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ABSTRACT
Modeling Internet growth is important both for understand-
ing the current network and to predict and improve its fu-
ture. To date, Internet models have typically attempted to
explain a subset of the following characteristics: network
structure, traffic flow, geography, and economy. In this pa-
per we present a discrete, agent-based model, that integrates
all of them. We show that the model generates networks
with topologies, dynamics, and more speculatively spatial
distributions that are similar to the Internet.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Agent-based model, Mechanistic model, time evolution, emer-
gent properties.

Keywords
Internet, complex networks, Autonomous System, networks.

1. INTRODUCTION
As one of the most complex human artifacts, the Inter-

net is a challenging system to model. Dynamic processes of
different time scales operate simultaneously—from slow pro-
cesses, like the development of new hardware to the trans-
port of data, which often occurs at the speed of light.

These phenomena are to some extent interdependent. Traf-
fic provides income to the service providers, which is then
invested in infrastructure, which can lead to changes in traf-
fic patterns. We describe a mechanistic, agent-based model
(ABM) [4] to study how these phenomena interact to pro-
duce the macroscopic features of the Autonomous System
(AS) level Internet. Instead of simply reproducing a macro-
scopic pattern using statistical fitting or phenomenological
models, mechanistic models specify a set of primitive com-
ponents (known as agents) and interaction rules that mimic
the architecture of the real system. The models are judged
on their ability to generate realistic macroscopic behaviors
from these primitive components. The goal is to provide a
parsimonious explanation of how a system works by hypoth-
esizing a small set of simple but relevant mechanisms. In this
spirit our model attempts to reproduce large-scale features
of the Autonomous System level of the Internet by modeling
localized and well-understood network interactions.

The ASes of the Internet lend themselves naturally to
ABM modeling. Each AS is an economic agent, comprised

of a discrete network that can have spatial extent. Over
time, ASes create new links to other ASes, upgrade their
carrying capacity, and compete for customer traffic. The
agents in the model described here, behave similarly, al-
though we have simplified as much as possible. The model
is designed to be general enough to simulate any spatially
extended communication network built by subnetworks of
economically driven agents.

In previous work, Chang et al. showed that incorporating
economics and geography into the Highly-Optimized Toler-
ance (HOT) [6] model increases the model’s accuracy [7]. A
related ABM model of the AS graph produces degree dis-
tributions similar to empirical observations [8]. Bar et al.
proposed a similar model [2] that incorporates another as-
pect of the real Internet—that the agents are spatially ex-
tended objects. Our model is similar in scope to this earlier
work but differs in the details, most importantly by adding
explicit economics in the form of cost. Other differences
include accounting for population density, simplifying the
treatment of traffic flow, and not assuming a HOT frame-
work. The previous work in this area, like much research on
network models, focuses almost exclusively on degree distri-
butions of the graphs. In this paper, we compare our results
to Internet data using several topological measures [19], in-
cluding degree distributions, as well as geography and traffic
dynamics.

The remainder of the paper is organized as follows. First,
we describe and motivate the model. Then, we characterize
the time evolution, network topology, correlation between
network structure and traffic flow, packet routing statistics,
and geographical aspects of the networks produced by the
model. Where possible, we compare the properties of these
synthetic networks to observed data from the Internet.

2. AS SIMULATION MODEL (ASIM)
We begin with the fundamental unit responsible for net-

work growth, an agent with economic interests [15]. These
agents manage traffic over a geographically extended net-
work (which we refer to as a sub-network to distinguish it
from the network of ASes) and profit from the traffic that
flows through their network.

We compare the agents to the ASes that comprise the
Internet. This is not an exact mapping—some of the Inter-
net Service Providers (ISPs) have many AS numbers (e.g.,
AT&T), while other ASes are shared by several organiza-
tions. We make the common simplifying assumption that
once an agent is introduced, it does not merge with another
agent or go bankrupt [23, 25, 8]. This is partially justi-
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Figure 1: Illustration of the network growth algo-
rithm. (a) shows the locations of four agents on
the geographic grid. These are assumed to be con-
nected by a physical network administrated by the
agent, but is not explicit in the model. (b) is an
example graph resulting from (a). That two agents
are present in the same pixel is a necessary, but
not sufficient condition for a link to form between
the agents. (c) illustrates the area that each hypo-
thetical agent can afford to expand to (the shaded
region).

fied by the fact that the Internet, from its inception, has
grown monotonically, and we seek to capture this dynamic
in our model. Most models of the AS graph enforce strict
growth [23] as well and are, as ours, justified by their a pos-
teriori ability to reproduce measured features.

We assume a network user population distributed over
a two-dimensional area. Traffic is simulated by a packet-
exchange model, where a packet’s source and destination
are generated with a probability that is a function of the
population profile. The model is initialized with one agent
comprised of a network (a sub-network in our terminology)
that spans one grid location (referred to as a pixel of the
landscape. As time progresses, the agent may extend its
subnetwork to other pixels, so that the sub-networks reach
a larger fraction of the population. This creates more traffic,
which generates profit, which is then reinvested into further
network expansion. Through positive feedback, the net-
work grows until it covers the entire population. In this
section we describe the assumptions and most of the de-
tails of the model; the source code is publicly available from
www.csc.kth.se/∼pholme/asim/.

An agent i is associated with a set of locations Λi (repre-
senting sources or end-points of traffic, and peering points),
a capacity Ki (limiting the rate of packets that can pass
through the agent), a packet-queue Qi, and a set of neigh-
bor agents Γi. A necessary, but not sufficient, condition for
two agents to be connected is that their locations overlap
in at least one pixel. The locations exist on an Lx × Ly

square grid. A pixel of the grid is characterized by its pop-
ulation p(x, y) and the set of agents with a presence there
A(x, y). The total number of agents in the simulation is de-
noted by n, and the number of links between agents by m.
These quantities, except Lx and Ly, depend on the simula-
tion time. The outer loop of the model then iterates over
the following steps:

1. Network growth. The number of agents is increased.
Existing agents expand geographically, and their ca-
pacities are adjusted.

2. Network traffic. Packets are created, propagated to-
ward their targets, and delivered. This process is re-

peated Ntraffic times before the next network-growth
step.

We measure simulation time τ as the number of times Step 1
is executed (the time unit between packet movements is
1/Ntraffic). In the remainder of this section we describe the
growth and traffic steps in greater detail.

2.1 Network growth
The income of an agent, during a time step, is propor-

tional to the traffic propagated by the agent during the pe-
riod. This is a simplification. For example, income could
depend both on the amount of traffic and the prices for for-
warding the packets set by business agreements. Assume an
agent i has a budget Bi that it invests so that it can increase
its traffic, and thus its profit. Since there is a possibility of
congestion in the model, agent i tries first to remove bottle-
necks by increasing its capacity Ki (the number of packets
that the agent can transit during one time step). When the
capacity is sufficient, the agent spends the rest of its budget
on increasing its traffic by expanding geographically. There
are three prices associated with network growth. The ca-
pacity price Ccapacity is the price of increasing Ki one unit.
For simplicity we let Ccapacity be independent of the size of
the agent’s subnetwork. The wire price Cwire is the price per
pixel between a new location and the agent’s closest exist-
ing location. Finally, Cconnect is the cost of connecting two
agents with locations at the same pixel.

The average degree (number of neighbors of an AS) in
the AS graph has been relatively constant over time [23, 11]
(increasing about 5% from 2001 to 2007).1 We take this as
a constraint in the model and let the desired average degree
kD be a control parameter. We also assume that each agent
tries to spend all of its budget, but not more than that,
whenever it is updated.

The network growth step iterates over the following steps:

1. Increase of the number of agents. As long as the net-
work is too dense (i.e. if 2m > kDn), new agents are
added. New agents are situated in the pixel (x, y) that
has the highest available population p(x, y)/(A(x, y)+
1) where A(x, y) is the cardinality of A(x, y) and A(x, y) ≥
1. The budget and capacity of the new agents are ini-
tialized to Binit and Kinit respectively.

If the network is small, n < kD + 1, it is not dense
enough for new agents to be added in step 1. Thus,
we do not apply this condition when n is less than a
threshold n0 and call the time when n = n0 is reached
t0.

2. Capacity increase. Each agent synchronously increases
its subnetwork’s capacity based upon traffic from the
last time step (but not more than the agent can afford).
Agent i invests the minimum of (Bi, Ccapacity∆Ti, 0,
0) to increase capacity (∆Ti is the change in traffic
propagated by i since the last update).

3. Link addition. While 2m ≤ nkD (which usually means
kD−1 times), choose two agents randomly that are not

1This calculation is based on data from Oregon Route
Views, www.routeviews.org. Although more edges of the AS
graph can be identified by combining multiple data sources,
the Route Views data set has been compiled in a consistent
way over the years, so we believe that the relative degree
increase is reliable.
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Figure 2: Illustration of traffic simulation. (a) A
packet is created with source pixel s and target
pixel t with probability proportional to the prod-
uct of populations at s and t. One of the agents
at the target pixel is randomly chosen as the target
agent. The propagation of the packet is shown in
the graph. Each agent i is associated with a queue
Qi and a capacity Ki. When a packet reaches an
agent, it is appended to Qi. Ki packets in the queue
are relayed to neighboring agents and i’s budget is
credited one unit. The arrows in (b) symbolize the
packet’s route from source to destination agent. The
package is routed to a neighboring agent j with prob-
ability exp((d(i, t) − d(j, t))/λ (where t is the packet’s
target, d( · , · ) gives the graph distance, and λ is a
parameter).

already connected and share a common pixel. If the
budgets of both agents are larger than Cconnect, then
connect them.

4. Spatial extension. Let the agents with remaining bud-
get extend their networks. Iterate through all agents
i and add a location at the pixel, not in Λi, that has
the highest available population p(x, y)/(L(x, y) + 1),
and is not further than (Bi − Cconnect)/Cwire from a
location in Λi (i.e., not further from i than i can af-
ford). (See Figure 1(b)). Alternatively, the algorithm
could select the point with the lowest cost per unit
of population. However, such an algorithm is com-
putationally prohibitive for studying networks of the
Internet’s scale.

Each agent’s budget is updated immediately after each
modification.

2.2 Network traffic
We model traffic with a discrete, packet-exchange model [18,

12]. The packets are generated with specific source and tar-
get pixels, but the routing takes place on the network of
agents. We neglect intradomain routing among the agent’s
locations, assuming that the time it takes for a packet to
pass through an agent is independent of the specific loca-
tions it visits. The dynamics are defined as follows:

1. Packet generation. We assume that most traffic origi-
nates from direct communication between individuals
and does not depend on the distance between them.

For each pair of points [(x, y), (x′, y′)] on the grid,
we create a packet with source (x, y) and destination
(x′, y′) with probability Ppkg p(x, y) p(x′, y′), where Ppkg

is a parameter that controls the rate at which new
packets are created. Then, an agent is selected at
random from those at the source pixel to become the
source node. The destination agent is randomly cho-
sen from the agents at the destination pixel. Finally,
one unit of credit is added to the sender’s budget.

2. Packet propagation. Each agent i propagates the first
Ki packets from its queue (of length li) each time
step and receives one unit credit for each propagated
packet. A packet can travel only one hop (inter-AS
transmission) per time step. A packet at agent i is
propagated to a neighbor j with probability exp(λ(d(i, t)−
d(j, t)) (where t is the recipient AS, d( · , · ) is the
graph distance, and λ is a parameter controlling the
deviation from shortest-path routing [26] observed in
Ref. [16]).

3. Packet delivery. For all agents, delete all packets that
have reached their target.

The assumption in step 1 that the probability of two
agents communicating is independent of their spatial sep-
aration agrees with the (somewhat debated) “death of dis-
tance” in the Internet age [5]. We also tested communication
rates that decay with the square of the distance, as observed
in conventional trade firms [20], with qualitatively similar
results. Our traffic propagation model is simplified from re-
ality, and it more closely resembles peer-to-peer traffic than
user-to-service traffic. We also assume that temporal fluc-
tuations in packet generation are negligible and ignore peak
levels of congestion. Because the economy of the agents
grows as function of accumulated traffic through their sub-
networks, average traffic load is a reasonable approximation.
Given the level of abstraction in our model, we believe these
traffic propagation assumptions are reasonable.

Business agreements between ASes are an important fac-
tor in the Border Gateway Protocol (BGP) [24] (the Inter-
net’s largest scale routing protocol). Next hops are often
selected by cost, rather than path length. We do not explic-
itly include inter-AS contractual agreements. However, our
probabilistic propagation method 2 has a similar effect on
average path length,the excess distance of real paths traveled
compared to the shortest graph distance, as that observed
for real Internet traffic [16].

3. NUMERICAL SIMULATIONS

3.1 Parameter values
Before presenting the simulation results, we describe the

experimental design, and choice of parameters. First, we
specify a population profile p(x, y). We primarily model
population distributions, but we also study specific geo-
graphic populations (e.g. U.S.A. census data). To simplify
the generation of population distributions, we neglect spa-
tial correlations and simply model the frequency of pop-
ulation densities. This frequency has two important fea-
tures: it is skewed (pixels with low population densities are
more frequent than highly populated pixels) and fat-tailed
(there are pixels with a population density many orders of
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Figure 3: Time evolution of an example run. In
panel (a) the number of agents and the number of
inter-agent links as a function of simulation time.
In (b) the fraction of the landscape with network
coverage, and the fraction of the population reached
by the network, is plotted against time. Panel (c)
shows the average travel time 〈τp〉 for packets and
the average distance (number of inter-agent hops)
in the network 〈d〉, as functions of the number of
agents.

magnitude larger than the average). One probability dis-
tribution with such features is the power-law distribution
Prob p ∼ p−χ. To reduce the fluctuations between differ-
ent realizations of {p(x, y)}, and prevent unrealistically high
populations within a pixel, we sample the power-law distri-
bution in the bounded interval [1, (LxLy)1/(1−χ)] [10] with
χ = 3. Our results do not depend strongly on the distribu-
tion of p(x, y). We obtain qualitatively similar results with
normally distributed p values and real population-density
maps (data not shown).

In multiparameter, agent-based models, such as ASIM, a
systematic investigation of the full parameter space is infea-
sible. Parameters are, if possible, obtained from real sys-
tems. We set the desired degree kD = 5.52, the same av-
erage degree reported in Ref. [19]. Unless otherwise stated,
the desired size of the network is nD = 16,000, which is the
same order of magnitude as the current AS graph. Other
parameters are balanced to keep runtime low (less than one
day) while still engaging all aspects of the algorithm. This
means, for example, that between every network update, a
significant number of packets are routed through even the
smallest agents, and enough packages to cause congestion
pass through larger agents. Unless otherwise stated, we use
the parameter set given in Table 1. Many of the results we
show are taken from a single run, but we confirmed that the
results are representative by comparing them to 20 other
runs.

3.2 Network Growth
We begin by studying the growth of the network over

time. Fig. 3(a) plots the number of agents and links as
a function of simulation time for one representative run. At
τ = τ0 ∼ 4 × 105 the graph is sparser than kD. Initially,
the agents spend their budget on new links and increasing
capacity. At τ ∼ 1.5 × 106, the budget of the wealthier
agents is sufficient to invest in wires to new locations (see

Fig. 3(b)). This creates new traffic, which causes positive
feedback accelerating the traffic flow, coverage, budget, and
also more congestion. At τ ∼ 1.9 × 106, n(τ) and m(τ)
change from exponential to sub-exponential growth. As we
see below, this is also the time when a significant level of con-
gestion appears in the network. At about the same time, the
the network has expanded to serve entire population. With
the current model, the network would continue to grow in-
definitely with decreasing returns for the agents. A plausi-
ble extension would be to introduce maintenance costs that
are proportional to network size, in which case the network
would reach a steady state where the budgets of the agents
are balanced and no further investments can be made. For
τ ! 1.9×106 the increase of n(τ) is slower than exponential.
This is explained by the increasing level of congestion in the
system. In Fig. 3(c) we plot the average time 〈τp〉 for a
packet to travel from source to destination. 〈τp〉 is bounded
from below by the average distance (number of links in the
shortest path, averaged over pairs of nodes) 〈d〉. The two
curves diverge, i.e. a significant level of congestion appears,
around N = 1000. The growth of n(τ) and m(τ) slows down
at the same point. We conclude that the growth slowing is
arises from a congestion-driven negative feedback. The most
striking feature of network growth over time is the transition
from a small network, almost constant in size, to a rapidly
increasing system (around τ ∼ 1.8 × 106). This effect is
typical for technologies emerging from the interactions of a
large number of agents—they need a critical mass of users
to reach a significant fraction of the total population. One
can argue that the Internet reached this critical mass in the
early 1980’s when it started to span the globe. Another
important point in the Internet’s history was the advent of
the World Wide Web (WWW) in the early 1990’s, and with
it commercial applications and access to the general public.
Our model does not include applications, such as the WWW,
that undeniably affect network growth. Such effects could
be included by adopting a different traffic model, but for this
paper we aim at simplicity and generality. In the Internet,
ASes growth has been slower than the exponential increase
of agents predicted by the model (bgp.potaroo.net/cidr/;
read January 7, 2008). This discrepancy arises in part be-
cause we do not assume that maintenance costs are propor-
tional to income. If maintenance costs grew super-linearly,
then negative feedback could dampen growth. Other exter-
nal factors, such as the centralized method for allocating
and assigning AS numbers (Internet Assigned Numbers Au-
thority, www.iana.org), might also influence the actual rate
of growth experienced by the Internet.

3.3 Degree distribution
One of the most conspicuous features of AS-graphs is their

skewed degree distribution (first observed in Ref. [14]), com-
patible with a power-law functional form [9]. In Fig. 4(a)
we compare the cumulative degree distribution of our model
with that of the Internet’s. We use the model network from
the example run described earlier (taking data from the
simulation when N = 16,000), and the “AS06” network of
Ref. [19] (an AS-graph constructed from www.routeviews.org
and www.ripe.net, with N = 22,688). The match between
the model and the real networks is striking. Preliminary
studies suggest that the slope of the curve is largely insen-
sitive to changes in parameter values. The complexity of
ASIM raises the question of what causes this emergent de-
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Parameter Interpretation Value
Lx = Ly Number of pixels in the x (and y) direction 50
Ntraffic Number of packets sent per simulation step 1× 104

Ppkg Constant to determine packet source and dest. 0.001
n0 Agent growth threshold 35

Kinit Initial capacity of an agent 5
Cwire Price per pixel for new wire 500
Binit Initial budget for a new agent 3× 105

λ Parameter in exponential distribution 75

Table 1: Default parameters values for simulation experiments.

a b

c d1000

10

10−210−3

de
gr
ee

100

1
10−4

relative traffic intensity

10−4 10−6

10−4

10−3

0.01

0.1

1

10−4

0.1

1

1 10 100 1000

1 100

k

BA model

real
ASIM

0.01

0.1

1

1 10 100 1000

P(
k)

10

10−4

k

P(
k)

FKP model

0.01

10−3

P(
k)

10−3

1000
k

Figure 4: The degree distribution (cumulative mass
function) of a real AS-graph (AS06) together with
degree distribution of a network generated with the
model (a), the BA (b) and the FKP models (c).
Panel (d) is a density plot that illustrates the corre-
lation between traffic and degree in our model runs.

gree distribution. By comparing ASIM to two simpler mod-
els, we provide evidence that this is a combined effect of
geographic and economic factors. The two models are: the
Barabási–Albert (BA) model [3] (a general network model
that explains power-law degree distribution as a “rich-gets-
richer” phenomena), and the Fabrikant, Koutsoupias, and
Papadimitriou (FKP) [13] (explaining how power-law degree
distributions can appear from trade-offs in spatial optimiza-
tion).

The BA model is a growth model in which one node (and
m links to attach it with the rest of the network) is added ev-
ery time step. Preferential attachment is used to determine
the endpoints of the new links—the probability of attaching
to a node of degree k is proportional to k.

The FKP model is also a simple growth-model. Each time
step, one node, and a link attached to it, is added to the
graph. A new node i is assigned random coordinates in the
unit square and attached to the old node j that minimizes
d0(j) + α|ri − rj |. Here d0(j) is the graph distance (the
number of edges in the shortest path) between j and the
node added first, |ri− rj | is the Euclidean distance between
(the coordinates of) i and j, and α is a parameter setting
the cost-balance between making new physical connections
or using the existing network).

In Figs. 4(b) and (c) we plot the cumulative mass func-
tion of degree for one BA and one FKP network. The model
parameter values were chosen to give networks as close as
possible to the real AS-graph (m = 5 for the BA model,
α = 4 for the FKP model, and N = 22,688 for both). The
slope of the BA model is steeper than the real network, and
the curve for the FKP-model is flatter than the real data. To
compare the goodness-of-fit, since the curves have a similar
range in log pk, we measure the ratio θ of the area between
the curves and the area (in the log pk, log k-space) spanned
by the extreme values of log k and log pk. We find θ = 0.95%
for our model, 4.0% for the BA model, and 11% for the FKP
model. Although both the BA and FKP models have been
extended to yield better data fits [29, 1], the original forms
of the models illustrate two important components of In-
ternet growth, namely the rich-gets-richer effect driving the
growth of the BA model and the spatial trade-off effect of
the FKP model. A combination of these effects may explain
why our model’s degree distribution, and the curve of the
real network, lies between those of the original BA and FKP
models. In ASIM, the degrees of nodes do not directly affect
the creation of new links. However, preferential attachment
occurs indirectly via positive feedback—nodes with large de-
gree acquire more traffic, and thus more budget which they
can reinvest in more connections, thus increasing their de-
gree. The effect of preferential attachment in the model is
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Figure 5: Radial statistics for real and model net-
works. Panels (a)–(c) show the radial densities of
nodes for the real AS-graph and our algorithm (a),
the BA (b) and FKP (c) model. Panels (d)–(f) show
the average degree vs. average distance d̄ for our al-
gorithm, the BA, and the FKP model respectively.
The data of panels (b), (c), (e), and (f) are plotted
in Ref. [19] as well.

shown in Fig. 4(d), which is a plot of the probability density
of a node’s traffic load given its degree. Because an agent’s
income is correlated with the traffic that it propagates, and
a larger budget will increase the possibility of creating new
links, there is positive feedback between the degree and the
rate of degree increase, i.e. a form of preferential attachment.
Note that the correlation in Fig. 4(d) is not linear (the slope
is different from the solid line). It is known that nonlinear
preferential attachment does not give a power-law degree
distribution [21] (which we seem to have), so preferential
attachment is not the only factor affecting the network’s
growth. Also, if we had linear preferential attachment, the
slope of P (k) would be the same as the BA model.

3.4 Radial structure
Structurally, the AS graph is hierarchically ordered [28]—

engineers and network operators speak of the first, second
and third tier. For the model networks, we measure a node’s
position in the hierarchy by its network centrality [19]. In
Fig. 5 we diagram the average fraction of nodes and the
average degree as functions of the average distance d̄ to other
nodes in the network (d̄ is the inverse of a centrality measure,
known as closeness centrality, so more central nodes are to
the left in the diagrams). By this method we can get a
radial picture of the AS graph structure from the center
to the periphery. In Fig. 5(a)–(c) we plot the fraction of
vertices at different d̄-values. We note that the curves of the
model match the real AS-graph more closely than the BA
and FKP models do. For example, they have peaks roughly
corresponding to the tiers of the Internet, similar to the
observed AS-graph. The shift to the left of the model curve
in Fig. 5(a) can to some extent be explained by its smaller
size because larger networks have larger average distances,
leading to a curve displaced to the right. In brief, the BA
model lacks the complex periphery of the real AS-graph.
This can be seen by noting that its density is more balanced
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Figure 6: Traffic patterns of the model. (a) displays
the number of extra steps d+ in packet navigation
in the real Internet compared to our model. Panel
(b) shows the probability density of agents having
betweenness CB and traffic density ρ. The data is
collected from twenty independent runs.

compared to the left-skewed curve of the observed network.
The average degree as a function of d̄ is less right-skewed in
the BA model compared to the empirical network. As with
the degree distribution, the FKP model deviates from the
real network in the opposite direction compared to the BA
model. Specifically, the high degree nodes of the FKP model
are extremely concentrated in the center of the network.

3.5 Traffic flow and congestion patterns
Section 3.2 investigated network topology and its growth.

In this section we study traffic flow and how network topol-
ogy affects it. In the Internet, packets do not necessarily
travel the shortest distances between source and destination.
Most importantly, business agreements between agents ar-
range agents into a hierarchy [15]. The business contracts
put constraints on how packets are routed. For example,
in the hierarchy, a packet normally cannot first be routed
downwards (to customers), then upwards (to providers), even
if that is a shorter path (the valley free rule). Gao and
Wang [16] investigated the extra distance d+ packets need
to travel as a result of constraints such as these. They found
a decaying probability distribution of d+, meaning that most
of the traffic actually travels via shortest paths. ASIM does
not have explicit business agreements that force hierarchical
routing into the core of the network and out again. How-
ever, in most graphs a vast majority of shortest paths pass
through a restricted core of the graph [17], and our traf-
fic model routes most traffic via short (if not the shortest)
paths. The d+ distribution of our model (shown in Fig. 6(a))
matches the observation of Gao and Wang [16] (θ = 8.1%).
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We proceed to investigate the relationship between graph
centrality and traffic density. This can reveal how conges-
tion and fluctuations affect routing [18]. If all agents have
sufficient capacity for packets to always route along shortest
paths, then traffic density along a link l will be proportional
to its betweenness centrality

CB(l) =
X

i,j

σl(i, j)
. X

i,j

σ(i, j) (1)

where σl(i, j) is the number of shortest paths between nodes
i and j passing through the link l, and σ(i, j) is the to-
tal number of shortest paths between i and j. If an AS is
congested, the traffic through its links will be lower than
anticipated by the betweenness of the edge. Thus, conges-
tion patterns can be illustrated by studying betweenness
and traffic load. Fig. 6(b) is a density plot of the actual
traffic density as a function of betweenness of the links of
the model network. For more central nodes (higher between-
ness), there is a strong correlation between betweenness and
traffic density—the vertices with CB ≈ 4× 105 spans half a
decade of ρ. For the more peripheral nodes the correlation
is less clear (vertices with CB ≈ 5×104 can have ρ-values of
almost three orders of magnitude). Indeed, there seems to
be a separation of agents into two classes, one comprised of
agents with the capacity to keep traffic flowing and another
with inadequate capacity. For links of low betweenness the
traffic/betweenness correlation is weak. To summarize, con-
gestion does affect the system, and it is most pronounced
for nodes carrying little or intermediate traffic levels.

3.6 Geographic structure
We briefly discuss the spatial network structure—another

feature that emerges from the model. As an example, we
ran the simulation on the population density profile of the
United States. In Fig. 7(a)–(d) we show the growth of
the largest agent for a run with nD = 20, Lx = 513 and
Ly = 323. Lines are drawn between each node (pixel) and
the agent’s nearest node at the time of the node’s addition.
In this representation the length of the lines are propor-
tional to the wire cost. Fig. 7(e) and (f) plot the locations
of Tier 1 exchange points of two major Internet providers
Sprint and AT&T (adapted from Ref. [27]). There are some
similarities between these real networks and the model net-
work of Fig. 7(d)—all networks span the whole continent
and have locations concentrated in urban areas. In Ref. [22]
the authors observe a super linear scaling relationship be-
tween the density of servers and the population density with
an exponent between 1.2 and 1.7. Our model is consistent
with this observation (with an exponent in the lower range
of this observation). Studying spatial aspects of the model
more carefully is an area of future research.

4. DISCUSSION
We have presented a mechanistic model of communica-

tion networks that, like the AS-level Internet, is built of
spatially extended subnetworks that have an interest in in-
creasing the traffic running through them. Our model net-
works grow slowly until they reach a critical mass where an
approximately exponential growth begins; they match the
degree distribution of real networks and the radial statistics
closely. The degree distributions of both the model and the
real world lie between the distributions of the pure BA and

FKP models. Because ASIM incorporates aspects of both
the BA and FKP models we hypothesize that this macro-
feature arises from the combination of preferential attach-
ment (of the BA model) and geographically constrained op-
timization (of the FKP model). ASIM recreates important
traffic characteristics observed in real Internet traffic. And,
when we run the model on the US population density map
many features of the backbone of existing large agents are
recreated.

The different aspects of the model (traffic, geography, and
economy) all affect the output. In this paper we do not scru-
tinize the model’s parameter dependence, although prelimi-
nary studies suggest that the speed of growth (quantified by
e.g. the time to reach the critical density) is strongly depen-
dent on both the wire and attachment prices, the popula-
tion density profile (a more clumped population distribution
produces faster growth), and their desire to communicate.
On the other hand, network topology is rather insensitive
to the population distribution, and also not very dependent
on how sources and destinations are generated (e.g., intro-
ducing a distance dependence does not matter much). The
actual layout of the network, however, does depend on the
population profile.

Many interesting extensions of ASIM are possible. For
example, we could include business agreements between the
different agents (similar to Ref. [25, 8]), or change the traffic
patterns from person–to–person communication to a situa-
tion with more traffic originating from central servers. We
could also model intra-AS routing. Many of today’s ASes
employ “hot-potato” routing and transfer packets to the
next AS as quickly as possible, to reduce cost. Alterna-
tive intra-AS routing strategies, such as routing the packet
as close to the destination as possible, could be tested within
the model’s framework.
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