

coverage (by specifying predictions for objects not pre-

viously covered) or greater precision (by specifying
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different predictions for those objects). There is also the
obvious trade-off between coverage and accuracy.

We construct predictors in two stages. First, we collect an
execution trace for each program and then we construct the
predictor itself. The trace includes accurate records of each
object allocation and death. For each allocation event, we
record the object identifier, its type, and its execution
context. The execution context represents the state of the
entire stack at the time of allocation, consisting of the
identifiers of the methods and bytecode offsets, stored as
integers. We refer to this information as the stack string. In
most cases, we reduce the amount of information by
recording only the top few entries of the stack (the stack
string prefix, or SSP1) and study the effects of varying the
length of the prefix. Each death event is recorded to a
precision of 1 byte. This full precision is unique in object
lifetime traces of garbage-collected languages. Object life-
times reported in the literature almost always have coarse
granularity for garbage-collected languages [3]. This is
because object death events can only be detected at a
collection point and collections are relatively infrequent. We
used an implementation of the Merlin generation trace
algorithm [5] within the JikesRVM open-source Java virtual
machine [6] to collect fully precise object-lifetime data.
Merlin makes absolute precision practical by not enforcing
frequent garbage collections. Instead, it imprints a time-
stamp on objects at memory roots when an allocation
occurs.2 During a collection, an object’s death time can be
computed by determining the last timestamp in the
transitive closure of a group of objects.

A predictor consists of a set of predictor entries. A
predictor entry is a three-tuple <SSP, type, lifetime>, as
shown in Fig. 1. The trace is used to construct a predictor for
the corresponding program. An entry is added to the
predictor if and only if all lifetimes during training
corresponding to the SSP and type are identical. This
implies that if any two objects allocated at the same
allocation site have different lifetimes, or collide, the
predictor will not make a prediction for that allocation site.

This type of predictor is computationally efficient and
tunable. For example, singletons typically dominate the
predictor and increase its size significantly. Singletons are
entries for which only one object was allocated during
training, so no collisions could have eliminated them. These
entries might be removed to form a smaller predictor
without greatly reducing coverage (because each entry is
used so infrequently), as shown in Fig. 4.3 More sophisti-

cated strategies could also be devised to optimally balance

coverage and size.
We consider three aspects of lifetime prediction:

. Fully Precise Lifetime Prediction. Object lifetimes are
predicted to the exact byte.

. Granulated Lifetime Prediction. A lower precision
approach in which the predictor bins lifetimes
according to the scheme bin ¼ log2ðlifetimeþ 1Þ.
Because most objects die young, the effective
precision of this method is still high.

. Zero Lifetime Prediction. The predictor predicts only
zero lifetime objects (those that die before the next
object allocation). We discovered that some bench-
marks generate a large number of zero-lifetime
objects. Predicting zero-lifetime objects is an inter-
esting subproblem of fully precise prediction.

We illustrate these concepts and tradeoffs on the

example benchmark pseudojbb.4 Fig. 2 shows how predictor

coverage and size depend on the SSP length as it is varied

from 0 to 20; we used fully precise lifetime prediction and

singletons were retained in the predictor. Fig. 2 plots the

SSP length along the horizontal axis. For each plotted SSP

value, we synthesized a predictor from the training trace.

The predictor’s coverage, i.e., the percentage of object

allocations in the trace for which the predictor makes a

prediction, is plotted along the vertical axis. Predictor

coverage improves with increasing SSP length as more

information is available to disambiguate allocation contexts.

However, this effect plateaus at an SSP of about length 10,

suggesting that 10 is a sufficient SSP length. Fig. 2 also

shows the growth of predictor size, i.e., the number of

entries, with increasing SSP length.
Fig. 3 allows us to see the effect of removing singletons

from the predictor. Notably, predictor coverage is almost

unchanged, but predictor size is dramatically reduced.

Excluding singletons reveals interesting dependencies
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Fig. 1. A single predictor entry: The SSP describes the execution path of
the program. Each integer encodes the method and position within the
method of the next method call. The entire string denotes the allocation
site. All byte arrays (JVM type [B) allocated with this stack string prefix
had a lifetime of 64 bytes.

Fig. 2. The effect of stack prefix length on predictor size and coverage

for the example benchmark pseudojbb (including singletons).

1. This is not to be confused with the supervisor stack pointer which has
the same acronym.

2. Memory roots are the references to objects that a program can
manipulate directly. Examples are registers and, particularly in Java, the
references in the program stack.

3. The benchmark perimeter from the Java Olden suite [7], [8] is used here
because it displays the behavioral archetype. 4. Section 3 describes the benchmarks used in our study.



among SSP length, predictor size, and coverage. There is a

trade-off between collisions and singletons—if the SSP is

too short, too many objects collide; if it is too long, the SSP

converts the entries into singletons and bloats predictor

size. This effect is illustrated by the perimeter benchmark,

shown in Fig. 4, which has a maximum at around SSP

length 8, and then decays to a plateau. The maximum

divides the regime of collisions, on the left, and the regime

of singletons, to the right.
We report results in object counts, rather than bytes,

because we are interested in how well the predictor

performs. Object counts are the natural unit for this

consideration. However, bytes are often used in the garbage

collector literature and we collected these data as well with

similar results. In other words, object size is not signifi-

cantly correlated with the ability to predict object lifetimes.

3 BENCHMARKS AND EXPERIMENTAL TESTBED

We report data on the SPECjvm98 and SPECjbb2000
benchmarks. We also collected data on the Java Olden
benchmarks [9] (data not shown), but their small, synthetic
nature produces outlier behavior. The SPEC benchmarks
consist of useful “real world” programs (with the exception
of db, a synthetic benchmark constructed to simulate
database queries) and are intended to be representative of
real applications run on Java virtual machines. They are
written in a variety of programming styles and exercise the
heap differently. For a detailed study of the individual
benchmarks’ memory behavior, see Dieckmann and Hölzle
[10]. Table 1 describes the individual benchmarks and
Table 2 gives some general runtime characteristics of the
benchmarks.

We used the JikesRVM Java Virtual Machine version 2.0.3
from IBM. The specific configuration was OptBaseSemi-
space with the Merlin extensions [5]. This means that the
optimizing compiler was used to compile the VM and the
baseline compiler compiled the benchmarks. The GC was
the default semispace collector (though note that the
generated trace is independent of the collector used).

4 SELF PREDICTION

Self prediction tests the predictor using the same trace from
which it was constructed. Thus, prediction accuracy is not
an issue—if the predictor makes a prediction at all, it will be
correct. Of interest are the trade-offs among precision,
coverage, and size. We report results for full-precision and
logarithmic granularities and we consider the effects of
including or excluding singletons from the predictors.
Table 3 shows the results. For each benchmark, a set of
preliminary runs was conducted to determine the optimal
SSP value (shown in the columns labeled “SSP”). The
optimal SSP value was determined separately for fully
precise and for logarithmic cases.

4.1 Fully Precise Self Prediction

The results for fully precise self prediction (exact granular-
ity) are shown in the left half of Table 3, for predictors with
and without singletons.

4.1.1 Predictors Including Singletons

All of the benchmarks show some level of coverage, notably
on the synthetic benchmark db. Greater than 50 percent
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Fig. 3. The effect of stack prefix length on predictor size and coverage

for the example benchmark pseudojbb (excluding singletons).

Fig. 4. The effect of stack prefix length on predictor size and coverage

for the Java Olden benchmark perimeter (excluding singletons).

TABLE 1
The Benchmarks and a Short Description

of What They Compute

The first group contains the specjvm98 benchmarks and the second
group contains the specjbb2000 benchmark.



coverage is achieved on compress, mpegaudio, mtrt, pseudojbb,
and jack and more than 20 percent on the remaining two,
jess and javac. The predictor achieved greater than 90 percent
coverage only on db. From our experience with db and a set
of smaller benchmarks not reported here, we believe that
very high coverage numbers are not typical of realistic
applications. These results suggest that fully precise
prediction can achieve reasonable coverage on some, but
not all, applications. As we will see, however, even
moderate coverage may be beneficial (Section 8).

4.1.2 Predictors Excluding Singletons

When singleton entries are removed from the predictors
(Columns 4-5 in Table 3), we expect coverage to drop, but
we would like to know by how much.

Two benchmarks, compress and mpegaudio, have predic-
tors that include large numbers of singletons. The coverage
for each drops roughly by half when singletons are
excluded. For the rest, coverage drops by less than a
percent, while the number of predictor entries shrinks
dramatically: The smallest decrease is a 30 percent drop by
javac, while db is less than 1 percent its previous size. The

average decrease in size is greater than 76 percent. Again, db

could be anomalous because it is synthetic.
Although other studies of lifetimes, such as Harris [11],

based prediction only on current method and type, we

found no benchmarks for which type alone was sufficient to

generate predictors with significant coverage. Benchmarks

jess and mtrt needed at least the method containing the

allocation site (an SSP of length one) to have significant

coverage and the rest needed more. Perhaps type is not

required at all, but it disambiguates allocations in the rare

case that different types are allocated at the same allocation

point. Note that we are using a flow-sensitive notion of the

stack, recording both the method and bytecode offset of

each call.
In summary, the fully precise predictors cover a

significant fraction of all benchmarks. With singletons

excluded, the predictors still have significant coverage

while decreasing the number of entries by an average of

76 percent.
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TABLE 2
Trace Statistics

For each trace, the number of objects allocated (Column 3) and the total size of all allocated objects (Column 4) are given. Column 5 shows the
number of allocation contexts; each site is counted only once, even if executed more than once, and sites that are not executed in these particular
runs are not counted. The top section of the table lists the traces used for the self prediction study (Section 4). The bottom part of the table lists the
training traces used in the true prediction study (Section 5); traces from the top section are reused for testing true prediction.

TABLE 3
Self-Prediction Results

The first two columns of fully precise and logarithmic granularity give results using predictors including singletons using an SSP of length 20, with two
exceptions: jess and javac, for which we used the larger SSP value reported in the fifth column.



4.2 Logarithmic Granularity

As one might expect, the performance of the granulated
predictors, also shown in Table 3, is better than the fully
precise predictors, because it is an easier problem.
Improvement in coverage ranges from db’s less than
1 percent to javac’s greater than 60 percent. The average is
7 percent improvement. The behavior of the granulated
predictors when removing singletons is similar to the fully
precise case. The only dramatic change is in compress, which
behaves like the rest of the benchmarks; mpegaudio remains
the outlier.

Because of their logarithmic bin size, the predictors are
highly precise for the large number of short-lived objects.
Granulated prediction has more immediate application
than the exact case because the training phase could, in
principle, be performed more quickly and without relying
on the Merlin algorithm.5 We concentrate on the exact case,
however, because we expect that information about exact
behaviors will reveal new avenues for optimization.

4.3 Variations

We studied a broader definition of predictor—one in which
the predictor handled lifetimes that varied over each
allocation as an arithmetic progression. For example,
consider a loop that allocates an object of a particular type
to a linked list. When the loop exits, some computation is
performed on the list and it is then collected. Each object in
the loop has a lifetime that is less than its predecessor by a
constant that is the size of the object. To handle this, we
need to predict using differences. More formally, the
predictor entries become four-tuples <SSP, type, lifetime,
increment>. The lifetime is not set during training unless
the increment is found to be zero. It is updated every time
an object is allocated by adding the increment. In our
example, a predictor entry would be created if each object’s
lifetime differed by a constant increment in the order in
which it was allocated. The predictor’s lifetime would be
initialized by the first object allocated during testing.
Subsequent predictions would be made by adding the
increment (which would be negative) to the lifetime. Note
that absolute lifetime predictions cannot be made online
until after the first object matching an entry has died.

Interestingly, this new predictor does not perform well
for any of the benchmarks. We found only one benchmark
for which it performs well, em3d from the Java Olden suite,
in which differential allocations account for 36.39 percent of
all predictions. This is not a good indicator of predictive
strength, however, because almost all of these objects are
singletons. For the other benchmarks, the increase in
predictive ability averaged 1.1 percent.

Another variation is to use the optimizing compiler both
for runtime and the benchmarks (the OptOptSemispace
configuration). We tested this variation and the results are
qualitatively similar to the earlier experiments (data not
shown).

5 TRUE PREDICTION

Barrett and Zorn found that true prediction accuracy is high

for those benchmarks that have high coverage in self

prediction and are not data-driven. We tested true predic-

tion against a subset of the benchmarks to see if this

correlation holds with higher levels of precision. We used

jess, javac, mtrt, jack, and pseudojbb. We used the SSP lengths

specified in Table 3 and included singletons. Although this

was not an exhaustive study, it demonstrated that true

prediction performs well, with results comparable to the

Barrett and Zorn study, even with the more stringent

requirement of full precision.
Results for the five examples are shown in Table 4 . For

both fully precise and logarithmic granularity, all of the

predictors are highly accurate. For three of the benchmarks,

however, the high accuracy comes at the price of coverage.

Coverage is insignificant for jess, javac, and mtrt. The other

benchmark predictors show considerable coverage. The

difference in coverage is probably due to the degree to

which the program is data-driven. For example, the training

run of jess is quite different from its test run. In pseudojbb,

the only difference is the length of the run. Although not

exhaustive, these examples give evidence that highly

precise, true prediction is possible for some applications

and that, when precise prediction is possible, it is highly

accurate.

6 ZERO-LIFETIME OBJECTS

A zero-lifetime object is allocated and then dies before the

next object is allocated. Our ability to study object lifetimes

with full precision allows us to study the behavior of zero-

lifetime objects.
Table 5 shows the fraction of zero-lifetime objects

generated by each benchmark and the fraction of those

that we were able to predict using self prediction.

Interestingly, many of the benchmarks allocate large

numbers of zero-lifetime objects.
All of the SPEC benchmarks generate a large percentage

of zero-lifetime objects, with javac allocating the least at

13 percent. We explore the potential consequences of this

result in Section 8.
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5. This could be accomplished using a generational collector in which
collection for a generation is forced at time multiples of its previous
generation. During training, for example, the second generation would be
collected once for every two collections of the nursery for a logarithmic
granularity with the base the size of the nursery. This allows for pretenuring
type optimizations, but falls short of the “ideal” garbage collector.

TABLE 4
True Prediction

Coverage and accuracy using predictors generated from a benchmark
run using a smaller set of input for both fully precise and logarithmic
granularities against a separate, larger benchmark run. Coverage is the
percentage of objects for which we make predictions, and accuracy is
percentage of those objects for which our predicted lifetime was correct.



7 PREDICTION AND OBJECT TYPES

In order to study how prediction results are affected by an

object’s type, we developed a simple classification of

allocated objects according to their type. We used the

following categories: application types, library types, and

virtual machine types (since the virtual machine we use is

written in Java itself). Library types are those classes

belonging to the java hierarchy. VM classes are easily

identified by their VM prefix. Application classes are all

others.
As Table 6 shows, global coverage (defined as greater

than 90 percent) was usually associated with high coverage

of application types. This makes sense because application

types dominate for most benchmarks. The exceptions, tsp

and db, allocate many library types, which also have high

coverage. A predictor’s coverage depends on its ability to

predict types resulting from application behavior, rather
than the underlying mechanisms of the compiler or VM.

8 EXPLOITING PREDICTABILITY: TOWARD AN IDEAL

COLLECTOR

In the previous sections, we demonstrated that, for some

programs, we can accurately, and with full precision,

predict the lifetimes of a large percentage of objects. In this

section, we discuss a possible application of this technique:
an improved memory management system.

We begin with an analysis of the maximum performance
improvement that could be expected. To do this, we make
best-case assumptions; for example, assuming perfect
accuracy. We finish with an analysis relaxing this assump-
tion, allowing the collector to handle mispredicted lifetimes.
Throughout, we ignore training times. We consider training
to be part of the development or installation procedure
rather than part of normal execution.

8.1 A Limit Study

In Section 1, we discussed the ideal garbage collector. The
core idea behind our simulated allocator is to segment the
heap into a nearly ideal collector for those objects whose
lifetimes are predictable and to use the rest of the heap in
the traditional manner. Our combined memory system is a
hybrid of a standard collector and our nearly ideal collector.
We refer to the combined system as the death-ordered
collector (DOC). The nearly ideal heap is composed of two
subspaces: the Known-Lifetimes Space (KLS) and the Zero-
Lifetimes Space (ZLS). We assume that the heaps are of fixed
size and compare against a semispace collector to simplify
the analysis.

The ZLS is simply a section of memory large enough to
hold the largest object allocated there during a program
execution. No accounting overhead is necessary because
these objects have zero lifetime. They die before the next
allocation, assuring that it is safe to overwrite them. One
might assume that these are stack-allocated.

The KLS is more complicated. It is logically arranged as a
series of buckets. Each bucket is stamped with its time-to-
die and sorted in order of the stamp, from earliest to latest.
It is for that reason we refer to this heap as the death-
ordered collector. Upon allocation into this heap, the time-
to-death is calculated from the predicted lifetime and
current time, a bucket is created for the allocation, inserted
into the list, and then newly allocated memory is returned
to the application. Collections are easier: The collector
simply scans the list, returning buckets to the free-list, until
it finds a bucket with a time-to-die greater than the current
time. The efficiency of the death-ordered-heap is very high
under our current assumptions—only allocation is slower
due to the prediction during allocation.

886 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

TABLE 5
Fully Precise Zero Lifetime Self Prediction

Column 1 lists the benchmark program, Column 2 shows the fraction of
zero-lifetime objects out of all dynamically allocated objects for that
benchmark, Column 3 shows the percentage of zero-lifetime objects
predicted (coverage), and Column 4 shows the prediction accuracy.
SSP lengths are as described in Table 3.

TABLE 6
Self Prediction for Three Categories of Objects According to Object Type

For each of the three categories of types (virtual machine, library, application), the percentage of total allocated objects that fall in the category is
given, together with the percentage of objects in the category that are predicted. The rightmost column is the overall percentage of objects predicted
(corresponding to the first column of Table 3).



Whether the hybrid arrangement is efficient depends on

the sizes of the heaps and the amount of allocation within

each. The sizes of the two heaps depend on their maximum

occupancies, which we can measure. Likewise, we know the

amount of allocation that would occur in each of the heaps.
The performance of this arrangement thus depends on

the allocation characteristics of the application. To study

how this would work in practice, we used self prediction to

simulate a best-case scenario for several benchmarks that

showed a significant (> 50 percent) degree of self

prediction. We set the sizes of the ZLS and KLS to the

maximum values observed during training. Table 7

provides the absolute numbers of bytes allocated to the

three spaces and Fig. 5 shows the relative allocations.
Garbage collector performance can roughly be captured

by two metrics: 1) the overall time overhead and 2) the

distribution of pause times for collections and time spent in

the application between collections. For our DOC system,

the time between full collections is the number of bytes

allocated before the semispace heap requires collection

because the traditional collector dominates ZLS and KLS

maintenance. The time between full collections of the

SS collector is increased by allocation to the ZLS and KLS

heaps, but is reduced due to its smaller size as the total heap

size, the combined size of ZLS, KLS, and SS, remains fixed.

We now quantify the performance of the death-ordered

collector. Assume h is the total heap size, � the fraction of

the total heap devoted to the KLS and ZLS, � the fraction of

bytes allocated into the known and zero lifetimes heaps,

and o the heap occupancy after a GC (the survival rate of

the heap). The time between collections is simply the

number of bytes that are free in a semispace heap after a

collection. This is restated as the number of bytes that can

be allocated before another collection:

TDOC ¼
ð1� �Þðh2 � ho

2 Þ
1� � :

The division by 2 comes from the implementation of the

semispace collector—a collection occurs when it is half full.

The standard case of the single semispace heap occurs when

� and � are 0:

Tss ¼
h

2
� ho

2
:

The ratio of the DOC and the semispace equations is the

factor of improvement over a single heap:

TDOC
Tss

¼ 1� �
1� � :
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TABLE 7
The Bytes Allocated to the Different Heaps and Their Maximum Sizes and with �, �, and Factor of Improvement

Based on a 50MB Heap

Fig. 5. Death-Ordered Collector: The graph shows the fractional object volume of the different heaps in the simulated benchmarks. ZLS is the Zero-

Lifetime Space. SS is the Semispace heap. KLS is the Known-Lifetimes Space.



Therefore, the improvement in time between full collec-

tions is simply dependent on �, which can be calculated

during the simulation, and �, which depends upon the

chosen heap size. Our results for a heap size of 50MB,

Table 7, show improvement for all benchmarks.6

We now consider the total time overhead. In copying

collectors, like semispace, a good first-order metric is the

mark/cons ratio. This is the number of bytes copied by the

collector divided by the total number of bytes allocated.
Table 8 shows bytes copied by the DOC heap divided by

bytes copied by the single heap. We simulate the heap using

sizes of 1.1, 2, and 4 times the minimum size necessary for

the hybrid’s semispace heap.7 Here, too, we show improve-

ment for all benchmarks (smaller is better), especially when

heap sizes are small. Not only could the DOC achieve a

significant reduction in copying cost (40 percent or more),

but it would do so across a wide range of heap sizes and for

programs in which the baseline overhead of collection is

high (mark/cons ratios as high as six, as shown in the “SS”

columns of Table 9).
In summary, the DOC heap would both increase the time

between allocations and decrease the total pause time. If it

could be implemented efficiently, the DOC heap has the

potential to greatly increase garbage collection performance.

8.2 More Realistic Implementations

We relax one assumption of the DOC implementation,

namely, that it never mispredicts. In the previous section,

we showed that DOC is superior to a standard semispace

collector if the overhead is small. Here, we argue that the

overhead of a realistic implementation is similar to that of a

generational collector.
Let us first consider the overhead of allocation. Alloca-

tion is more expensive in the DOC because the allocator

must decide whether to allocate into the standard heap or

the KLS. Placement requires the examination of the SSP,

which, in some cases, is quite long. During execution, the

SSP would be available only as separate values in

individual stack execution frames or perhaps as a separate

display-like structure.

To show how allocators incorporating prediction are
constructed, we provide an example. At the point of an
allocation (a new in Java), our compiler would generate
inline code for our allocation. Consider this point of
execution in the diagram shown in Fig. 6.

The application is at execution point 10 and has three
options for allocation. The top two SSPs lead to predictions,
the third does not. The object is to compare the current SSP,
embodied by the execution stack, with those in the
predictor. It is impractical to consider the entire SSP as a
single entity because each value within the SSP is a full
integer in length. Instead, consider the individual values
which make up the SSP: the method ID and position within
the method, which is equivalent to the return address. Since
the code generated for this allocator will reside within the
method, it need not consider any SSP starting with a value
other than 10. Nor, since all SSPs we need to consider start
with 10, does it need to consider the starting SSP position.
Instead, the allocator simply needs to look at enough values
of its own stack string to uniquely distinguish between the
three SSPs. To accomplish this, the allocator is constructed
as a tree. At the first SSP value, it considers values 1 and 3.
For SSPs beginning 10:3, there is no prediction, so the
compiler generates code for the normal allocation path. For
the two SSPs, the compiler then generates code that
examines the second value, which makes the prediction of
32,056 bytes for 10:1:2 and 2,016 bytes for 10:1:6. The
example is depicted in Fig. 7. Note that these need not be
binary trees. For each position, there are as many edges
leaving the node as there are unique SSP values at that
position. If we assume that each SSP is seen at this
allocation point an equal number of times, then the average
depth of search is 5/3.
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TABLE 8
The Ratio of Bytes Copied in the DOC System to the Bytes

Copied in the Semispace Collector for Heapsizes of 1.1, 2, and
4 Times the Minimum Semispace Heap Size Required by the

DOC System

Smaller numbers are preferable.

6. compress shows little improvement, but it is an outlier in terms of
memory behavior. It tends to allocate large chunks of memory on startup
and only free them on exit.

7. Because the semispace heap reserves half its space at any time, it
actually requires twice this amount of memory.

TABLE 9
The Mark/Cons Ratios for Various Heap Sizes of the DOC and

Semispace Collector

Fig. 6. The three SSPs that need to be considered for an allocation at

execution point 10. Although the SSP length is 6, the allocator needs to

consider at most two positions for linear comparisons and only one for

random access.



The previous example considers an implementation that
assumes that stack examination is similar to walking a list.
If a display-like structure is available, where access to any
value in the SSP is of constant time (random access), the
allocator only needs one node with three values, that for
position 3 (outlined in the diagram) and the average depth
for search falls to 1. Choosing an optimal sequence of
positions when random access is available is, in general, a
hard problem. However, the following heuristic works well:
Choose the position with the largest number of unique
values. This breaks the set down into that number of
subsets. Repeat with this heuristic on each subset until no
ambiguities exist.

Because all of the stack strings are recorded during the
profiling run, the allocator can calculate the average search
depth required, as shown in Table 10 for our set of
benchmarks. The column labeled “linear” shows results
for the algorithm described above that assume that the stack
is similar to a list, where execution frames that are further
away take longer to examine. However, if we assume
constant time random access to the execution frames, we
can eliminate many lookups, as shown in the column
labeled “random.” In each, instead of the full SSP length, for
most benchmarks only one to two comparisons are required
for each allocation. Even for very long SSP lengths, like
those in jess and javac, the average number of lookups is
four or less in the linear case and less than that in the
random access case. Thus, allocation can be made efficient
in the DOC system.

The overhead of collection in the DOC system is similar
to that of a generational collector. Like all generational
collectors, the DOC system requires write barriers and
remembered sets. The heaps are arranged as described in
the previous subsection and shown in Fig. 8. Remembered
sets are required between the two heaps, as any multispace
collector requires. A remembered set is also required for
objects in the KLS pointing to objects with smaller predicted
lifetimes. This feature makes the KLS similar to Barret and
Zorn’s generational collector with a dynamic/threatening
boundary [12]. Like that scheme, DOC can collect a variable
amount of space to “tune” pause times. It is likely that the
remembered sets for objects being collected in the KLS are

small, due to our high accuracy. It is difficult to analyze the
size of the remembered sets between the standard heap and
the KLS without simulation. However, if set size is a
problem, one might unify the two heaps into one looking
very similar to the Barret and Zorn collector described
above, in which our predictions are used as a parameterized
pretenuring scheme, with the object lifetime predictions
used to determine their placement in the list. This would
have overheads very similar to Barret and Zorn’s collector.
The choice of heap arrangement is an empirical question
that involves the relative performance of various parts of
the memory management system.

In the worst case, the DOC’s overhead will be similar to
that of a standard heap because its overhead is similar to that
of a generational collector. When the DOC can use its KLS,
then it will outperform a traditional collector. Implementing
the DOC within Jikes and measuring its performance
experimentally is an area of future investigation.

9 RELATED WORK

There has been little study of Java’s memory behavior
outside the context of GC algorithms. The focus has been on
studying collectors rather than how Java applications use
memory. And, if we restrict ourselves to object lifetime
prediction, there has been only a small amount of work for
any language.

In one of the few studies of Java’s allocation behavior,
Dieckmann and Hölzle studied in detail the memory
behavior of the SPECjvm98 benchmarks using a heap
simulator [13], [10]. They found that more than 50 percent
of the heap was used by nonreferences (primitives) and that
alignment and extra header words expanded heap size
significantly since objects tended to be small. They con-
firmed the weak generational hypothesis for Java, though
not as firmly as in other languages (up to 21 percent of all
objects were still alive after 1 MB of allocation). This is the
most in-depth study of the benchmarks’ allocation and
lifetime behavior, although a study of access behavior was
reported by Shuf et al. [14]. Focusing on garbage collectors,
Fitzgerald and Tarditi [1] demonstrated that memory
allocation behavior differs dramatically over a variety of
Java benchmarks. They pointed out that performance
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Fig. 7. Linear allocator generated for the execution point 10 shown in

Fig. 6. The allocator needs to consider only two positions of the SSP to

uniquely distinguish them.

TABLE 10
The Average Number of Hash Table Queries that Are Required to
Identify an Allocation Context for a Given SSP and Benchmark

The two sets of data shown are for the SSP lengths used in Table 3. For
each set, we calculate the average depth using hash tables constructed
using the SSP with linear access and with random access.



would have improved by at least 15 percent if they had

chosen the appropriate collector for the appropriate bench-

mark. They report that the most important choice is

whether or not to use a generational collector and pay the

associated penalty for the write barrier.
Lifetime prediction has almost always been studied in

the context of pretenuring or similar schemes. These

schemes rely on a training or profiling stage to learn

lifetimes before they can be exploited. Static heuristics have

not been used in published work to this point, although

Jump and Hardekopf found that objects that escape their

thread are usually long-lived [15].
Cheng et al. [16] describe pretenuring in an ML compiler

using a simple algorithm that associates allocation contexts

with lifetime during profiling—sites that produce objects

that survive one minor collection with 80 percent prob-

ability are pretenured.
As discussed earlier, our work has many similarities to

Barrett and Zorn’s “Using Lifetime Predictors to Improve

Memory Allocation Performance” [4], which used a similar

method to construct predictors. However, Barrett and Zorn

used C applications, so lifetimes were explicit. Their

predictor also was binary; it predicted that objects were

either short-lived or long-lived.
Cohn and Singh [17] revisited the results of Barrett and

Zorn using decision trees based on the top n words of the

stack, which includes function arguments, to classify short-

lived and long-lived objects. They improved on Barrett and

Zorn’s results, but at the cost of computational expense

because they used all the stack information. By contrast, our

algorithm uses only the method identifier and bytecode

offset.

Blackburn et al. [3] used coarse-grained prediction with
three categories in Java, using the allocation site and
lifetime as features to construct pretenuring advice for
garbage collectors. They found they were able to reduce
garbage collection times for several types of garbage
collection algorithms.

Shuf et al. [18] decided that segregating objects by type
rather than age, as in generational collection, was more
promising. They found that object types that are allocated
most frequently have short lifetimes. They then used the
type as a prediction of short lifetime, dividing the heap into
“prolific” (or short lifetime) and regular regions.

Seidl and Zorn [19], [20] sought to predict objects
according to four categories: highly referenced, short-lived,
low referenced, and other. Their goal was to improve
virtual memory behavior rather than cache performance as
in [4]. Their prediction scheme was again based on the
stack; they emphasized that, during profiling, it was
important to choose the right depth of the stack predictor:
Too shallow is not predictive enough and too deep results
in overspecialization.

Harris [11] studied pretenuring using only the current
method signature and bytecode offset. He considered using
the SSP, but decided it provided little information unless
recursion is removed. He speculated that using the class
hierarchy might be an easier and less expensive way to
predict lifetimes as related types usually have the same
lifetime characteristics. His conclusion about the usefulness
of SSP may have been a result of his methodology (he
considered a maximum SSP length of 5) and the large
granularity (short and long-lived objects).

Some studies used more information than just the stack
and allocation site. These typically do not do pretenuring,
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Fig. 8. A visual representation of the death-ordered collector. The ovals within the top and bottom rectangles represent objects within the normal
heap and the known lifetime space (KLS), respectively. Objects in the KLS are arranged in order of predicted death. Arrows indicate references from
one object to another. Arrows that overlap the remembered sets rectangle must be considered as roots when a collection occurs (though the sets do
not have to be unified in any particular implementation). The dotted line indicates the current time. A DOC collection begins with a scan of objects at
the left, the ones with the earliest predicted time-of-death, and then moves right, up to the current time. Remembered sets are necessary because
objects not considered for collection, those in the normal heap and those not predicted to be dead, are assumed to be alive and, thus, any objects
pointed to by them must also be considered alive.



which concentrates on where to put an allocation and,
therefore, needs a lifetime prediction at birth. Rather, these
other methods focused on finding an efficient time to collect
and, thus, made relative predictions about deaths.

Cannarozzi et al. [21] used a single-threaded program
model and kept track of the last stack frame that referenced
an object. They observed that, when the last reference is
popped, objects in that frame are likely to be garbage.

For example, Hayes [22], [23], using simulation, exam-
ined which objects were entry or “key” objects into clusters
of objects that die when the keyed object dies. For
automatically choosing what objects are keyed, he sug-
gested random selection, monitoring the stack for when
pointers are popped, creating key objects, and doing
processing during promotion in generational garbage
collection. In effect, the keyed objects are used to sample
the clusters.

Similarly, Hirzel et al. [24] looked at connectivity in the
heap to discover correlations among object lifetimes. They
found that objects accessible from the stack have short
lifetimes, objects accessible from globals are very long-lived,
and objects connected via pointers usually die at about the
same time.

Our own work resembles much of the work described
here in its use of the allocation site and stack for
constructing the predictor and in its reliance on a training
(profiling) phase. Our work extends this earlier work by
increasing the precision of lifetime prediction, specifically
the ability to make fully precise predictions. In addition,
many of the earlier methods do not make specific
predictions; indeed, some do not make predictions at all.

One most obvious application of our method is as a
hinting system, which would identify objects that might be
allocated on the stack instead of the heap. Stack allocation is
cheaper than heap allocation and has no garbage collector
overhead. Currently, the principal method of identifying
such objects is through escape analysis. Determining which
objects escape the stack is, in general, a difficult, costly
analysis.8 Although this can be performed statically, in Java
it occurs at runtime because the class file format has no way
to encode this information. Therefore, it would be helpful to
speed up the analysis by identifying objects that are likely to
not escape the stack.

10 DISCUSSION AND CONCLUSIONS

Most GC algorithms are effective when their assumptions
about lifetimes match the actual behavior of the applica-
tions, but, beyond coarse-grained predictions such as
pretenuring, they do little to “tune” themselves to applica-
tions. The ideal garbage collector would know the lifetime
of every object at its birth. In this paper, we have taken a
step toward this goal by showing that, for some applica-
tions, it is feasible to predict object lifetimes to the byte
(referred to as fully precise prediction). In addition, we
showed how a memory system could exploit this informa-
tion to improve its performance.

It is remarkable that fully precise prediction works at all.
Previous attempts at prediction used a much larger
granularity, in the thousands of bytes. In particular, Barrett
and Zorn used a two-class predictor with a division at the
age of 32KB. It is not surprising that the predictor they
described worked well, given that 75 percent of all objects
lived to less than that age. Cohn and Singh’s decision trees
[17] worked very well at the cost of much greater
computational complexity. Blackburn et al.’s pretenuring
scheme [3] used a coarse granularity. The method described
here is the first to attempt both high precision and efficient
lifetime prediction and it does so using a surprisingly
simple approach. An area of future investigation is to
consider other prediction heuristics and to test them on
fully precise prediction. Because our accuracy is already so
high, the goal here would be to increase coverage.

Our results show that a significant percentage of all objects
live for zero bytes, a result that required the use of exact traces.
Because our predictors are able to cover zero-lifetime
allocation contexts, the zero-lifetime results have clear
applications in code optimization. Zero-lifetime object pre-
diction could be used to guide stack escape analysis so that
some objects are allocated on the stack instead of on the heap.

Object lifetime prediction could also be used as a hinting
system, both for where an allocator should place an object
and when the garbage collector should try to collect it. This
would be a more general procedure than pretenuring and it
would support more sophisticated garbage collection
algorithms, such as multiple-generation collectors and the
Beltway collector [27].
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