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The structure of the Internet at the autonomous system (AS) level has been studied by the
physics, mathematics and computer science communities. We extend this work to include
features of the core and the periphery, taking a radial perspective on AS network structure.
Newmethods for plotting AS data are described, and they are used to analyse datasets that
have been extended to contain edges missing from earlier collections. The average distance
from one vertex to the rest of the network is used as the baseline metric for investigating
radial structure.Commonvertex-specific quantities are plotted against thismetric to reveal
distinctive characteristics of central and peripheral vertices. Two datasets are analysed
using thesemeasures aswell as two common generativemodels (Barabási–Albert and Inet).
We find a clear distinction between the highly connected core and a sparse periphery. We
also find that the periphery has a more complex structure than that predicted by degree
distribution or the two generative models.
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1. Introduction

Since the turn of the century, there has been increasing interest in the statistical
study of networks (Albert & Barabási 2002; Dorogovtsev & Mendes 2003;
Newman 2003), stimulated in large part by the availability of large-scale network
datasets. One network of interest is the Internet (Pastor-Santorras & Vespignani
2004). The Internet is intriguing because its complexity and size preclude
comprehensive study. It comprises millions of individual end nodes connected to
tens of thousands of Internet service providers (ISPs) whose relationships are
continually in flux and only partially observable. One way to cope with these
complexities is by analysing a single scale of Internet data, for example, a local
office network of computers and their interconnections; a network of email
address book contacts; the network formed by URL links on the World Wide
Web; or the interdomain AS level of the Internet. This paper is concerned with
the last of these examples—the AS graph. The vertices in the graph are
themselves computer networks; roughly speaking an AS is an independently
operated network or set of networks owned by a single entity. Edges represent
pairs of ASs that can directly communicate.
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A major finding of earlier AS studies is that node degree (number of links to
other ASs) has a power-law distribution (Faloutsos et al. 1999). The degree
distribution is, however, not the only structure that affects Internet dynamics
(Doyle et al. 2005). In this paper, we investigate higher-order (beyond the degree
distribution) network structures that also impact network dynamics. We analyse
the AS graph using methods that are appropriate for networks with a clear
hierarchical organization (Pastor-Santorras & Vespignani 2004; Trusina et al.
2004). In particular, we study network quantities as a function of the average
distance to other vertices. This approach separates vertices of different
hierarchical levels, in a radial fashion, ranging from central (in the sense of the
closeness centrality; Sabidussi 1966) to peripheral vertices. This is, furthermore, a
way to measure how clearly separated the core and the periphery are. Most
analysis methods developed by physicists (degree frequencies, correlations, etc.)
are based on quantities averaged over the whole network and do not take a
hierarchical partitioning into account (Pastor-Santorras & Vespignani 2004).
Studies by computer scientists, on the other hand, assume a division of the
AS-level Internet into hierarchical levels (Subramanian et al. 2002).We argue that
observed AS-level networks do have pronounced core–periphery dichotomy but
that the periphery has more structure than previously thought.
2. Networks

This section briefly reviews the organization of the AS-level Internet and
describes how we obtained our datasets. We also describe the network models to
which we compare our observed data. These models include one randomization
scheme that samples random networks with the same set of degrees as the
original networks, and the generative BA and Inet models. Technically, all three
models are null models, but to contrast the randomized networks (having N
degrees of freedom) with the generative models (having only a few degrees of
freedom) we reserve the term null model to the former.

The data are represented as a network GZ(V, E ), where V is a set of N
vertices (ASs) and E is a set of M undirected edges (connections between ASs).
The Internet is currently composed of roughly 22 000 individual networks known
as ASs. Each of these systems peer with a (usually small) set of ASs to form a
connected network. The protocol used to establish peering sessions and discover
routes to distant ASs is called the Border Gateway Protocol (BGP). Two typical
peering relationships are: customer–provider in which the provider provides
connectivity to the rest of the Internet for the customer and peer–peer in which
the peering ASs transfer traffic between their respective customers. The extreme
core of the network, the Tier-1 ASs, has many peer–peer and customer links but
no providers. Nodes closer to the periphery of the network have fewer customers
and peers but more providers.

(a ) Autonomous system networks

We analyse four real-world datasets (i.e. datasets collected using observed
network data rather than simulated networks that are generated synthetically) of
which two are original. The first two datasets are well known and well studied
(Chang et al. 2002) dating from 2002 and the second two are recent, inferred from
Proc. R. Soc. A



3Radial structure of the Internet
2006 data. The first graph in each pair consists of edges learned solely from
dumps of router state, known as routing information bases (RIBs) (http://www.
routeviews.org/data.html). RIBs are a standard source of AS connectivity data.
The second graph in each pair contains RIB information augmented with edges
derived from other sources (such as routing registries, looking glass servers and
update messages) which produces a more accurate representation of the real
network. The additional sources are described below.
(i) Obtaining routing information bases from Route Views

BGP routers store the most recent AS path for each IP block (prefix)
announced by its peers. These data are stored in the router’s RIB, and periodic
RIB dumps from a large number of voluntary sources are available from Route
Views (http://www.routeviews.org). Each RIB represents a static snapshot of all
routes available to the router from which it was obtained. Since BGP only
disseminates each router’s best path, and this value is dynamic as links go up and
down, a sizable portion of the network is hidden from each router. In order to
obtain a more complete topology, common practice is to take the union of the
relationships found in a large number of RIB samples. From the samples, AS
relationships are then inferred from the routing paths. A path is comprised of
connected ASs, and therefore each pair of adjacent ASs in a path corresponds to
an edge in the graph.

The 2002 graph taken from a single RIB (RIB’02) was inferred fromRouteViews
on 15 May 2002. We constructed the 2006 RIB graph (RIB’06) from the Route
Views RIB on 16 May 2006. The RIB’02 graph has NZ13 233 and MZ27 724,
while RIB’06 has NZ22 403 and MZ46 343.
(ii) Extending the routing information base dataset

There are other sources of AS connectivity data besides Route Views. RIPE
(http://www.ripe.net) has data collected from additional RIBs beyond those
contained in the Route Views data. Peering information is directly available for a
small number of ASs that are participating Looking Glass (http://www.
traceroute.org) routers. Finally, some ASs register their peering relationships
in regional registries such as RIPE. The extended 2002 AS graph (AS’02) was
constructed using inferred topologies from all three of these sources, together
with the original Route Views data.

RIB data represent a brief snapshot of routing state. There are many paths
that a router sees only briefly, and the chances of capturing all of them from just
a few RIB dumps are small. In the extended AS graph of 2006 (AS’06), we
augmented the Route Views RIB data with all of the paths found in BGP update
messages for the entire month of April 2006 from both Route Views and RIPE.
This gives a more complete picture over time, although it is still biased by the
limited number of routers from which the data were collected.

The extended 2002 AS graph (AS’02) has NZ13 579 and MZ37 448, and
the corresponding 2006 network (AS’06) has NZ22 688 and MZ62 637. Thus,
the extended datasets have 35% (2002) and 35% (2006) more edges than their
RIB counterparts.
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(b ) Null-model networks

We are interested in network structure beyond degree distribution, so we
compare our AS network data against a null model with the same degree
distribution. Our null model is a random network constrained to have the same
set of degrees as the original network. By comparing results for the observed
networks with the same quantities for the null model, we can observe additional
network structure if it exists. The standard way to sample such networks is by
randomizing the original network with stochastic rewiring of the edges (see Gale
1957, for an early example). In our implementation, we create a new random
network by enumerating the edges E of the original graph, and for each edge
(i, j ) we

(i) choose another edge (i0, j0) randomly and replace (i, j ) and (i0, j0) with
(i0 , j0). If this creates a multi- or self-edge, then revert to the original edges
(i , j ) and (i0, j0), and repeat with a new (i0, j0) and

(ii) choose two edges (i1, j1) and (i2, j2) and replace them along with (i , j0) by
(i1, j

0), (i, j2) and (i2, j1).

Step (ii) guarantees ergodicity of the sampling (Roberts 2000), i.e. that one can go
between any pair of graphs with a given set of degrees by successive edge rewirings.
(c ) Generative network models

We also study networks produced according to two previously proposed
network-generation schemes (Barabási & Albert 1999; Winick & Jamin 2000).
The first is the well-known Barabási–Albert (BA) preferential attachment model
(Barabási & Albert 1999). The second, known as the Inet model, v. 3.0 (Winick
& Jamin 2000), is more complex and designed specifically for creating networks
with AS graph properties.
(i) Barabási–Albert model

The BA model is a general growth model for producing networks with power-
law degree distributions (Barabási & Albert 1999). Vertices and edges are
iteratively added to the network according to a preferential attachment rule that
ensures that a power-law degree distribution emerges.

More precisely, the initial configuration consists of m isolated vertices. From
this configuration, the network is iteratively grown. At each time-step, one
vertex is added, together with m edges leading out from the new vertex. The
edges are attached to vertices in the graph such that

(i) the probability of attaching to a vertex i is proportional to k(i ) and
(ii) no multiple edges, or self-edges, are formed.

This procedure produces a network which has, in the N/N limit, a degree
distribution P(k)wkK3 for kRm, and P(k)Z0 for k!m.

Since the BA model has only one integer parameter, it is not very flexible at
fitting data.We usemZ3 tomake the average degree as similar to the AS networks
as possible. Other preferential attachmentmodels (e.g. Pastor-Satorras et al. 2001)
Proc. R. Soc. A



5Radial structure of the Internet
can model the average degree and slope of the degree distribution more closely.
Such improvements, we believe, are unlikely to change the conclusions drawn from
the original BA model.

(ii) Inet model

The Inet model (Winick & Jamin 2000) is less general than the BA model. Its
objective is to regenerate theASgraphas accurately as possible rather than focus on
a single mechanism to create and explain scale-free networks. The scheme is rather
detailed and we only sketch its strategy here. Starting with N vertices, Inet first
generates random numbers that represent the final degree of the vertices such that
the degree distributionmatches the observed distribution of theAS graph as closely
as possible. This means that the low-degree end of the distribution is more
accurately modelled by Inet than the BA model, because the BA model does not
produce a vertex with degree less than m. In the real AS graph, there are a
considerable fraction of degree-one vertices. After the degrees are assigned to the
vertices, edges are added in such a way that the degree–degree correlation
properties of the original AS graph are matched as closely as possible.

A more detailed explanation of this procedure and its rationale are given in
Winick&Jamin (2000).Weuse Inet’s default parameter settings, exceptN,whichwe
extracted from our datasets, producing an average degree that is approximately six.
3. Numerical results

This section presents the numerical results of our analysis. We first discuss the
average distance metric used to display network properties from a radial
perspective. Then, we define and present the results for each network structural
measure as a function of the average distance to other vertices.

Let d(i, j ) denote the graph distance between two vertices i and j—the
number of edges in the shortest path between i and j. A simple measure for how
peripheral a vertex is in the network is its eccentricity—the distance to the most
distant vertex, maxj2Vd(i, j ) (Buckley & Harary 1989). Eccentricity is thus an
extremal property of the network and is determined by a small fraction of
vertices. To better reflect the typical path length of a vertex, we rank vertices
according to an average property. The average property corresponding to
eccentricity is the average distance from one vertex to all of the others,

�dðiÞZ 1

NK1

X
j

dði; jÞ; ð3:1Þ

where the sum is over all vertices, except i, in V. We note that the reciprocal
value of �dðiÞ, the closeness centrality, is a common measure for centrality in social
network studies (Sabidussi 1966; Buckley & Harary 1989). Average distance is a
more intuitive measure in this context—�dðiÞz2 means that i is on average two
hops away from other vertices, whereas the closeness value 0.5 does not have
such a direct interpretation.

Another way to study eccentricity is by iteratively removing vertices of low
degree to construct a sequence of k cores (subgraphs in which all vertices have
degree k ormore;Alvarez-Hamelin et al. 2006).Weused the average distancemetric
Proc. R. Soc. A
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instead, because it measures separation of vertices, i.e. the values on the x -axis are
not only integers as for the eccentricity. Further, because it is a global measure (in
the sense that the entire network topology affects �dðiÞ for every i ), it is likely more
robust to errors in the input data.

Peering policies do not always allow each router to pick the shortest
topological path to every destination. For instance, a route learned through a
customer might be longer than through a peer-to-peer link but because it would
provide revenue, policy requires that the customer route be used. Therefore,
the �dðiÞ values shown in this paper do not always represent valid routing paths.
More accurate measurements would require relationship information which is
difficult to obtain, because companies have an incentive to conceal it and
inferencing methods are inaccurate.

(a ) Radial vertex density

We first plot the fraction of vertices as a function of �d. Figure 1 shows the
distribution of �d for our datasets and the model AS graphs. The observed
networks produce graphs that are far from smooth unimodal distributions.
Instead they have one peak close to �dZ3, a smaller peak around �dZ4, and
for the 2006 data, a third peak near �dZ5. The difference between the RIB-only
and the extended datasets is small, except around the second peak in figure 1b
which is higher in the RIB-only data. The null-model curves are much more
unimodal, although they do not follow a simple, smooth functional form. Such a
unimodal form could be a result of the averaging of many null-model curves, but
the observation holds even if single realizations of the randomization are plotted
(data not shown). Thus, the observed AS graph is less homogeneous than we
would predict by considering only vertex degree.

We interpret the two peaks as an effect of the hierarchical organization of the
Internet. The core (Tier-1 providers and other large ISPs) is in the low-�d tail,
the �dZ3 peaks are vertices directly connected to the core, and the �dZ4
peaks are vertices whose closest neighbours are in the �dZ3 peaks. This explains
the approximately integer distance between the peaks. As expected, the Tier-1
ASs (AS numbers 209, 701, 1239, 1668, 2914, 3356, 3549, 3561, 6461 and
7018 in our datasets) have an average �dZ2:35G0:03 in the AS’02 data and
�dZ2:41G0:03 in the AS’06 data and appear in the centre of the network (left
of the most central peak). Thus, the Tier-1 ASs are in the extreme low end of
the �d-spectrum.

Results for the BA and Inet model networks are shown in figure 1c. The Inet
model has a peak to the left of the middle of the range of distances, but no second
or third peak. The BA model matches the observed network even less
accurately—its peak is at a relatively high �d value.

(b ) Degree

Degree distribution is now a classical quantity in the study of the Internet
topology. Faloutsos et al. (1999) report a highly skewed distribution of degree,
fitting well to a power law with an exponent around 2.2. Since this finding, the
degree distribution has become a core component in models of the AS graph—
both the BA and Inet models as well as others (Medina et al. 2000; Fabrikant
et al. 2002; Alvarez-Hamelin & Schabanel 2004) create networks with power-law
Proc. R. Soc. A
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vertices. (a) shows curves for the Oregon Route Views data (RIB’02), extended data (AS’02) and
values for random networks with the same degree sequences as AS’02. (b) displays curves for the
Oregon Route Views data (RIB’06), extended data (AS’06) as well as randomized networks with
the degree sequence of AS’06. (c) shows the same AS’06 curve as (b) along with the BA and Inet
model results for parameter values as close as possible to those of the AS’06 network. For the null-
model curves in (a) and (b) as well as the model networks in (c), 100 averages were used. Lines are
guides for the eyes. The error bars represent standard error (the point symbols are often larger
than the error bars).

7Radial structure of the Internet
degree distributions. One interpretation of degree is that it is a local centrality
measure (Buckley & Harary 1989). Further, different measures of centrality are
known to be highly correlated (Nakao 1990; Holme et al. 2002; Lee 2006), so one
can expect the average degree k to be a decreasing function of the average
distance �d.

Figure 2 confirms this prediction for both the observed and model networks. In
figure 2a,b, we observe that the kð�d Þ curves decrease dramatically until the
approximate location of the first peak in the distribution plots figure 1a,b.
Therefore, �d identifies a natural border between the core vertices of high degree
and low average distance, and the sparsely connected periphery. The observed
graphs, however, have higher degree in the periphery compared with the
Proc. R. Soc. A
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given in figure legend 1.
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null-model curves. This suggests that the network periphery may have more
complex wiring topology than that is predicted by degree distribution alone. This
pattern occurs in our other network measurements as well.

The Inet model (figure 2c) fails to capture the higher degree (implying
additional complexity) in the periphery. Since the BA model has a minimal
degree of three, it is difficult to compare to the observed networks. However, the
decrease of the kð�d Þ curves at the largest �d peak is not conspicuous in the BA
model curves. Thus, there is no clear core–periphery dichotomy in the BA model.
This too is not surprising, because the BA model was designed to produce ‘scale-
free’ networks in the sense of fractals (if one zooms in on any part of system, it
looks similar to the whole).

(c ) Neighbour degree

Degree is a property of individual vertices, with no information about how they
are interconnected. In this sense, degree is a measure of local network structure.
A common way to broaden the perspective to understand the network’s non-local
organization (Mahadevan et al. 2005) is to measure the correlations of degrees
between neighbours in the network. There are three common approaches. The
first, known as assortative mixing coefficient (Newman 2003), measures the
Proc. R. Soc. A
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9Radial structure of the Internet
Pearson correlation coefficient for each edge. This provides one number for the
entire network and is thus appropriate for comparisons between networks. The
second approach makes a density plot that displays the fraction of edges with
degree (k1, k2). This kind of two-dimensional plot is called a correlation profile
(Maslov et al. 2004; Mahadevan et al. 2006). Correlation profiles provide more
detailed information than the assortative mixing coefficient, but they are less
concise and more sensitive to noisy data. The third approach measures average
neighbour degree

KðiÞZ 1

kðiÞ
X
j2Gi

kðjÞ; ð3:2Þ

(where Gi is the neighbourhood of i ) as a function of degree k(i ) (Pastor-Satorras
et al. 2001). All approaches must be compared to null models because skewed
degree distributions are known to induce anticorrelations (Maslov et al. 2004).
The third approach produces a one-dimensional plot and thus forms a middle
ground between the assortative mixing coefficient and the correlation profile. It is
also a method that can be adapted to our radial-plot framework—by plotting K
against �d, we can monitor the correlation between centrality and neighbour
degree. For the AS-level Internet, it has been observed that the K(k) curves
Proc. R. Soc. A
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decay (Pastor-Satorras et al. 2001). In other words, high-degree vertices are,
on average, connected to vertices of low degree and vice versa. Then, since degree
decreases with �d, one would then expect K to be an increasing function of �d.

As seen in figure 3, vertices at intermediate distances have neighbours of
highest degree. The peak in Kð�dÞ coincides with the largest peak in the
histograms found in figure 1 and the change of slope in figure 2. This suggests
that the periphery is composed of two levels: the intermediate majority that is
primarily connected to the core and the extreme periphery that is connected to
other periphery vertices.

It is also apparent in figure 3a,b that the null model qualitatively has the same
shape as the observed network; but, just as for k; K are larger in the observed
networks than the null model. Also, the Inet model underestimates the average
neighbour degree in the periphery. Finally, the BA model exhibits less correlation
between K and �d.
(d ) Deletion impact

If a vertex is not actively routing packets due to fault or attack, other vertices
might be affected. We are interested in knowing how susceptible a given network
structure is to random node failures. Assuming that the network is connected, let
Si be the number of vertices in the largest connected subgraph after the deletion
of i. We define the deletion impact as

fðiÞZNK1KSi

NK2
: ð3:3Þ

This measure can take values in the interval [0, 1]. A value of 0 means that the
entire network, except i, is still connected after the deletion. A value of 1 means
that all of the network’s edges are attached to i and that all of the vertices are
isolated after the deletion.

Figure 4 plots deletion impact as a function of the average distance for the
same datasets as the previous figures. All curves are roughly decreasing. This
means that the network is more sensitive to the deletion of central, than
peripheral, vertices. This observation is anticipated from earlier studies showing
that the Internet is vulnerable to targeted attacks at the vertices of highest
degree (Albert et al. 2000) but robust to random failures. This is because the
majority of vertices have low f-values. However, the deletion impact measure
can detect more subtle effects in the periphery.

The first peak in the �d distribution is, as mentioned above, around �dZ3. At
this distance, f has decreased 1000 times from the core where fw10K2. In this
quantity, we see a substantial difference from the null model; the peripheral
vertices of the inferred networks have significantly lower deletion impact than
the peripheral vertices of the null-model networks. This, we believe, is another
effect of the high degree of peripheral vertices. The fact that the periphery is
relatively highly connected suggests that there are alternate routes which could
be used if a regular path is obstructed by a vertex failure. In the case of the Inet
model, which has very few vertices of high �d, the peripheral f values are low
because the periphery is well connected to the core. As expected, fZ0 for all
vertices in the BA model since all vertices have degree of at least three. The BA
model thus produces networks that are more robust to vertex deletion than the
observed networks are.
Proc. R. Soc. A
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(e ) Clustering coefficient

The clustering coefficient C(i ) (Watts & Strogatz 1998) is another frequently
studied network property:

CðiÞZ MðGiÞ
kðiÞ
2

 ! : ð3:4Þ

M(X) denotes the number of edges in a subgraphX, and Gi is the neighbourhood of
i. The clustering coefficient measures how interconnected the neighbourhood of a
vertex is. One interpretation is that C(i ) is the number of connected neighbour
pairs rescaled by the theoretical maximum. C(i ) can also be seen as the fraction of
triangles that i is a member of, normalized to the interval [0, 1].

In figure 5, we display the clustering coefficient as a function of the average
distance. The curves for the observed graph, null-model and Inet model networks
show a peak around the same point as the peak in the �d distribution. However,
the clustering in the periphery is higher in the inferred networks than in the null
models. In other words, there are more triangles in the periphery than can be
expected from only the network’s degree distribution. In fact, for 100 null-model
Proc. R. Soc. A
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networks based on the AS’06 network, no triangles existed for �dO3:8 with any
vertex having �dO3:8. This should be compared with 1124 triangles for the
AS’06 network itself (there are even 83 triangles where all vertices have �dO3:8).
This provides additional evidence that the periphery of the observed AS graphs is
complex. As triangles represent redundancy (the three vertices will still be
connected if any one of the edges are cut); this could help explain the increased
robustness to deletion seen in figure 4. As seen in figure 5b, neither the Inet nor
the BA model predicts a significant number of peripheral triangles. The low
deletion impact values for peripheral vertices in these models may be attributed
to the presence of longer cycles.
(f ) Distance balance

In the context of scientific collaboration networks, it has been shown
(Newman 2001) that the number of shortest paths leaving a vertex via a
specific neighbour is skew distributed. In other words, most of the shortest paths
from a vertex i to the rest of the network traverse a single neighbour of i.
Proc. R. Soc. A
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Figure 6. Distance balance b as a function of the average distance �d. The panels and symbols are
the same as given in figure legend 1.
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Rephrasing this in terms of the average distance, central vertices are likely to
have few neighbours with smaller �d values. This leads us to another view of
centrality. Let the distance balance of b(i ) be the fraction of i-neighbours j
with �dðjÞ!�dðiÞ. Clearly, one can expect this to be an increasing function of �d,
but is it a linear increase?

In figure 6, we plot the distance balance as a function of �d. As expected, all of
the curves generally increase but not linearly. Almost all the increase from 0 to 1
takes place around the highest peak in figure 1, which gives another
characterization of the core and periphery: in the core, the typical vertex has
relatively few neighbours of higher centrality than itself (and vice versa in the
periphery). The b(i ) values in the peripheral region of all curves approach values
close to 1. In figure 6b, the curves of the observed data are somewhat lower. This
supports the previous observation that—as seen in quantities such as degree,
neighbour degree and the clustering coefficient—the periphery is structurally less
different from the core than what can be expected from random networks
constrained to the degree sequence of the observed networks. As seen in figure 1c,
the Inet model behaves like the null model—the same observation holds for the
Proc. R. Soc. A
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average neighbour degree (figure 3) and clustering coefficient (figure 5). Unlike
the Inet model, the BA model’s curve increases more smoothly which suggests (in
accordance with what has been observed above) a less pronounced core–
periphery structure than the observed networks.
4. Summary and conclusions

This paper investigated how vertex-specific network measures of the AS-level
Internet vary with the average distance from a vertex to the other vertices of the
graph. This projection of vertices to the space of average distances gives a picture of
how the network structure changes from the most central to the most peripheral
vertices. Using the distance separationmeasure, we find that there is a well-defined
core–periphery dichotomy in the inferred networks. To some extent, this can be
explained as an effect of the set of degrees of the network—we note that the average
degree as a function of the average distance has the same qualitative form for the
observed networks as our null-model networks. However, the periphery is more
complex than what is predicted by degree alone. This is manifested in higher
average degree, higher average neighbour degree, lower deletion impact, higher
clustering coefficient and lower distance balance than the observed networks. To
summarize, the AS graph has amore clear split into a core and a periphery than can
be anticipated by its degree distribution and simple models of scale-free networks.
At the same time, the split is less dramatic andmore nuanced than expected from a
strict hierarchy. The additional network structure in the periphery may have
consequences for spread of attacks and methods to defend against attack. Further,
the two topology generators (Inet and BAmodel) that we tested could be extended
to model the periphery more accurately.

We used two kinds of observed AS data—easily accessible router RIBs and
more complete datasets where edges missing from the RIBs are added. The effect
of the missing edges is clearly visible: the peripheries of the RIB networks (with
missing edges) have lower average degree, lower number of triangles and other
traits. On the other hand, the missing links do not change the network structure
qualitatively. Our conclusions would be unchanged if we used only the RIB data.
This suggests that though our datasets are incomplete, the addition of the edges
yet missing would not significantly affect the network structure.

Future modelling and measuring research needs to be undertaken to elucidate
the detailed structure of the core and periphery of the AS graph. Furthermore,
the structures should be related to the strategies of AS management (Winick &
Jamin 2000; Chang et al. 2002, in press; Daubechies et al. 2006).

The authors thank Jenifer Rexford for her valuable comments. PH acknowledges financial support
from the Wenner-Gren foundations. The authors acknowledge the support of the National Science
Foundation (grants CCR-0331580, CCR-0311686 and CCF-0621900) and the Santa Fe Institute.
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