
A Relational Algebra for Negative Databases

Fernando Esponda
Yale University

P.O. Box. 208285
New Haven, CT 06520-8285

fesponda@cs.yale.edu

Eric D. Trias
University of New Mexico

MSC01 1130
Albuquerque, NM 87131-0001

trias@cs.unm.edu

Elena S. Ackley
University of New Mexico

MSC01 1130
Albuquerque, NM 87131-0001

elenas@cs.unm.edu

Stephanie Forrest
University of New Mexico

MSC01 1130
Albuquerque, NM 87131-0001

forrest@cs.unm.edu

Abstract

A negative database is a representation of all elements
not contained in a given database. A negative database can
enhance the privacy of sensitive information without resort-
ing to encryption. This can be useful in settings where en-
cryption is too expensive, e.g., some sensor networks, or for
applications where searches or other operations on stored
data are desired. The original negative database frame-
work supported only authentication queries and operations
for modifying data, such as insert and delete. This paper
extends that work by defining a set of relational operators
for negative representations. For each relational operator,
the corresponding negative operator is defined such that the
result of the negative operator applied to a negative rep-
resentation is equivalent to the positive version applied to
the positive representation. Algorithms for each relational
operator are described and compared to its positive coun-
terpart. This work enhances the practicality of negative
databases and expands their range of application.

1. Introduction

Sets are one of the most fundamental mathematical con-
structs and are, consequently, pervasive throughout com-
puter science. In particular, data collections can be viewed
as sets, and operations on sets are translated into opera-
tions on databases—notably the relational algebra [8] treats
databases as sets and defines operators that form the ba-
sis for many database management systems. Although
databases typically store information of immediate rele-

vance to the task at hand, a different approach stores the
complement of the set of interest; that is, instead of storing
the records of interest explicitly, all the records not in the
original database are stored. This alternate representation is
known as a negative database. Algorithms for creating and
storing such sets efficiently are given in [20, 15, 18, 14].

One motivation for a negative database is to restrict how
easily information about the original set can be exploited,
even in the case of insider access or dynamic databases
where records are added and deleted routinely. This
privacy-enhancing aspect of negative databases is achieved
as a result of the relation between some negative data rep-
resentations and Boolean satisfiability formulas [18]. The
operations defined in this paper allow negative databases to
be manipulated without specific knowledge of their con-
tents. For example, in a database containing names and
social-security numbers, an operation can be defined to
compute (negatively) only the subset of DB that has SSN
records from the Southwestern region—the first three digits
of American SSNs show the geographical region where the
number was issued; two negative databases can be joined
by their SSN field to produce a third access list that requires
two passwords; or several access lists can be combined into
one using only information about the lists’ schema.

Applications of negative databases for digital creden-
tials, timestamping, etc., will benefit by the added function-
ality provided in this paper [14]. Negative databases can be
used as proxies for Boolean satisfiability formulas [21], in
which case useful operations can be performed on the solu-
tions for the formulas without having to solve the formulas
first—this could be of particular interest when the formulas
represent constraints to an optimization problem [15].

In addition to the data hiding aspects of negative

databases, there is the potential for exploiting negative
representations to achieve computational efficiencies. As
Section 3 shows, some simple operations using positive
databases become hard (this is the basis for the privacy en-
hancing features), and some difficult operations are simpli-
fied. For example, by using de Morgan’s law, the Negative
Intersection of two databases can be computed using neg-
ative databases by simply concatenating two sets to form
a union (Section 3.6). Section 5 describes how the com-
plexity of relational operations can be harnessed to support
program verification.

In this paper, we provide a stronger foundation for neg-
ative databases by bringing them closer to conventional re-
lational databases. Our objective is to increase their prac-
ticality and widen the spectrum of potential applications.
The original negative database framework supported only
authentication queries and operations to modify data, such
as insert and delete. The paper extends this earlier work by
defining the operations of the relational algebra over nega-
tive representations. For each relational operator, the corre-
sponding negative operator is defined such that the result of
the negative operator applied to a negative representation is
equivalent to the positive version applied to the positive rep-
resentation. Section 3 gives an algorithm for each operation
and its time complexity.

In the remainder of the paper, we first provide some
background on negative databases (Section 2). We then
describe relational operations on negative databases, giving
algorithms and time complexities (Section 3). We then pro-
vide an example scenario (Section 4) and describe our pro-
totype implementation, how we are applying it to several
problems, some limitations and strategies that address them
including empirical results (Section 5), review related work
(Section 6), and finally, conclude the paper with a summary
of the important points (Section 7).

2. Negative Databases

Negative databases were introduced in [20, 15] as a
means to concisely represent all of the binary strings in the
complement of a set—referred to as the positive database,
denoted as DB—under the assumption of a finite universe,
U . The set U of all binary strings of a given length is par-
titioned in two: positive and negative; the particular choice
of partition is a matter of practice, where the positive set
collects the strings that have some direct meaning to the ap-
plication and is usually much smaller than the negative set.

A negative database, NDB, compactly represents the
negative image of a set by introducing a special symbol that
allows a single NDB entry—a ternary string—to denote
many binary strings. This extra symbol is known as the
“don’t-care” or “wild-card” symbol and written as ’*’; its
semantics are the usual: a string with a * at position i rep-

DB (U −DB) NDB
000 001 01*
101 010 11*

011 0*1
100 1*0
110
111

Table 1. A 3-bit example of a positive database
(DB), all the strings not in DB (U - DB), and its
corresponding negative database (NDB) de-
fined over {1,0,*}.

resents both the string with a 0 and a 1 at position i. A
negative database is defined as a set of strings of length n
defined over {0, 1, ∗} that match all and only the strings in
U −DB (see Definition 1 in Section 3), where U is the set
of all possible binary strings of length n and DB is a subset
of U . Thus, a negative database entry with n * symbols rep-
resents 2n binary strings, and it is said to match each one of
them. Table 1 illustrates an example.

Several algorithms for creating negative databases have
been proposed, all of which are able to generate an NDB
in time polynomial in the size of its input DB [20, 15, 14].
The prefix-algorithm, for example, creates an NDB with at
most n|DB| entries in n|DB| time, where |DB| is the num-
ber records, each of length n. The different algorithms pro-
duce NDBs with different properties depending on number
of *’s per string, how difficult it is to recover DB in prac-
tice using well-known SAT solvers, and in terms of their
size [18]. It was shown in [20] that the general problem of
reversing a negative database—recovering the correspond-
ing DB—is NP-hard. As suggested above, however, not
all instances are hard in practice (see [18, 14] for exam-
ples of how to generate hard instances). More interestingly,
easy or hard NDB instances can be constructed depending
on application requirements. Finally, note that a negative
database might arise in situations where DB is unknown
and “negative data” is the only type of data available.

3. Operations

This section defines a series of operations on sets that
correspond to the well-known relational algebra operators
Select, Union, Cartesian Product (along with Join and Inter-
section), Project, and Set Difference. Each operation takes
one or more NDBs as input and produces a new NDB rep-
resenting the strings that are not in the result of applying
a traditional operator (such as Join or Union) to positive
databases. Table 2 gives an example of each relational op-
erator for positive data, and Table 3 gives the corresponding
example for negative data. An algorithm and corresponding
time complexitym Table 4, are also given for each opera-

tion. Correctness proofs for each algorithm are given in the
Appendix.

First, we introduce the following notations and defini-
tion:
• x, y, z: strings.
• x[i, ..., j]: string x projected onto positions i, ..., j.
• Un: the universe of all possible binary strings of length n.
• Ωn: ordered list of all n positions for strings of length n.
• Υ1 and Υ2: ordered lists of string positions for strings of
length n and m, respectively.
• DB1 and DB2: subsets of Un and Um respectively,
referred to as positive databases.
• NDB1 and NDB2: negative databases representing
Un −DB1 and Um −DB2.
• σΥ=v(DB): select operation over a positive database
conditioned on v.

Definition 1. Match xMy: Two strings, x and y, match
iff ∀i((x[i] = y[i]) ∨ (x[i] = ∗) ∨ (y[i] = ∗))

In each case, we first define what a given operation
means in terms of the positive and negative sets, i.e.,
in terms of DB and U − DB, respectively. Next, we
give a possible semantics using the corresponding negative
databases and provide an algorithm that implements the op-
eration and prove its correctness. Lastly, we provide a dis-
cussion on the particulars of each operation and its role in
an application. We note that the algorithms presented here
were chosen for simplicity of exposition rather than for their
efficiency.

3.1. Negative Select

The Select operation over a positive database restricts the
relation according to some criterion in the form of a pred-
icate. We consider the basic binary operators, θ = {<,≤
,=,≥, >}. Select is defined in terms of a relation between
two attributes (here understood as the values at some string
positions), or an attribute and a constant v. We limit our
description to the latter case, leaving the former for future
work. Thus, the Select operation operation applied to DB
is defined as:

σΥθv(DB) = {x : x ∈ DB} ∩ {x : x[Υ] θ v}

where Υ is an ordered list of string positions. The comple-
ment of this set is written as:

U − σΥθv(DB) = {x : x 6∈ DB} ∪ {x : x[Υ] θ v}

where θ stands for the opposite relation of θ, i.e., < stands
for ≥, = stands for 6=, etc. In the following, we describe
how to implement U−σΥθv(DB) using negative databases.

Let NDB1 = U − DB, and let NDB2 contain all the
strings in U that do not satisfy the criterion, i.e., {x : x ∈
U ∧ x[Υ] θ v}. Negative Select is defined as:

σΥθv(NDB) = {x : x ∈ NDB1}∩{x : x ∈ NDB2}

The above formula shows that Negative Select can be
viewed as the Negative Intersection (Section 3.6) of two
databases, and therefore their general algorithms are the
same:

1. Initialize NDB3 to NDB1.

2. For every string y ∈ NDB2, append y to NDB3,

where NDB3 holds the result of the operation. NDB2 is
constructed differently for each of the operators in θ and is
discussed in detail below.

3.1.1 Negative-Equality (=) Select

To implement Negative-Equality, it is sufficient to create
a negative database that matches every binary string x for
which x[Υ] 6= v. Theorem 1 in the Appendix proves the
correctness of this algorithm:

1. Initialize NDB2 to the empty set.

2. For each i in Υ:

(a) Create a string x with the position indicated by
the ith entry of Υ set to the complement of the
ith bit in v (for clarity we assume that v has |Υ|
bits) and the rest of the positions set to *.

(b) Append x to NDB2.

3.1.2 Negative-Less-than (<) and Negative-Less-than-
Equal (≤) Select

The following algorithm implements the Negative-Less-
than operation. It creates a negative database that matches
every binary string x for which x[Υ] ≥ v.

1. Initialize NDB2 to the empty set.

2. For each bit i in v that is set to 0:

(a) Create a string x of length n with the correspond-
ing position set to 1, all positions to the left of it
(more significant positions) set to 1 where v is 1,
and all other positions set to *.

(b) Append x to NDB2.

3. Create a string y of length n for which the positions in-
dicated by Υ have the same value as the corresponding
positions in v, and all remaining positions are set to *.

4. Append y to NDB2.

The proof for this algorithm is established by Theorem 2
in the Appendix. The algorithm to implement the Negative-
Less-than-Equal operation can be derived from the algo-
rithm presented above by disregarding step 3. Due to this
similarity we forgo its formulation and proof.

3.1.3 Negative-Greater-than (>) and Negative-
Greater-than-Equal (≥) Select

The algorithms for these operations are analogous to their <
and ≤ counterparts. Below we present the algorithms with
the necessary adjustments, although we forgo the proof.
The following algorithm creates a database that matches ev-
ery binary string x such that x ≤ v:

The algorithms presented below make the necessary ad-
justments; their proofs, however, are obviated.

1. Initialize NDB2 to the empty set.

2. For each bit i in v set to 1:

(a) Create a string x of length n with the correspond-
ing position set to 0, all positions to the left of it
set to 0 where v is 0, and all other positions set to
*.

(b) Append x to NDB2.

3. Create a string y of length n for which the positions in-
dicated by Υ have the same value as the corresponding
positions in v, and the remaining positions are set to *.

4. Append y to NDB2.

The algorithm to implement the Negative-Less-than-
Equal operation can be derived from the algorithm pre-
sented above by disregarding step 3. Due to this similarity
we forgo its formulation and proof.

If we assume that a string can be created in time pro-
portional to its length n and that it takes constant time
to copy a string, then the Negative Select operation takes
O(n2 + |NDB|) time. The |NDB| factor is due to the
copying of the negative databases to create a separate output
database. If the selection criteria, represented by NDB2, is
simply appended to NDB1, the running time of the opera-
tion is reduced to O(n2).

To summarize, restricting the contents of a positive
database is accomplished by adding elements to its negative
image. The selection predicate can be viewed as a negative
database itself, capable of being swapped in and out without
interfering with how the database is queried.

For instance, suppose NDB represents a list of exist-
ing customers and their credit card number (CCN) (<name,
CCN> tuples). Using NDB prevents sales clerk or order
takers from browsing the database to obtain CCNs. If the
purchaser is a member of NDB, he should be offered a
promotion at checkout (the company has found that offer-
ing promotions to first-time customers encourages them to
come back). Management may at some point choose to ad-
ditionally offer promotions to current customers that hold
a Visa credit card. This can easily be accomplished, us-
ing the operations described above, by restricting NDB to

only those records that do not exhibit a Visa credit card,
i.e., by appending to NDB records that match every possi-
ble <name, CCN> pair for Visa credit card numbers. The
prefix of a credit card’s number, known as the Bank Identi-
fication Number, identifies the credit card network; in this
example, a single entry with all positions set to *, except the
ones corresponding to the CCN’s prefix (set to 4, Visa’s pre-
fix) will match all the desired strings. The way in which the
promotional database is used does not change—if a <name,
CCN> pair is in it, then a promotion is offered. When the
promotion for Visa card holders expires, the records can be
easily identified and removed.

3.2. Negative Union

We now turn to an operation that is trivially implemented
using positive databases, but that requires more care when
negative databases are used. For the purpose of this section,
we assume that the length of strings in both databases is the
same, i.e, n = m, and define a new operation over ternary
strings:

Definition 2. Coalesce x � y: Two strings x and y of
length n coalesce into string z iff x matches y and for all
1 ≤ i ≤ n:

z[i] =
{

x[i], if (x[i] = y[i]) ∨ (y[i] = ∗)
y[i], if x[i] = ∗

The union of two databases can be expressed as:

DB1 ∪DB2 = {x : x ∈ DB1 ∨ x ∈ DB2}

And, the complement is written as:

U −DB1 ∪DB2 = {x : x 6∈ DB1 ∧ x 6∈ DB2}

Then, the Negative Union, ∪, is defined as:

NDB1∪NDB2 = {z : z = x� y, xMy,

(x ∈ NDB1 ∧ y ∈ NDB2)}

The following algorithm produces a new negative
database, NDB3, that realizes NDB1∪NDB2. See Table
3 for an example.

1. Initialize NDB3 to the empty set.

2. For every x ∈ NDB1:

(a) For every y ∈ NDB2 such that x matches y:

i. Create a string z = x � y: Let Υ and Υ′ be
the string positions of x and y respectively
that have either a 0 or a 1. Set z[Υ] = x[Υ],
z[Υ′] = y[Υ′], and, for all j ∈ {Ω−Υ∪Υ′},
z[j] = ∗.

ii. Append z to NDB3.

Theorem 3 in the Appendix proves the algorithm’s cor-
rectness. This operation, is useful in situations where are at
least one of the negative databases is hard-to-reverse. Union
provides a means to combine negative databases without
having to reverse them first, a privacy-enhancing feature.

3.3. Cartesian Product, Join and Intersection

A complete relational algebra as defined in [8] requires
only the Cartesian Product; however, we include the Join
and Intersection because they are closely related and their
implementation, using negative databases, exhibits some in-
teresting subtleties.

Let the generic symbol op denote one of the following
three operators:

1. × : Cartesian Product, when Υ2 = Υ1 = ∅

2. 1 : Join, when |Υ1| = |Υ2|, 0 < |Υ1| < |Ωm|

3. ∩ : Intersection, when |Υ1| = |Υ2| = |Ωm|

The universe over which each operation is defined is re-
stricted by the contents of Υ1 and Υ2, and by the properties
a string has with respect to these positions:

Un+m−|Υ2| = {xy : x[Υ1] = z[Υ2], y = z[Ωm −Υ2],
(x ∈ Un ∧ z ∈ Um)} (1)

The Cartesian product, Join and Intersection of two sets is
written as:

DB1 op DB2 = {xy : xy ∈ Un+m−|Υ2|,

y = z[Ωm −Υ2],
(x ∈ DB1 ∧ z ∈ DB2)}

The complement of these operations, referred to as the Neg-
ative Cartesian product, Join and Intersection, is:

Un+m−|Υ2| −DB1 op DB2 = {xy : xy ∈ Un+m−|Υ2|,

y = z[Ωm −Υ2],
(x 6∈ DB1 ∨ z 6∈ DB2)}

We now discuss how to implement the negative Cartesian
product, Join and Intersection, denoted ×,1 and ∩ respec-
tively.

The sets Un, Um, DB1 and DB2 are defined over the
binary alphabet {0, 1}. A negative databases NDB1, on
the other hand, is defined over {0, 1, ∗}, where the * is the
don’t care or wild card symbol, and represents the strings
in Un − DB1 in a compact form—a string x with a * in
position Xi stands in for strings x′ and x′′, which are the
same as x, except that X ′

i is set to 0 and X ′′
i set to 1; in this

way, a string with k * symbols represents 2k binary strings.

3.4. Negative Cartesian Product

The Negative Cartesian product is defined using regular
expressions as:

NDB1×NDB2 = {x∗m : x ∈ NDB1}
∪ {∗ny : y ∈ NDB2}

This set can be constructed as follows:

1. Initialize NDB3 to the empty set.

2. For every string x ∈ NDB1,
Construct a string z that has as prefix x and as suffix
m* symbols. Append z to NDB3.

3. For every string y ∈ NDB2,
Construct a string z that has as prefix n * symbols and
as suffix y. Append z to NDB3.

An example is shown in Table 2 and Table 3, see Theorem
4 in the appendix for a proof of correctness. This operation
appends * symbols to each record in both negative database,
as suffix to NDB1 and as prefix to NDB2. A new negative
database is created by doing a positive union of the two.

3.5. Negative Join

The negative join of DB1 and DB2, using NDB1 and
NDB2, is constructed by creating the appropriate mapping
of the string positions specified in the join condition Υ1 and
Υ2 (see Table 2 and 3 for an example).

NDB11̄NDB2 = {x∗m−|Υ2| : x ∈ NDB1}
∪{wz : w[Υ1] = y[Υ2],

w[Ωn −Υ1] = ∗|Ωn−Υ1|,

z = y[Ωm −Υ2], y ∈ NDB2} (2)

1. Initialize NDB3 to the empty set.

2. For each string x ∈ NDB1,
Create a string z with x as its prefix and m− |Υ2|* as
its suffix. Append z to NDB3.

3. For every string y ∈ NDB2:

(a) Create a string w = ∗n and map onto it the values
of the join positions of y: for all i, set the value of
w at the string position indicated as the ith entry
of Υ1, to the value at the string position indicated
in the ith entry of Υ2 of y.

(b) Create a string z of length m− |Υ2| by mapping
onto it all the non-join positions of y: for all i, set
the value of the ith position of z to the value of
the position indicated in the ith entry of Ωm−Υ2.

(c) Concatenate w with z and append to NDB3.

The strings in 2 either have their prefix in U −DB1 suf-
fixed with every possible y = z[Ωm−Υ2], z ∈ Um (see step
1), or have as suffix y = z[Ωm − Υ2] (step 2(a)) prefixed
with every possible string x = [Υ1] = z[Υ2], z ∈ U−DB2

(step 2(b)).
See Theorem 5 in the appendix for a proof of correctness

of this algorithm. The Negative Join operation is similar to
the Negative Cartesian Product, except that the join condi-
tion shrinks each record length accordingly.

3.6. Negative Intersection

The Negative Intersection is defined as:

NDB1∩NDB2 = {x : x ∈ NDB1} ∪ {y : y ∈ NDB2},

which can be constructed using the following algorithm:

1. Initialize NDB3 to NDB1.

2. For every string y ∈ NDB2, append y to NDB3.

See Theorem 5 in the Appendix for a proof of correct-
ness of this algorithm. An example is shown in Table 2 and
3. Negative Intersection is the simplest of all operators, be-
cause it uses de Morgan’s Law and computes the union of
the two negative databases by appending them.

3.7. Negative Project

The Project operator is a unary operation on a database
that returns a subset of the attributes of a relation (here un-
derstood as the values at some string positions) as specified
and in the order requested. If one views the Select oper-
ator as taking a horizontal slice of a relation, then Project
takes a vertical slice. In the positive DB representation,
Project outputs the value of all attributes within this verti-
cal slice. However, in the negative database representation,
Project is not simply the same vertical slice, but it is the set
of attributes not represented in the positive vertical slice—
an attribute is in the negative projection if and only if all
possible strings of length n with that particular attribute are
absent from DB. If we define positive Project as:

πΥ(DB) = {x : ∃z∈U|Ω−Υ|∃y∈DB(x = y[Υ]
∧y[Ω−Υ] = z)}

Then, its complement is:

U|Υ| − πΥ(DB) = {x : ∀z∈U|Ω−Υ|∃y/∈DB (x = y[Υ]
∧ y[Ω−Υ] = z)}

Using a negative database that represents the comple-
ment of DB, we write the Negative Project as:

πΥ(NDB) = {x : ∀w:xMw ∀z∈U|Ω−Υ|∃y∈NDB(y[Υ]Mw

∧ y[Ω−Υ] Mz)}

Unlike the previous operations, there is no polynomial
time algorithm that takes as input any NDB and outputs an
NDB′ that represents the Negative Project of NDB unless
P = NP , see Theorem 7 in the Appendix for the proof.
For a special case, a heuristic algorithm, Negative Reduce,
has been implemented, see Section 5.

Intuitively, Negative Project is hard because a negative
database contains all possible combinations of attribute val-
ues, except those that appear in DB. The only way an
attribute value is not in NDB is if it appears with every
other possible value of the remaining attributes in the posi-
tive database. This is, NDB has (in general) every possible
value for each attribute and we wish to include, as a result
of the Negative Project, only the attribute values that are not
in any DB record.

Even though Negative Project is not an efficient oper-
ation in general, it can be implemented for some special
cases. The Negative Project of a negative database onto at-
tribute Υ can be defined with respect to a fixed value v of
the remaining attributes Ω−Υ—the negative version of se-
lecting all records from DB that have v in Ω−Υ and then
projecting onto Υ. This is accomplished by joining (us-
ing the positive equijoin) NDB with a table that has as its
single entry v, and then removing all string positions but
Υ (projecting onto Υ). The first part of the operation pre-
serves all and only the NDB entries that match strings in
U−DB that have v; the second part reduces the universe of
discourse over which strings are defined to all strings with
v. An example of this special case is presented in Section
3.1.3.

3.8. Negative Set Difference

The Set Difference operator is a binary operation on two
databases, DB1, DB2, having the same record length and
same order of attributes. The result is the subset of records
that are in the first database, DB1, but not in the second,
DB2.

DB1 −DB2 = {x|(x ∈ DB1) ∧ (x /∈ DB2)}

The complement:

Un − (DB1 −DB2) = {x|(x /∈ DB1) ∨ (x ∈ DB2)}

Then, Negative Set Difference can be written as:

NDB1−NDB2 = {x|(x ∈ NDB1) ∨
(∀y∈Un

¬∃z∈NDB2(zMy ∧ xMy))} (3)

Similar to Negative Project, there is no polynomial time
algorithm that, given as input NDB1 and NDB2, outputs

DB1 DB2 σΥ=101(DB1) × 1 ∩ ∪ πΥ=1,2(DB2) DB1 −DB2

001 001 101 001001 0010 001 001 00 101
101 010 001010 1010 010 01

101001 101
101010

Table 2. Two positive databases with 3-bit strings, and the result of applying the indicated opera-
tions (select, Cartesian product, join, intersection, union, project, and set difference). Note the join
condition for 1 is Υ1 = {2, 3}, Υ2 = {1, 2}.

NDB1 NDB2 σΥ=101(NDB1) × 1 ∩ ∪ πΥ=1,2(NDB2) NDB1−NDB2

01* 000 01* 01**** 01** 01* 011 10 01*
*00 011 *00 *00*** *00* *00 000 11 *00
11* 10* 11* 11**** 11** 11* 100 11*

11* 0** ***000 *000 000 11* 001
1 ***011 *011 011

***10* *10* 10*
***11* *11* 11*

Table 3. The results of relational operators on negative databases, NDB1 and NDB2. Corresponding
results complement those from Table 2. Note: the * symbol stands for both 0 and 1 and the join
condition for 1 is Υ1 = {2, 3}, Υ2 = {1, 2}.

a negative database that represents the Negative Set Differ-
ence of NDB1 and NDB2. Details are shown in Theorem
8 in the Appendix.

As shown above, creating a negative database that repre-
sents the Negative Set Difference of two negative databases
cannot be realized efficiently in general. However, deter-
mining whether a particular string belongs or not to this set
can be done with ease. A string x is in the Negative Set
Difference if and only if there is a string in NDB1 that
matches it or if there is no string in NDB1∩NDB2 that
matches it (see equation 3):

x 6∈ DB1 −DB2 ⇐⇒
∃y∈NDB1(yMx) ∨ ¬∃z∈NDB2(zMx)

Conversely, x ∈ DB1 −DB2 ⇐⇒
¬∃y∈NDB1(yMx) ∧ ∃z∈NDB2(zMx)

Applications that hold both negative databases can readily
determine the membership of any given string.

The algorithms presented here were chosen for simplic-
ity of exposition rather than for optimality; however, they
suffice to illustrate the difference in complexities between a
positive and a negative scheme. Table 4 gives the asymp-
totic time complexity for each operation under both posi-
tive and negative representation schemes. It assumes that a
string can be created in time proportional to its length n and
that it takes constant time to copy a string.

4. Example Scenario

Consider a law enforcement agency (LEA) investigat-
ing a money laundering scheme. It wishes to know which
clients of data providers, Bank-1 and Bank-2, have carried
out certain transactions for more than $10,000 and have also
had relations with the currency exchange company (CEX),
all during the month of June 2007. The banks and CEX
are willing to provide information, but are concerned about
the privacy of their clients; they are reluctant to hand over
their entire client databases and would like to provide only
the data needed for the investigation. Additionally, it is de-
sired that the parties not communicate with one another and
remain ignorant of participating in the same investigation.

Both providers can generate a table containing the client
names and the transaction type for those individuals that
have had operations for more than $10,000 during the
month of March 2007: Bank-1 and Bank-2’s tables contain
tuples of the type <name, trans-1> and <name, trans-2>
respectively. They each generate a hard-to-reverse negative
database for their table: NDB1 and NDB2, and make that
available to the LEA. For simplicity we assume that all the
fields in all the databases follow some standard schema.
The LEA wants to discover the names of the clients that
withdrew more than $10,000 from Bank-1, deposited more
than $10,000 in Bank-2, and also conducted business with
CEX—CEX’s table has tuples of the type <name>. The
following SQL expression describes the desired operation:

SELECT Bank-1.name

Operation Select 1 and × ∩ ∪
Positive DB O(n|DB|) O((m + n)(|DB1||DB2|)) O(n|DB1||DB2|) O(n(|DB1| + |DB2|))
Negative DB O(n2 + n|NDB|) O((m + n)(|NDB1| + |NDB2|)) O(n(|NDB1| + |NDB2|)) O(n|NDB1||NDB2|)

Table 4. Comparison of relational operators’ asymptotic complexity. Both Negative Project and
Negative Set Difference are NP-Hard.

FROM Bank-1, Bank-2
WHERE Bank-1.name=Bank-2.name and

trans-1 = ’Withdrawal’ and trans-2=’Deposit’
INTERSECT

SELECT name
FROM CEX

This query can be accomplished using the corresponding
negative databases as follows:

1. Compute the Negative Join by <name> of NDB1 and
NDB2, i.e., NDB11NDB2.1 This results in NDB3

= <name, trans-1, trans-2>.

2. Generate a table, DBWD of the tuples <trans-1, trans-
2> with the single record {(Withdrawal, Deposit)}.
This results in DBWD = <trans-1, trans-2>.

3. Create the Natural Join of NDB3 and DBWD by
<trans-1, trans-2>. This yields a negative database,
NDBNJ , of the tuples <name, trans-1, trans-2>. All
entries have the trans-1 and trans-2 fields explicitly set
to “Withdrawal” and “Deposit” respectively, no * sym-
bols appear a these positions.

4. Project NDBNJ based on name by removing from
NDBNJ the fields trans-1 and trans-2. Notice that by
joining NDB3 and DBWD we have fixed the transac-
tion fields to specific values and thus effectively nar-
rowed the universe of discourse to names (character
combinations) with those particular transactions (see
Section 5 for details on this operation). Send the
resulting negative database, NDBP , to CEX. Note
that the reverse of NDBNJ will contain the names
of clients that withdrew money from Bank-1 and de-
posited money in Bank-2—all information about other
transactions has been eliminated. The law enforcement
agency can therefore safely eliminate this two fields
and send the resulting NDB to CEX.

5. Upon receipt, CEX computes the intersection of its
client name list and NDBP by determining which of
the names in its database (positive) is not in NDBP .
It returns the result to the LEA. Notice that CEX does
not know what the resulting names refer to; the prove-
nance NDBP ’s contents is unknown and the partic-

1Υ1 and Υ2 contain the string positions corresponding to the “name”
field of both databases.

ular manipulations by the law enforcement agency—
restricting transactions to deposits and withdrawals—
have been erased.

The list of names received by the law enforcement
agency represents the names of people that have with-
drawn more than $10,000 from Bank-1, deposited more
than $10,000 in Bank-2 and that have also transacted with
CEX. The privacy of all other clients has been safeguarded
and no direct communication was necessary between the
entities being investigated.

It is worth mentioning that these databases are vulnerable
to dictionary attacks because the space of possible names
(and transactions) is relatively small. By using a longer
identifier (other than name, credit card numbers), such an
attack can be rendered intractable.

The operations illustrated in this section can be useful
in other scenarios as well, without requiring the hard nega-
tive databases. For instance, the intersection of two positive
databases can be accomplished by computing the Negative
Intersection of their corresponding NDBs. The algorithm
simply appends one negative database to the other. If the
NDBs are easy-to-reverse and the application requires that
the original sets not be revealed, then the algorithm will
be inadequate—the negative databases could be easily sep-
arated (although the adversary must still guess where one
ends and the other begins) and then consulted or reversed.
In this case, the Negative Intersection could be created by
randomly mixing the entries of both databases, the require-
ment being that no information links a particular item to
a specific database. As described in the next section, the
Morph operation [17] could also be used to mix the database
records and de-identify strings.

5. Implementation

A prototype implementation of each of the relational op-
erator algorithms specified in Section 3, has been developed
and tested in an academic environment.

Test data shows that the space complexity of building
large negative databases and applying the negative rela-
tional operators, is expensive. We are investigating strate-
gies to ameliorate the problem, including distributed neg-
ative databases, and the Clean-Up operation introduced in
[17]. Here, we introduce some of the motativing applica-
tions for each strategy.

One of our motivating applications for a distributed ap-
proach occurs in sensor networks. Next-generation sensor
networks will likely involve active human participants that
consume and divulge data to sensor networks. In such appli-
cations, privacy and confidentiality guarantees will be nec-
essary as well. However, mechanisms and algorithms for
privacy protection in sensor networks have been lacking.
To address these concerns, we developed and evaluated a
set of protocols that enable anonymous data collection in a
sensor network [24]. Sensor nodes, instead of transmitting
their actual data to a base station, transmit a data value that
was not collected. The base station then uses these negative
samples to reconstruct a histogram of the actual data. These
protocols are collectively referred to as a negative survey
[16]. This approach could be extended so that each sensor
contains a partial negative database, and the base station is-
sues queries to retrieve information. For this to succeed, the
relational operations defined in this paper are essential.

A motivating application for the second strategy uses
negative databases when the positive dataset approaches the
powerset of bit combinations. In this case, it is more ef-
ficient to obtain an answer by working with the comple-
ment of the problem we intend to solve, and then comple-
menting the solution. For example, this situation arises in
some program verification problems [22]. Unlike the sen-
sor network example, this class of problem is concerned less
with privacy than with the compact representation of data.
This insight opens up the possibility of using easy negative
databases to answer questions that might otherwise be in-
tractable.

Figure 1. Average NDB size after single bit
Negative Reduce on 24- and 12-Bit length
records, with and without Clean-Up.

Using an example taken from the program verification
problem, we show how the the Clean-Up algorithm helps
control the size of the negative representation. Here, two

relational operations, a modified Negative Equality Select
and the Negative Union, are used to provide a practical neg-
ative projection. This restricted form of negative projection,
known as Negative Reduce, iteratively decrements the verti-
cal size of NDB. Instead of projecting the bits-of-concern
onto the negative database as if it were a positive repre-
sentation, Negative Reduce selects the negative records for
all the other bits, individually, once with the value of one,
and again with a value of zero. These two partial nega-
tive databases, which no longer contain the original selected
column, are then combined using Negative Union followed
by a constant number of Clean-Up/Morph operations. The
reduction is repeated until all of the unprojected bits have
been processed. We compare the average resulting NDB
size, with and without Clean-Up, at each iteration, elimi-
nating the rightmost bit position until a single bit remains.

Based on 30 random databases each representing five 12-
bit and 24-bit positive strings, the graph in Figure 1 shows
nearly two orders of magnitude difference in the size of the
negative database at the peak, occurring after the second bit
reduction for the shorter length record. Their sizes converge
as the number of solutions they represent diminishes. In the
case of the longer record length, the simple (non-cleanup)
approach fails due to memory constraints after the first or
second bit reduction, while the projection with Clean-Up
completes the test. Figure 2 shows the average NDB size,
alternating between the Negative Reduce and Clean-Up op-
erations, differs as much as three orders of magnitude.

Figure 2. Average NDB size before and after
Clean-Up in 24-Bit reduction test.
We suspect that the significant size difference is due to

the use of append in the union step instead of the Insert
procedure, as discussed in [17], which modifies the entries
being inserted into the NDB. Further tests show that Insert,
while more cpu-intensive than simply appending records to
the negative database, can maintain a more gentle growth

in its size, within an order of magnitude of the size with
Clean-Up on a 24-bit length record. These Clean-Up results
closely fit the curves in figures 1 and 2.

Other applications might require the Select operation to
be irreversible and/or for the restriction criteria itself to re-
main private. Again, we cite the Clean-Up operation and the
Insert procedure as means toward these objectives. Ensur-
ing the privacy of the selection criteria can also be achieved
by making the strings that comprise it into hard-to-reverse
negative databases; some approaches to this, including a
distributed architecture for singleton negative databases, are
discussed in [19, 14].

By mitigating the impact of the relational operations on
the NDB size with Clean-Up and distributed approaches,
we are better able to apply the relational algebra operations
to manipulate the complemented data within its negative
representation without specific knowledge of its contents,
thus enhancing the usability of negative databases. The
prototype software is available for download at our website
http://cs.unm.edu/˜forrest/negdb.html.

6. Related Work

Negative databases and relational algebra are the two
major sources from which this paper draws. Negative
databases are investigated in [20, 15], where it is shown that
they can be created efficiently, where a relation with SAT
formulas is demonstrated, and its data hiding potential elu-
cidated. The work in [14] investigates several applications
and algorithms that share the same security assumptions
and that are of immediate relevance to negative databases.
Evidence regarding the construction of negative databases
that can enhance privacy, in practice, in the absence of
other cryptographic guarantees is provided in [18]. Refer-
ence [17] presents a series operations that permit a negative
database to be updated, i.e, that allows on-line changes to
the contents of DB using only NDB. Relational algebra,
on the other hand, is a well-developed research area [8].
Here, we rely only on the operations described in the origi-
nal references, although further references on the relational
algebra include [9, 12, 13, 11].

Other approaches to creating compact representations of
binary sets include [27, 34, 29]; also OBDDs (Ordered Bi-
nary Decision Diagrams) [6, 7] create a compact represen-
tation of binary functions—although there are functions for
which the representation size is always exponential—and its
many derivatives, such as BMD (Binary Moment Diagrams)
[5] and ZBDD (Zero Suppressed Binary Decision Diagram)
[31]. Among the differences between these approaches is
the need of negative databases to always obtain a compact
depiction of the complement of a set without explicitly cal-
culating it, and the ease with which some operations can
be performed, e.g., comparing the equivalence of two func-

tions is easy using OBDDs and potentially intractable with
negative databases.

Related to this last point is the possibility of using nega-
tive databases to enhance privacy in the absence of full cryp-
tography. Other security proposals based on NP-complete
problems have been suggested, most notably the Merkle-
Hellman cryptosystem [30] based on the general knapsack
problem, but most of these schemes have been broken [33].
If a credible level of protection can be achieved using neg-
ative databases—and there are ample efforts for creating
hard-to-solve SAT instances, e.g., [32, 10, 35, 1, 28, 26]—
then, the flexibility of the algebra described in this paper
could offset the lack of full cryptographic protection. This
could be useful for applications in which limited access to
the protected data is required, e.g., for limited searches.
Identifying such applications and deepening our under-
standing of the tradeoff between privacy protection and flex-
ible data access is an area of future investigation.

Our work can also be used to share information across
private databases, similar to [2], but without using encryp-
tion. Currently, we can efficiently perform membership
queries and certain operations (see Table 4) in arbitrarily
hard negative database. These can be used to query for
keywords in encrypted databases, similar to [36, 3]. It
has been shown by [23] that one can perform SQL queries
over encrypted databases under a client-server model; more
specifically, where the client stores encrypted data at an un-
trusted server. Since the client owns the data and designed
the encryption and exchange protocols, the client is fully
aware of how to query its database and decrypt the results.
Our model also provides protection from untrusted database
servers. Furthermore, it enables any authorized user, even
those that did not design the exchange protocols to perform
queries against a negative database without having to know
decryption keys or mapping functions.

Other avenues for the application of the present work,
stemming from the isomorphism NDBs have with logical
formulas, include investigating SAT formulas themselves
and strengthening the usefulness of SAT theory as it relates
to other fields, such as constraint programming [25, 37, 4].

7. Summary and Conclusions

The paper describes a closed set of operations that,
when applied to negative databases results in an equiva-
lent negative representation as if it was applied to the pos-
itive database. We described how the operations of Select,
Union, Cartesian Product, Join, Intersection, Project, and
Set Difference can be implemented for negative databases;
we presented algorithms for the first five operations and
proved that no general efficient algorithm exists for the lat-
ter two but that implementations are feasible for special in-
teresting cases.

Negative databases have been proposed as primitives
for privacy-enhancing applications since some negative
database constructions naturally limit the type of inferences
that can be drawn from a data set. The operations discussed
here increase the versatility of negative databases by allow-
ing the protected data set to be manipulated in meaningful
ways without diminishing its security. An agent can com-
bine two negative databases, restrict the contents of its pos-
itive image, and project onto a specific field without any
knowledge of positive entries represented.

Further, the use of negative databases for non-secure ap-
plications is strengthened by having an relational algebra
defined over them. In particular, we explored an application
that needs to dynamically identify items that are not in its
positive database and occasionally modify its contents. An
operation such as Negative Select does not require access
to the negative database other than for appending entries.
Negative Select establishes conditions that the positive data
must meet but requires no knowledge of the actual data, sep-
arating the ability to select a subset of the data from the need
to own it.

Negative databases will also be useful in situations where
no positive data are available or as a proxies for Boolean
formulas, in which case the procedures presented here map
to manipulations of the formulas themselves, and, more im-
portantly, to implicit manipulations of their solutions—of
potential interest given that many problems can be stated in
terms of logical formulas.

There are several interesting avenues for future work.
They include the design of suitable data structures for neg-
ative databases; the optimization of current algorithms and
their software implementation; and extending the suite of
operations beyond those presented here.

There are several interesting avenues for future work.
They include the design of schemata and other data struc-
tures for relational negative databases; the optimization of
the current relational algebra algorithms and their software
implementation; and extending the suite of operations be-
yond those presented here.

References

[1] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Gener-
ating satisfiable problem instances. In Proceedings of AAAI-
00 and IAAI-00, pages 256–261, Menlo Park, CA, July 30–
3 2000. AAAI Press.

[2] R. Agrawal, A.Evfimiesvski, and R. Srikant. Information
sharing across private databases. In Proceedings of ACM
SIGMOD, 2003.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In Proceedings
of Eurocrypt, 2004.

[4] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satis-
fiability and constraint programming: A comparative survey.
Technical report, Microsoft Research (MSR), 2005.

[5] R. Bryant and Y.-A. Chen. Verification or Arithmetic Func-
tions with Binary Moment Diagrams. Technical Report
CMU-CS-94-160, Carnegie Mellon University, Pittsburgh,
1994.

[6] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35:677–
691, 1986.

[7] R. E. Bryant. Symbolic Boolean manipulation with or-
dered binary-decision diagrams. ACM Computing Surveys,
24(3):293–318, 1992.

[8] E. F. Codd. A relational model for large shared data banks.
Communications of the ACM, 13(6):377–387, June 1970.

[9] E. F. Codd. Recent investigations in relational database sys-
tems. In Proceedings of the IFIP Congress, 1974.

[10] S. A. Cook and D. G. Mitchell. Finding hard instances of
the satisfiability problem: A survey. In Du, Gu, and Parda-
los, editors, Satisfiability Problem: Theory and Applica-
tions, volume 35 of Dimacs Series in Discrete Mathematics
and Theoretical Computer Science, pages 1–17. American
Mathematical Society, 1997.

[11] H. Darwen and C. J. Date. The third manifesto (databases).
j-SIGMOD, 24(1):39–49, Mar. 1995.

[12] C. J. Date. A formal definition of the relational model. SIG-
MOD Record, 13(1):18–29, 1982.

[13] C. J. Date. An Introduction to Database Systems, 8th Edi-
tion. Addison-Wesley, 2003.

[14] M. de Mare and R. W. Secure. Set membership using 3sat. In
Proceedings of the Eighth International Conference on In-
formation and Communication Security (ICICS ’06), 2006.

[15] F. Esponda. Negative Representations of Information. PhD
thesis, University of New Mexico, 2005.

[16] F. Esponda. Negative surveys. Technical report,
http://www.citebase.org/abstract?id=oai:arXiv.org:math/
0608176, 2006.

[17] F. Esponda, E. S. Ackley, S. Forrest, and P. Helman. On-line
negative databases. In G. Nicosia, V. Cutello, P. J. Bentley,
and J. Timmis, editors, Proceedings of ICARIS, pages 175–
188, Catania, Sicily, Italy, Sep 2004. Springer-Verlag.

[18] F. Esponda, E. S. Ackley, P. Helman, H. Jia, and S. For-
rest. Protecting data privacy through hard-to-reverse nega-
tive databases. In S. LNCS, editor, In proceedings of the
9th Information Security Conference (ISC’06), pages 72–84,
2006.

[19] F. Esponda, E. S. Ackley, P. Helman, H. Jia, and S. For-
rest. Protecting data privacy through hard-to-reverse nega-
tive databases. International Journal of Information Secu-
rity, 2007.

[20] F. Esponda, S. Forrest, and P. Helman. Enhancing privacy
through negative representations of data. Technical report,
University of New Mexico, 2004.

[21] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity : A Guide to the Theory of NP-Completeness. W.H. Free-
man & Company, San Francisco, 1978.

[22] G. Gupta, E. Pontelli, K. A. M. Ali, and M. C. Manuel
V. Hermenegildo. Parallel execution of prolog programs:
a survey. Programming Languages and Systems, 23(4):472–
602, 2001.

[23] H. Hacigumus, C. L. B. Iyer, and S. Mehrotra. Executing sql
over encrypted data in the database-service-provider model.
In Proceedings of ACM SIGMOD, 2002.

[24] J. Horey, M. Groat, S. Forrest, and F. Esponda. Anonymous
data collection in sensor networks. In The 4th Annual In-
ternational Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, 2007.

[25] J. Jaffar and J. Lassez. Constraint logic programming. In
POPL, pages 111–119, 1987.

[26] H. Jia, C. Moore, and D. Strain. Generating hard satisfiable
formulas by hiding solutions deceptively. In AAAI, 2005.

[27] M. Karnaugh. The map method for synthesis of combina-
tional logic circuits. Trans. AIEE, pages 593–598, 1953.

[28] H. A. Kautz, Y. Ruan, D. Achlioptas, C. Gomes, B. Selman,
and M. E. Stickel. Balance and filtering in structured satis-
fiable problems. In IJCAI, pages 351–358, 2001.

[29] E. McCluskey. Minimization of boolean functions. Bell
System Technical Journal,, pages 1417–1444, 1956.

[30] R. C. Merkle and M. E. Hellman. Hiding information and
signatures in trapdoor knapsacks. IEEE-IT, IT-24:525–530,
1978.

[31] S. Minato. Zero-suppressed BDDs and their applications.
STTT, 3(2):156–170, 2001.

[32] D. Mitchell, B. Selman, and H. Levesque. Problem solving:
Hardness and easiness - hard and easy distributions of SAT
problems. In Proceeding of the 10th National Conference
on Artificial Intelligence (AAAI-92), San Jose, California,
pages 459–465. AAAI Press, Menlo Park, California, USA,
1992.

[33] A. M. Odlyzko. The rise and fall of knapsack cryptosystems.
In C. Pomerance and S. Goldwasser, editors, Cryptology and
Computational Number Theory, volume 42 of Proceedings
of symposia in applied mathematics. AMS short course lec-
ture notes, pages 75–88. pub-AMS, 1990.

[34] W. V. Quine. A way to simplify truth functions. American
Mathematical Monthly, pages 627–631, 1955.

[35] P. Shaw, K. Stergiou, and T. Walsh. Arc consistency and
quasigroup completion. In In Proceedings of ECAI98 Work-
shop on Non-binary Constraints, 1998.

[36] D. Song, D. Wagner, and A. Perrig. Search on encrypted
data. In Proceedings of IEEE SRSP, 2000.

[37] E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993.

Appendix

THEOREM 1. Negative Equality Select (=): A binary
string x is matched in NDB2 ⇐⇒ x[Υ] 6= v.

PROOF.

1. Let x be a string matched in NDB2 and y be the string
that matches it. y must have been generated during the
ith iteration of the algorithm (step 2(a)); by construc-
tion, y differs from v in the position indicated by the
ith entry of Υ, therefore y will not match any string
exhibiting v, and, given that y match x, x[Υ] 6= v.

2. Let x be a binary string such that x[Υ] 6= v then x must
differ in at least one position from v. Step 2(a) of the
algorithm constructs a string y that matches x.

THEOREM 2. A binary string x is matched in NDB2

⇐⇒ x[Υ] ≥ v.

PROOF.

1. Let x be a binary string matched in NDB2, and let y
be the entry that matches it. If y was generated in step
2(a) then, by construction, y[Υ] and v do not match,
and the most significant position, in which the strings
represented by y[Υ] and v differ, is set to 0 in v and 1
in y[Υ]; hence, all strings matched by y[Υ] are greater
than v and x[Υ] > v. Conversely, if y was generated
in step 3 then y[Υ] = v and x[Υ] = v. Therefore
x[Υ] ≥ v.

2. Let x be a binary string such that x[Υ] ≥ v.

Assume x[Υ] > v and let i be the first position of x,
from left to right, for which x[Υ] has a 1 and v has a
0. Step 2(a) creates a string y that matches x[Υ] by
setting every position to the left of i to 1 where v and
x[Υ] have a 1; position i to 1 where v has as 0 and x[Υ]
a 1, and all remaining positions to *.

Assume that x[Υ] = v; step 3 of the algorithm gen-
erates a string y for which y[Υ] = v and the rest of
the positions are set to *, thus matching x. Therefore,
there is a string in NDB2 that matches x.

THEOREM 3. Negative Union (∪̄): A binary string x ∈
U − (DB1 ∩ DB2) ⇐⇒ ∃x′((x′ ∈ NDB1∪̄NDB2) ∧
(x′Mx)).

PROOF.

1. Let x be a string in U − (DB1 ∪DB2), x ∈ U −DB1

and x ∈ U −DB2. By the definitions of NDB1 and
NDB2, there is a string x′ ∈ NDB1, and a string
x′′ ∈ NDB2 that match x; by transitivity, x′ and x′′

also match each other, i.e., x′Mx′′. Step i of the algo-
rithm creates a string z such that z = x′ � x′′.

Given that zMx′ and x′Mx, it follows that zMx.
Therefore there is a string in NDB1∪NDB2 that
matches x.

2. Let x be a binary string matched by some entry z in
NDB1∪NDB2. By construction, there are strings x′

and x′′ in NDB1 and NDB2, respectively, that match

z and that, by transitivity, also match x. By the defini-
tions of NDB1 and NDB2: x 6∈ DB1 and x 6∈ DB2.
Therefore x ∈ U − (DB1 ∪DB2).

THEOREM 4. Negative Cartesian Product (×): A bi-
nary string x ∈ Un+m − DB1 × DB2 ⇐⇒ ∃x′((x′ ∈
NDB1×NDB2) ∧ (x′Mx)).

PROOF.
Let xy be a binary string in Un+m − DB1 × DB2, with
|x| = n and |y| = m

1. Either x ∈ Un − DB1 or y ∈ Um − DB2. If x ∈
Un − DB1 then, by the definition of NDB1, there is
a string x′ ∈ NDB1 than matches x; step 2 of the
algorithm will create a string, x′∗m, that will match
xy. Conversely, if y ∈ Um−DB2, there is a string y′ ∈
NDB2 that matches it, and step 3 will generate ∗ny
that matches xy. Therefore, xy is matched by some
entry in NDB1×NDB2.

Let xy be a binary string matched by some entry x′y′ in
NDB1×NDB2, with |x| = |x′| = n and |y| = |y′| = m.

1. By construction, either x′ ∈ NDB1 or y′ ∈ NDB2.
If x′ ∈ NDB1 then, by the definition of NDB1,
x 6∈ DB1; likewise, if y′ ∈ NDB2 then y 6∈ DB2.
Therefore xy ∈ Un+m −DB1 ×DB2.

THEOREM 5. Negative Join (1): A binary string x ∈
Un+m−|Υ2| − DB1 1 DB2 ⇐⇒ ∃x′((x′ ∈
NDB11NDB2) ∧ (x′Mx)).

PROOF.
Let wz be a binary string in Un+m−|Υ2| − DB1 1 DB2,
with |w| = n and |z| = m − |Υ2|. Then, either w 6∈ DB1

or z′ 6∈ DB2, for z = z′[Ωm −Υ2] and w[Υ1] = z′[Υ2].

1. If w 6∈ DB1 then w is matched by some w′ ∈ NDB1

and z′ might or might not be matched in NDB2. Step
2 of the algorithm creates a string w′∗Ωm−Υ2 that will
match wz. Therefore wz is matched by some string in
NDB11NDB2.

2. If z′ 6∈ DB2 then z′ is matched by some z′′ ∈ NDB2

and w might or might not be matched in NDB1. Step
3(b) creates string y, such that y = z′′[Ωm − Υ2]′,
that matches z, and step 3(a) creates a string x, that
represents every binary string x′ for which x′[Υ1] =
z′′[Υ2] (a characteristic of all strings in Un+m−|Υ2|,
(see eq. 1)), that matches w. Step 3(c) creates string
xy that matches wz. Therefore wz is matched by some
string in NDB11NDB2.

Let wz be a binary string and xy an entry in
NDB11NDB2 that matches wz, where |w| = |x| = n
and |z| = |y| = m− |Υ2|.

1. If xy was generated by step 2 then x ∈ NDB1 and,
by the definition of NDB1, w 6∈ DB1. Substring
y = ∗m−|Υ2| matches string z′′[Ωm−Υ2] for z′′ ∈ Um

where z′′[Υ2] = w[Υ1], and z′′[Ωm−Υ2] = z. There-
fore wz ∈ Un+m−|Υ2| −DB1 1 DB2.

2. If xy was generated in step 3 then: w is matched
by x which is matched by z′[Υ2] (step 3(a)), for
z′ ∈ NDB2; z is matched by y which is matched
by z′[Ωm − Υ2] (step 3(b)). Hence, there is a string
z′′ ∈ Um, matched by z′, such that z′′[Υ2] = w[Υ1]
and z′′[Ωm − Υ2] = z . By the definition of NDB2,
z′′ 6∈ DB2. Therefore wz ∈ Un+m−|Υ2| − DB1 1

DB2.

THEOREM 6. Negative Intersection (∩): A binary string
x ∈ Un+m−|Υ2| − DB1 ∩ DB2 ⇐⇒ ∃x′((x′ ∈
NDB1∩NDB2) ∧ (x′Mx)).

PROOF.

1. Let w be a string in Un+m−|Υ2| −DB1 ∩DB2, then
w 6∈ DB1 or w 6∈ DB2. By the definitions of NDB1

and NDB2 there is a string x ∈ NDB1 or a string
y ∈ NDB2 that matches w. The algorithm includes
all strings in NDB1 and NDB2, thereby ensuring that
there is a string in NDB1∩NDB2 that matches w.

2. Let w be a binary string and x a string in
NDB1∩NDB2 that matches it. By construction, x
either belongs to NDB1, or to NDB2: if x ∈ NDB1

then, by the definition of NDB1, w 6∈ DB1; like-
wise, if x ∈ NDB2 then w 6∈ DB2. Therefore
w ∈ Un+m−|Υ2| −DB1 ∩DB2.

THEOREM 7. Negative Project (π): A polynomial time
algorithm for computing Negative Project implies P=NP .

We will proceed by constructing a polynomial time al-
gorithm for the following NP-complete problem.

Definition 3. Non-empty Self Recognition (NESR):
INPUT: A set NDB of length n strings over the alphabet
{0, 1, ∗}.
QUESTION: Is DB nonempty? That is, is there some
string in U = {0, 1}n not matched by NDB?

NESR was first introduced in [20] and shown there to be
NP-complete.

PROOF. Assume there is a polynomial time algorithm
M that takes as input a negative database NDB and a bit
position indicator Υ and outputs πΥ(NDB).
We construct a polynomial time algorithm for NESR: given
any instance of NESR with input NDB, callMwith NDB
and Υ = {1}. If the resulting negative database matches
strings s1=0 and s2=1 (strings one bit long) answer “No”,
otherwise answer “Yes”. Therefore, since NESR is NP-
complete, P=NP .

THEOREM 8. Negative Set Difference (−): A polyno-
mial time algorithm for computing Negative Set Difference
implies P=NP .

We will proceed by constructing a polynomial time al-
gorithm for the NESR problem (see Definition 3).

PROOF.
Assume a polynomial time algorithm M that takes as in-
put two negative databases NDB1 and NDB2 and outputs
NDB1−NDB2.
We construct a polynomial time algorithm for NESR: given
any instance of NESR with input NDB, let M compute
NDB′ = ∅ − NDB. If NDB′ = ∅ then answer “No”
otherwise answer “Yes”. Note that if NDB represents an
empty DB, then NDB matches all strings in U and NDB′

will necessarily be empty. On the other hand, if NDB fails
to match at least one string in U , then NDB′ will contain
at least one entry and, thus, be non-empty. Since NESR is
NP-complete, P=NP .

