
Int. J. Inf. Secur. (2009) 8:331–345
DOI 10.1007/s10207-009-0078-1

REGULAR CONTRIBUTION

Negative representations of information

Fernando Esponda · Stephanie Forrest · Paul Helman

Published online: 14 April 2009
© Springer-Verlag 2009

Abstract In a negative representation, a set of elements (the
positive representation) is depicted by its complement set.
That is, the elements in the positive representation are not
explicitly stored, and those in the negative representation are.
The concept, feasibility, and properties of negative represen-
tations are explored in the paper; in particular, its potential
to address privacy concerns. It is shown that a positive rep-
resentation consisting of n l-bit strings can be represented
negatively using only O(ln) strings, through the use of an
additional symbol. It is also shown that membership queries
for the positive representation can be processed against the
negative representation in time no worse than linear in its size,
while reconstructing the original positive set from its negative
representation is an NP-hard problem. The paper introduces
algorithms for constructing negative representations as well
as operations for updating and maintaining them.

Keywords Negative databases · Immune-inspired algo-
rithms · Privacy information hiding · Data representations

F. Esponda (B) · P. Helman
Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131-1386, USA
e-mail: fesponda@cs.unm.edu

P. Helman
e-mail: helman@cs.unm.edu

Present Address:
F. Esponda
Department of Computer Science, Instituto Tecnológico
Autónomo de México, Mexico, D.F., Mexico

S. Forrest
Santa Fe Institute, 1399 Hyde Park Road,
Santa Fe, NM 87501, USA
e-mail: forrest@cs.unm.edu

1 Introduction

Large collections of data are ubiquitous, and the demands
we place on them continue to increase. We expect data to
be available on demand but to be protected from malicious
parties; we would like the ability to search data collections in
new ways, drawing inferences about large-scale patterns and
trends, while preventing the wrong kinds of inferences (as in
baseless racial profiling). Content and the rules for accessing
it must be continually updated and, eventually, we will want
the ability to audit the uses to which our personal data are put.
Although many of these problems are old, they must now be
solved more quickly for larger and more dynamic collections
of data under more stringent privacy requirements.

In this paper, we introduce an approach to representing
data that addresses some of these issues, particularly those
related to privacy and distributed data. Our goal is to devise
data representations that prevent inappropriate queries and
inferences, while supporting legitimate operations.

There are several motivating scenarios for our work. Con-
sider, for example a watch list that is to be made available to
airline agents. It is desirable for these agents to have the abil-
ity to verify whether a given name is on the list, but at the same
time not to have the ability to arbitrarily browse its contents
(or even assess its size), lest it fall into the wrong hands. A
second goal involves distributed data, where we would like to
privately determine the intersection of sets owned by differ-
ent parties. For example, two or more entities might wish to
determine which of a set of possible items (e.g. transactions)
they have in common without revealing the totality of the
contents of their database or its cardinality. A longer term
motivation concerns a large database of personal records,
which an outside entity might need to search, for example, to
identify suspicious activities or to conduct epidemiological
studies. Under this scenario, it is desirable that the database

123

332 F. Esponda et al.

support only the legitimate queries while protecting the pri-
vacy of individual records, say from inspection by an insider.

We present negative databases as a specific example of
representing data negatively. In this approach, the negative
image of a set of data records is represented rather than the
records themselves (Fig. 2). Initially, we assume a universe
U of finite-length records (or strings), all of the same length
l and defined over a binary alphabet. We logically divide the
space of possible strings into two disjoint sets: DB represent-
ing the set of records that holds the information of interest,
and U − DB denoting the set of all strings not in DB. We
assume that DB is uncompressed (each record is represented
explicitly), but we allow U −DB to be stored in a compressed
form called N DB. We refer to DB as the positive database
and N DB as the negative database.

Consider, for example, a banking database of the tuples
〈Name, Transaction type, Date〉 with a total length of
400 bits, where the first field stores the name of a client,
the second has the description of the banking transaction
like “withdrawal” or “deposit” and the third stores the date
the transaction took place. The positive database will con-
tain the actual names of the bank’s clients, their transac-
tions and the date they occurred, while the negative database
will instead have all possible 400 bit combinations except
the ones corresponding to the bank’s factual data. From a
logical point of view, either database will suffice to answer
questions regarding DB. However, the different representa-
tions present different advantages. For instance, in a positive
database, inspection of a single record provides meaning-
ful information. However, inspection of a single (negative)
record reveals little about the contents of the original data-
base. Because the positive tuples are never stored explicitly,
a negative representation would be much more difficult to
misuse. Similarly, depending on the specific representation
of N DB, the efficiency of certain kinds of queries may be
significantly different than the efficiency of the same query
under DB. Some applications may benefit from this change
of perspective. Most applications seek to retrieve informa-
tion about DB as efficiently and accurately as possible, and
they typically are not explicitly concerned with U − DB.
Yet, in situations where privacy is a concern it may be useful
to adopt a scheme in which certain queries are efficient and
others are provably inefficient.

This paper describes the concept of a negative representa-
tion, gives some initial results on its feasibility, and illustrates
how alternative negative representations can produce distinct
properties with respect to retrieving information or protecting
privacy. We do not yet fully understand all of the properties of
the negative data representations we present, and there may
be other representations with different properties appealing
to distinct applications.

In the following sections, we first show that implementing
N DB is computationally feasible. We do this by introducing

a scheme that requires O(ln) negative records to represent
the complement of a positive database consisting of n l-bit
strings, and then giving an algorithm for finding such a rep-
resentation efficiently. We next investigate some of the pri-
vacy implications of the negative scheme. In particular, we
show that the general problem of recovering a positive data-
base from our negative representation is NP-hard. We then
present a randomized algorithm for creating negative rep-
resentations that are difficult to reverse, as well as opera-
tions for updating and maintaining a negative database. We
discuss what types of queries can be carried out efficiently
under this representation and how negative databases can
be used to perform set intersection—an important operation
among databases. Finally, we review related work, discuss
the potential consequences of our results, and outline areas
of future investigation.

2 Representation

In order to create a database N DB that is reasonable in
size, it is necessary to compress the information contained in
U − DB. We introduce one additional symbol to the binary
alphabet, known as a “don’t care,” written as ∗. The entries in
N DB will thus be l-length strings over the alphabet {0, 1, ∗}.
The don’t-care symbol has the usual interpretation and will
match either a one or a zero at the bit position where the
∗ appears. Positions in a string that are set either to one or
zero are referred to as “defined” or “specified” positions, and
locations where a ∗ appears are referred to as “unspecified”
positions. With this new symbol we can potentially represent
large subsets of U − DB with just a few entries.

For example, the set of strings U − DB can be exactly
represented by the N DB set shown below:

DB (U − DB) N DB
001

000 010 0*1
111 011 ⇒ *10

100 10*
101
110

The convention is that a binary string s is taken to be in DB
if and only if s fails to match each of the entries in N DB.
This condition is fulfilled only if for every string t j ∈ N DB,
s disagrees with t j in at least one defined position.

2.1 The prefix algorithm

In this section, we present an algorithm as proof that a neg-
ative database N DB can be constructed in reasonable time
and of reasonable size. The prefix algorithm introduced here

123

Negative representations of information 333

Fig. 1 The prefix algorithm outputs a negative database N DB of size
O(l · |DB|) representing the strings in U − DB. See Fig. 2 for an
example input/output of the prefix algorithm

Fig. 2 Column 1 gives an example DB, column 2 gives the corre-
sponding U − DB, column 3 gives the corresponding N DB gener-
ated by the prefix algorithm, column 4 presents some possible c-keys
extracted from N DB, and column 5 gives an example output of RN DB
(see Sect. 5)

is deterministic and reversible—DB can be recovered by
inspecting N DB—which has consequences for the kinds
of inferences that can be made efficiently from N DB. The
algorithm works by iteratively finding every prefix wi not
contained in DB. For each such wi it creates a record in
N DB consisting of wi with the remaining positions set to *.
Figure 1 gives the pseudo code for the algorithm. An imple-
mentation of the prefix algorithm and all the other algo-
rithms described in this paper is available from http://cs.unm.
edu/~forrest/negdb.html. An example DB, U − DB and the
N DB produced by the prefix algorithm is given in Fig. 2.

Lemma 1 The prefix algorithm creates a database N DB
that matches exactly those strings not in DB.

Proof Every string not in DB must have a minimum length
prefix that is not a prefix of any string in DB. Step three of
the algorithm (Fig. 1) finds these prefixes and, for every such
prefix, it appends a representation of every possible string
with that prefix to N DB (step five). If a pattern—a specific
sequence of 1s and 0s— is not present in DB’s window wi+1

and its own prefix is not in wi then it must have been inserted
in N DB before. Step two initializes W0 so that the first iter-
ation considers every pattern absent from DB. '(

Theorem 1 The negative data set (U − DB) can be repre-
sented using O(l · |DB|) records.

Proof For every window of size i there are at most |DB|
“negative” records created and inserted in N DB (steps 4–6).
The number of windows is at most l (step 9) therefore, the
number of negative records is O(l · |DB|). '(

The N DB produced by the prefix algorithm has some inter-
esting properties. For example, each string in U − DB is
matched by exactly one N DB record. This non-overlapping
property allows N DB to support more powerful queries than
simple membership, as shown in Sect. 4.1. Consider, for
instance, the N DB produced by the prefix algorithm from
the banking database with tuples <Name, Transaction type,
Date> discussed in Section 1. It is easy to determine how
many transactions “John Doe” made on “01/01/2003” by
selecting, from N DB, all records that match the name and
date, and then counting the number of *s in the transac-
tion field to determine how many strings a particular neg-
ative record represents (by exponentiating 2 to this number).
Since the records are non-overlapping, the addition of the
number of strings each such record represents amounts to
the total transactions not made by John Doe in 01/01/2003.
Subtracting this quantity from the total number of possible
transactions for a specific name on a specific date (given by
exponentiating 2 to the number of bits in the Transaction
field) will yield the desired total. This is particularly inter-
esting if the records in N DB are distributed among several
parties, as no proper subset of the parties can compute this
value.

In general, we would like some inferences to be hard (e.g.,
inferring the original DB from N DB) and other inferences
to be easy, depending on the application (e.g., finding certain
kinds of correlations in DB as in the above example). In the
following section, we focus on the question of how easy it is
to recover the original DB from N DB.

3 Reversibility

In Sect. 2.1 we presented an algorithm for generating N DB
that demonstrates the feasibility of a negative representation.
We now turn our attention to one property of negative repre-
sentations—the difficulty of inferring the positive database
from the entire negative database. First we establish that the
representation described in Sect. 2 is potentially difficult to
reverse (it is an NP-hard problem), and in Sect. 5 we present
an algorithm aimed at producing hard-to-reverse instances.

123

http://cs.unm.edu/~forrest/negdb.html
http://cs.unm.edu/~forrest/negdb.html

334 F. Esponda et al.

Reconstruction of DB from N DB is NP-hard in the
following sense.1

Definition 1 Self Recognition (SR):
INPUT: A set U − DB of binary strings represented by a col-
lection N DB of length l strings over the alphabet {0, 1, ∗},
and a candidate self set DB.
QUESTION: Does N DB represent the self set DB?

We establish that SR is NP-hard. Note that N DB repre-
sents an arbitrary set U − DB, and we do not specify how
it was obtained. First we establish the NP-completeness of
the following problem.

Definition 2 Non-empty Self Recognition (NESR):
INPUT: A set U − DB of binary strings represented by a col-
lection N DB of length l strings over the alphabet {0, 1, ∗}.
QUESTION: Is DB nonempty? That is, is there some string
in U = {0, 1}l not matched by N DB?

Theorem 2 NESR is NP-complete.

Proof NESR is clearly in NP . (If we guess a string, it is
easy to verify that it is not matched, and thus a member of
DB, by comparing it against every record in N DB).

The NP-completeness of NESR is established by trans-
formation from 3-SAT. Start with instance I of 3-SAT. Let
X be the set of variables {xi }, and suppose l is the number
of variables. The constructed instance of NESR will be over
length l strings. Each clause {Li , L j , Lk} in I (Li is a literal,
which is either xi or xi complement) creates a length l string
in N DB as follows. All positions other than i, j , or k con-
tain ∗. Position i contains 0 if Li is xi and contains 1 if Li is
x̄i (complemented xi). A similar construction is used for the
other two literals L j and Lk in this clause. Figure 3 shows
an example of this mapping.

Claim: There exists a truth assignment satisfying I if and
only if there exists a string in U = {0, 1}l not matched by
N DB (and therefore in DB). In the following, if A is a truth

Fig. 3 Mapping SAT to N DB: in this example the boolean formula
is written in conjunctive normal form (CNF) and is defined over five
variables {x1, x2, x3, x4, x5}. The formula is mapped to an N DB where
each clause corresponds to a record and each variable in the clause is
represented as a 1 if it appears negated, as a 0 if it appears un-negated
and as a ∗ if it does not appear in the clause at all. It is easy to see that a
satisfying assignment of the formula such as {x1 = FALSE, x2 = TRUE,
x3 = TRUE, x4 = FALSE, x5 = FALSE } corresponding to string 01100
is not represented in N DB and is therefore a member of DB

1 For historical reasons we sometimes refer to DB as Self.

assignment to the variables in X , S(A) is the string in U
obtained by setting the i th bit to 1 if A assigns xi = T and
the i th bit to 0 if A assigns xi = F .

We have:
A satisfies I

⇐⇒ for every clause Cq = {Li , L j , Lk}, at least one
literal is satisfied
⇐⇒ S(A) fails to match at least one of the bits i, j, k

of the qth

member of N DB (generated from Cq), because uncom-
plemented literal
Li generates 0 in the i th position and complemented Li
generates 1 in
i th position, and similarly for L j , Lk
⇐⇒ S(A) is in DB.

'(

Corollary 1 NESR is NP-complete even if every record of
N DB contains exactly three defined positions.

Proof Our transformation always produces such an instance
of NESR. '(

Corollary 2 Empty Self Recognition (ESR, the complement
of NESR, answers YES if and only if N DB represents the
empty set) is NP-hard.

Proof Trivial Turing transformation from NESR. '(

Theorem 3 Self Recognition (SR, defined above) is
NP-hard.

Proof We have established this to be the case even when the
candidate self set DB is empty, and even when every member
of N DB contains exactly three defined positions. '(

4 Applications

In this section, we give two examples of how a negative rep-
resentation might be useful. First, we discuss queries against
a negative database, a subject whose full treatment is left for
future work. A second possible application involves distrib-
uted negative databases, where we use set intersection as an
example.

4.1 Queries

Using the representation described above, negative databases
consist of a set of strings defined over {0, 1, ∗}l . Queries to
such databases are also expressed as strings defined over the
same alphabet. Using the banking example from Sect. 1, the

123

Negative representations of information 335

binary string representing “John Doe, withdrawal,
01/01/2003” is interpreted as the query Q: Did John Doe
make a withdrawal on 01/01/2003? And the ternary string
representing “John Doe, *, 01/01/2003” is interpreted as the
query Q′: What transactions did John Doe make on
01/01/2003?

When a query Q consists only of defined positions, i.e. it
has no *s, we refer to it as an authentication or simple mem-
bership query. Answering such a query is straightforward as
it is necessary to ascertain only if Q is matched by any one of
the strings in N DB (matching is described in Sect. 2). On the
other hand, if Q contains an arbitrary number of unspecified
positions, answering it is equivalent to asking whether the
corresponding SAT formula has any satisfying assignments
when an arbitrary number of its variables have pre-assigned
truth values. This remains an NP-hard problem for arbi-
trary sets of pre-assigned truth values. This contrasts with a
positive database DB, where the records are stored explic-
itly and answering such queries takes time proportional to
the size of DB.

For example, consider the query Q′: What transactions
did John Doe make on 01/01/2003? and the correspond-
ing string defined over {0, 1, ∗}. If Q′ is issued to DB, and
computed by comparing it against each entry of DB, it will
return only those strings that match the specified fields, even
though Q′ might actually represent an exponential number
of strings. However, if Q′ is issued to N DB, it will be nec-
essary to find which of all the possible strings of length
l = 400 whose defined positions correspond to “John Doe”
and “01/01/2003” that are not in N DB and output them. It
is an NP-hard problem to accomplish this under our repre-
sentation of N DB for an arbitrary choice of defined posi-
tions. Note, however, that it is possible to construct N DBs
with specific structures for which this query can be answered
efficiently, as discussed in Sect. 2.1. Intuitively, what makes
some queries inefficient is not the size of N DB, as it is only
polynomially larger than DB, but the fact that a single ele-
ment of U , a single tuple, can be represented by several N DB
entries and that a single N DB entry represents several tuples.
This makes it difficult to determine, in general, if there are
even any instances at all of a given field in DB.

In summary, our representation scheme opens the door for
negative databases that naturally restrict the type of informa-
tion that can be retrieved efficiently, limiting queries to the
authentication class; queries of an exploratory nature will, in
general, be intractable. Several applications may profit from
having databases that support only this limited type of que-
ries, an example is presented in the following section.

A longer term goal is to control this complexity boundary,
either through a deeper understanding of the existing repre-
sentations or by devising new ones. This would allow us to
support a limited set of queries (say, those allowed by law)
and prevent arbitrary exploratory searches.

4.2 Set intersection

One potential use of negative databases is for privately com-
puting the intersection of several sets. This operation has
applications in many domains such as recommender systems
aimed at matching sets of preferences or, for example, find-
ing the common entries in a collection of watch-lists. Due to
the inherent properties of negative databases it is possible to
perform these computations while hiding, at the same time,
some potentially sensitive information.

Consider the banking example from Sect. 1 where the
database has the tuples <Name, Transaction type, Date>.
Suppose there are n banks, each an owner of a database DBi ,
that wish to establish as part of some money laundering inves-
tigation which items they have in common, i.e. {DB1 ∩ · · ·∩
DBn}, without revealing the totality of their databases or their
cardinality. If each party produces a (hard to reverse) negative
database N DBi representing all records not in their DBi to
share with the other parties (we are assuming that all parties
encode their information in exactly the same way), the i th

bank can compute the set intersection by simply establish-
ing which of the entries of its database DBi are not matched
by any string in {N DB1 ∪ · · · ∪ N DBn}, i.e. DBi − {U −
DB1 ∪ · · · ∪ U − DBn}. An operation that can be carried
out efficiently as discussed in Sect. 4.1. It is easy to see,
using De Morgans’s Laws, that x ∈ {DB1 ∩ · · · ∩ DBn} ↔
x .∈ ¬{DB1∩· · ·∩DBn} ↔ x .∈ {U−DB1∪· · ·∪U−DBn}.

This simple scheme conceals the cardinality of each
party’s database because, as discussed in Sect. 3, it is NP-
hard to enumerate DB given its negative representation
N DB. However, this scheme does not prevent party j from
testing if an arbitrary string x is a member of DBi , regardless
of it being in the intersection or not; as such, the proposed
set-up could leak unintended information.

Alternatively, assume the existence of a protocol that
allows us to anonymously create {N DB1 ∪ · · · ∪ N DBn}
(for instance, using anonymous routing [18,52] and the oper-
ations described in Sect. 5.2) in such a way that it is infeasi-
ble to determine which party contributed which strings. The
resulting negative database can only be used to retrieve the
intersection of the DBi s, regardless of whether it is hard to
reverse or not (if it is hard to reverse a DBi would be nec-
essary to obtain it). This example illustrates how the char-
acteristics of a negative representation can be exploited to
naturally secure certain operations.

5 Negative database algorithms

The prefix algorithm presented in Sect. 2.1 is simple and dem-
onstrates that a compact negative representation N DB can
be obtained from DB. Although we have shown in Sect. 3
that the general problem of reversing a given set N DB to

123

336 F. Esponda et al.

obtain DB is NP-hard, using the simple prefix algorithm
to obtain N DB from DB raises two concerns regarding pri-
vacy: (a) The prefix algorithm produces only an easy subset
of possible N DB instances and (b) If the action of the pre-
fix algorithm (or any algorithm) that produces N DB from
DB could be reproduced by an adversary, then the adver-
sary could easily decide for a given N DB and candidate DB
whether N DB represents U − DB. The two concerns are of
course related, for if an algorithm were capable of producing
only one N DB for each DB it is given as input, the image of
the algorithm could not define an NP-hard set of instances
of NESR.

In this section, we present algorithms that address both of
these concerns. The section is divided into two subsections,
the first addresses how to create an initial negative database
while the second deals with how it can be updated to reflect
changes in the composition of DB. In addition, each subsec-
tion analyzes the algorithm’s correctness and examines some
of its properties.

5.1 Initialization

The RN DB algorithm in Fig. 4 takes as input a positive data-
base DB (which might be initially empty) and outputs a neg-
ative database N DB (chosen probabilistically) that exactly
matches U − DB. Its basic strategy is similar to that of
the prefix algorithm in that, for a given permutation π—an
ordering of the bit positions of a string—applied to every
string in DB, it finds every prefix Vp not present in π(DB)

(see steps 0, 2, 3, 4). For every such prefix, the algorithm

Fig. 4 The Randomize_N DB (RN DB) algorithm randomly gener-
ates a negative database representing the strings in U − DB

randomly chooses an additional 0 ≤ n ≤ O(log2(l)) posi-
tions and creates 2n (linear in l) strings with Vp and the addi-
tional n positions set to every possible bit assignment (steps 7,
8, 9)(see Lemma 2). This allows us to create strings that have
specified bits beyond the prefix but still limit the size of the
resulting N DB. Function Pattern Generate (Fig. 5) replaces
some of the specified bits by * symbols, taking care that no
string in DB is matched by the operation (see Definition 3).

5.1.1 Correctness

Definition 3 A string y is subsumed by string x if and only
if every string matched by y is also matched by x . A string
x obtained by replacing some of y’s defined positions with
don’t cares, subsumes y.

Lemma 2 A set of 2n distinct strings that are equal in all but
n positions match exactly the same set of strings as a single
string with those n positions set to the don’t care symbol.

Lemma 3 Pattern_Generate(DB,Vpe) outputs a string that
matches every string matched by the input pattern Vpe with-
out matching any other strings in DB.

Proof To see that Pattern_Generate (as shown in Fig. 5)
produces a string that matches everything Vpe matches, it
suffices to note that the output string specifies a subset of the
positions set in the input pattern Vpe: lines 1–6 discard some
of the positions that comprise Vpe, while lines 7–9 reinstate
some of them (see Definition 3).

Additionally, the subpattern found in lines 1–6 (a c-key
according to Definition 4 in Sect. 5.1.2) is guaranteed not
to match any string in DB (lines 3–4). This subpattern is
included in the final string output by the function, ensuring
it will not match any string in DB. '(

Theorem 4 The Randomize_N DB algorithm, under any
sequence of random choices, produces an N DB that exa-
ctly represents U − DB.

Proof Let ns j be any string in U − DB and let i be the length
of the smallest prefix Vp of ns j that is absent from DB under
permutation π . The algorithm will find this prefix at iteration
i (line 3) and will insert a series of strings into N DB that
match the same strings as Vp as follows: lines 7–11 create a
collection of strings that subsume Vp by augmenting it with
additional positions (lines 7–9 and Lemma 2) and assigning
every possible pattern to these positions. Then, for each aug-
mented pattern, function Pattern_Generate (line 10) creates
a string that subsumes it without matching anything in DB
(see Lemma 3). The resulting string is finally inserted into
N DB (line 11).

In the case where DB is empty, lines 1–3 will consider
the strings represented by every possible pattern of length
i + 1 in the i + 1 length prefix (under permutation π), which

123

Negative representations of information 337

Fig. 5 Pattern_Generate
produces a string over {0, 1, ∗}
that matches Vpe without
matching any string in DB

encompasses all of U . Lines 4–11 insert the appropriate
strings into N DB as discussed above. The function iterates
once and exits. '(

5.1.2 Properties

Section 3 presents a transformation from 3-SAT to N DB,
and in what follows we will use the formalisms interchange-
ably. In particular, DB and sets of assignments will be used
interchangeably, N DB and formula φ will be used inter-
changeably, and the output of the algorithms to be presented
in this section can be viewed either as strings in N DB or
clauses in φ. For this reason we restrict clauses in φ to have
no repeated variables.

The algorithm presented in Sect. 5.1 has the flexibility, by
manipulating some of its parameters, to produce N DBs or
SAT formulae with varying structures (see instance-genera-
tion models [13,14,45]). The following are some properties
of the outputs it is able to produce.

Definition 4 A c-key is bit pattern not present in DB with
no extraneous bits: A c-key defines a minimal pattern in that
the removal of any bit yields a pattern in DB (see Fig. 2).
A c̄-key is the complement of a c-key.

Lemma 4 Let DB be a set of assignments and φ a C N F
formula. φ is satisfied by every x ∈ DB if and only if every
clause Cq in φ contains a c̄-key with respect to DB.

Proof Suppose clause Cq of φ contains a c̄-key. Then, by
Definition 4, no x ∈ DB contains the complement pattern of
a c̄-key. Each x ∈ DB contains at least one bit appearing in
c̄-key which satisfies the corresponding literal and therefore
satisfies Cq .

Now assume each x ∈ DB satisfies each clause of φ (that
is, each x is a satisfying truth assignment for φ). Suppose to
the contrary, that some clause Cq does not contain a c̄-key.
Then, the complement pattern of c̄-key appears in DB, and
in particular in at least one x ∈ DB. But then x contains

no bit appearing in c̄-key, thus failing to satisfy each of the
corresponding literals in Cq . This contradicts our original
supposition, hence, it must be that every clause Cq contains
a c̄-key. '(

Lemma 5 For every possible clause satisfied by DB con-
tained in the input pattern Vpe, there is some execution of
Pattern_Generate (Fig. 5) (with an appropriate sequence of
random choices) that will generate it.

Proof Let Cq be a clause satisfied by DB and Pq its corre-
sponding bit pattern (see Fig. 3 for the mapping). Suppose Pq
is contained in the input pattern Vpe, then by Lemma 4 it must
have as a subpattern some c-key K . For every pattern Vpe and
every c-key K contained in Vpe, there exists a permutation
π such that K occupies the |K | rightmost bit positions of
π(Vpe) (step 1). The algorithm proceeds by discarding one
by one, from left to right, every bit it examines for as long
as there is a c-key present within the remaining subpattern
(steps 2–6). It follows that since K is a c-key and occupies
the |K | rightmost positions of π(Vpe) that K is the pattern
that will be found.2 Steps 7–9 of the algorithm generate a
string containing K plus, by the appropriate random choice,
the additional bits that comprise Cq . '(

Lemma 6 For every clause satisfied by DB there is at least
one string in U − DB that contains the corresponding pat-
tern.

Proof Suppose Cq is a clause satisfied by DB and Pq the
corresponding bit pattern, then by Lemma 4 Cq has a c̄-key
and Pq a c-key K . By the definition of c-key (Definition 4)
there is no string in DB with K as a subpattern, hence every
string with K as a subpattern must be in U − DB, including
the one containing Pq . '(

2 Note that it is not required for the c-key to be contiguous or to occupy
the rightmost bits to be found. It is only convenient to focus on this case
for the proof.

123

338 F. Esponda et al.

Theorem 5 The RN DB algorithm, during any execution,
can produce any clause with O(log(l)) or fewer literals that
is satisfied by DB.

Proof Let Cq be a clause of k ≤ O(log(l)) literals satis-
fied by DB and Pq its corresponding bit pattern. For each
Pq there is at least one string Nc in U − DB that contains
it (Lemma 6). String Nc, under permutation π , has a prefix
of length i that is not present in DB which will come under
consideration at iteration i of the algorithm (line 3). Suppose
m of the k bits of Pq are included in the i length prefix of
Nc, the remaining k − m positions will be set in steps 7–8 by
the appropriate random choice and the string corresponding
to Cq will be found by Pattern_Generate (Lemma 5).

The cycle of line 5 ensures that each prefix is considered
O(l) times allowing any particular clause contained within
a string with that prefix to be found independently. '(

Corollary 3 The RN DB algorithm can produce any seq-
uence of O(l) clauses with O(log(l)) literals that are satis-
fied by DB as part of its output.

Proof Theorem 5 states that any clause satisfied by DB, can
be generated during any execution of the algorithm. It fol-
lows that, since the algorithm can generate formulas with
O(l) clauses, it can generate any sequence of O(l) clauses
that are satisfied by DB as part of its output. '(

It is important to note that the RN DB algorithm is unable
to produce every (polynomial size) formula (in polynomial
time) that is satisfied exactly by DB. In fact, it can be shown
that there is no efficient algorithm that, given DB as input,
can generate all and only formulae that are exactly satisfied
by DB, unless CoNP = NP . We saw, however, that the
algorithm can generate every formula of a given length that is
satisfied exactly by DB together with clauses that are super-
fluous3 (Corollary 3).

We have shown in [22] that the image of RN DB algo-
rithm does in fact define an NP-hard problem as a function
of the size of the resulting N DB, albeit not necessarily as a
function of the size of the original DB. Further, given that
NP-hardness is a worst case analysis, this property alone is
not sufficient to guarantee that a negative database is hard to
reverse in practice.

The challenge is to generate databases that are hard to
reverse on average. In Sect. 3 we discussed the isomorphism
between boolean formulas and negative databases. This rela-
tionship suggests that results from this discipline can be lever-
aged for our purposes; in particular, the SAT community has
extensive analysis on what makes for hard SAT instances. For
instance, formulas with the right ratio of clauses to variables

3 This observation implies that identifying superfluous clauses is an
NP-hard problem itself.

and formulas with the right statistical distribution of literals
tend to be hard [1,36,45]. The algorithms presented above
provide the flexibility to induce the corresponding structures
on our negative databases.

We believe, however, that there are many applications
where even if it is infeasible to provide full cryptographic
protection, some degree of protection is important. Exam-
ples include data collection (such as surveys where the act of
answering a survey question cannot be encrypted), fingerprint
databases (where exact matches are unlikely, so encryption
could be problematic), or sensor networks where distributed
negative databases could reduce the risk of individual sensors
being compromised.

Finally we note that Pattern_Generate runs in time
O(l ·|DB|) and that the Randomize_N DB algorithm outputs
a database with O(l2|DB|) entries in O(l3|DB|2) time.

5.2 Updates

We now turn our attention to modifying the negative data-
base N DB once it has been initialized. We review three
operations: Insert, Delete and Clean-up, initially introduced
in [21]. It is worth mentioning that the meanings of the
insert and delete operations are inverted from their tradi-
tional sense, since we are storing a representation of what
is not is some database DB. For instance, using the banking
example of Sect. 1, the command “insert <John Doe, with-
drawal, 01/01/2003> into DB” is implemented as “delete
<John Doe, withdrawal, 01/01/2003> from N DB” and the
request “delete <John Doe, deposit, 01/02/2003> from DB”
executed as “insert <John Doe, deposit, 01/02/2003> into
N DB”.

The core operation for the procedures, named
Negative_ Pattern_Generate (Fig. 6), creates a string over
{0, 1, ∗}l that subsumes x and matches nothing else in DB.
Its functionality is similar to that of Pattern_Generate (Fig. 5)
and could be replaced by it. However, the difference is that
Negative_Pattern_Generate does not need DB to be avail-
able, a potentially useful feature. This variation is reflected
in lines 3–5 where extracting a subpattern from input x is
accomplished by determining if replacing a specified bit in
x by a * yields a string that is represented by N DB ∪ {x}.4
Owing to the similarity between procedures, the proof that
Negative_Pattern_Generate is correct is very similar to
Lemma 3 and is therefore omitted.

5.2.1 Insert into N DB

The purpose of the insert operation is to cause the negative
database to represent all the binary strings depicted by the

4 Note that this subpattern does not necessarily constitute a c-key (it is
easy to see that extracting c-keys form N DB is NP-hard).

123

Negative representations of information 339

Fig. 6 Negative_Pattern_
Generate. Takes as input a string
x defined over {0, 1, ∗} and a
database N DB and outputs a
string that matches x and
nothing else outside of N DB

Fig. 7 Insert into N DB

Fig. 8 Possible states of N DB
after successive initialization,
deletion and insertion of a string

input string x ∈ {0, 1, ∗}, i.e. to match every binary string
matched x , together with those strings already represented
by N DB (x might be a string with no * symbols at all). It is
important to note that in order to insert a string x into N DB it
would be sufficient to simply append to N DB. However, this
would leave a record of the operation. In order to alleviate
this, Insert may specify some additional positions, creating
some additional strings to insert (see Lemma 2) (steps 6, 7,
8, 9), and then select a subset of the total specified posi-
tions for the string to keep (step 10). The Insert operation
may insert several strings (step 1) per input string x , it is

important to note that all of these entries are expected to be
different due to the random nature of adding extra positions
(steps 6, 7, 8), as well as to the non-deterministic fashion in
which specified positions become unspecified during the call
to Negative_Pattern_Generate (step 10). Figure 7 shows the
pseudocode for this operation (see Fig. 8 for an example).

Theorem 6 Function Insert(x, N DB) outputs a negative
database that exactly matches (U − DB) ∪ {x}.

Proof It follows directly from Lemmas 2 and 3. '(

123

340 F. Esponda et al.

Fig. 9 Delete from N DB

Fig. 10 Clean-up. Outputs a
negative database that represents
the same strings as its input
N DB with equal or fewer
entries

5.2.2 Delete from N DB

This operation removes a set of binary strings from N DB.
The function first identifies all the N DB entries, Dx , that
match x—the string to be removed—and withdraws them
from N DB (steps 1,2). If the operation were to stop here,
there would likely be many strings besides x that are inadver-
tently deleted from N DB. To avoid this, the function deter-
mines for every string in Dx which strings it matches, other
than x , and reinserts them into N DB (steps 4, 5, 6, 7).

Figure 9 gives a general algorithm for this task.

Theorem 7 Delete(x, N DB) outputs a negative database
that exactly matches U − (DB ∪ {x}).

Proof Lines 1–2 identify the subset, Dx , of N DB that mat-
ches x and removes it from N DB. Note that there is no string
in N DB − Dx that matches any binary string matched by x .

Lines 3–7 reinsert all the strings represented by Dx except
x : For each string y in Dx and for each of its unspecified posi-
tions (don’t care symbols) there is a string yi created which
differs from x in its i th position (line 6) and inserted into
N DB (see Theorem 6). None of the new strings yi match x .

If a string z ∈ {0, 1}l other than x is matched by some
y ∈ Dx then z must have the same specified positions as y.
Given that z is different from x it follows that it must disagree
with it in at least one bit, say bit k, z will be matched by y′

k .
Therefore only x is eliminated from N DB. Finally, observe
that since y subsumes each new entry y′

i (see Definition 3)
no unwanted strings are included by the operation. '(

One important effect of the Insert and Delete operations
is that they both cause N DB to grow, especially in the latter

case when the number of new entries in N DB is a function
of the number of entries matched by the strings to be deleted.
To address this problem we introduce a clean-up operation
designed to reduce the size of the negative database and thus
reduce the number of entries expected to match any binary
string.

5.2.3 Clean-up

The operation presented here (Fig. 10) takes as input a neg-
ative database N DB and outputs a negative database N DB ′

that represents exactly the same set of binary strings, and
therefore, matches exactly those strings not in DB. The func-
tion includes a parameter τ (line 4) which is meant to drive the
size of the resulting database. If the Insert operation intro-
duces fewer than τ entries per call then Clean-up will not
increase the size of N DB and will likely reduce it.

Theorem 8 The output of Clean-up is a negative database
that represents the same set of binary strings as its input
N DB.

Proof Lines 1–2 find a subpattern K of a string in N DB,
such that no string in DB has that pattern (see Definition 4,
Lemma 3) i.e. every string in {0, 1}l with such a pattern must
be represented in N DB. Line 3 finds all N DB entries DK
that exhibit this pattern, line 5 removes them. Only strings in
{0, 1}l that have K stop being represented in N DB, for if a
string y is matched by DK then it must also be matched by
K . Therefore, the removal of DK causes only strings with
K as a subpattern to be excluded. Line 6–7 reinsert every
string and only strings with K as a subpattern into N DB
(see Theorem 6). '(

123

Negative representations of information 341

5.2.4 Properties

It was previously mentioned that Pattern_Generate could be
used in place of Negative_Pattern_ Generate within the Insert
and Delete operations. In the case of Clean-up, extraction of
a minimal pattern (line 2) can be achieved with lines 1–6 of
Pattern_Generate or Negative_Pattern_Generate depending
on the availability of DB. If the former is used, it is easy to
see that the resulting negative database preserves the proper-
ties of the RN DB algorithm’s output outlined in Sect. 5.1.2.
On the other hand, if the latter is applied then it is not feasible
to determine if a pattern constitutes a c-key, and therefore,
the number of clauses that can possibly be generated will be
restricted.

An important property of the Insert, Delete and Clean-up
operations is that, in general, their application does not make
the problem of reversing a given N DB any easier. Consider
the following problem:

Definition 5 Self-Recognition-Pair (SR-Pair):
INSTANCE: (φ, S,φ′, S′) where φ is a SAT instance,
S a set of assignments to φ, φ′ is a SAT instance obtained
by inserting or deleting an arbitrary assignment x and only
x from φ by means of any polynomial time algorithm A.
S′ is obtained by inserting or deleting x from S accordingly.

QUESTION: Is φ′ exactly satisfied by S′?

Theorem 9 SR-Pair is NP-hard

Proof We prove the theorem by reducing SAT to SR-pair.
The proof is divided into the case in which A is used to
insert a satisfying assignment x to φ and the case in which it
is used to delete a satisfying assignment x from φ.

1. Insertion version of SR-Pair is NP-hard.
Given instance φ of SAT. Pick any assignment x . If
x satisfies φ answer YES to instance φ of SAT. If x
does not satisfy φ use A to create φ′ that is exactly satis-
fied by the assignments which satisfy φ, union {x}. Then
(φ, {}, φ′, {x}) is a valid instance of the insertion version
of SR-Pair and:
φ is a NO instance of SAT ⇐⇒ (φ, {}, φ′, {x}) is a YES
instance of SR-Pair.

2. Deletion version of SR-Pair is NP-hard.
Given an instance φ of SAT. Pick any assignment x . If
x satisfies φ answer YES to instance φ of SAT. Other-
wise, x does not satisfy φ and use A to create φ′ that
is exactly satisfied by the assignments which satisfy φ,
minus {x} (note φ is logically equivalent to φ′.) Then (φ,
{}, φ′, {}) is a valid instance of the deletion version of
SR-Pair and:
φ is NO instance of SAT ⇐⇒ (φ, {}, φ′, {}) is a YES
instance of SR-Pair.

We conclude by stating that there is a polynomial time
reduction from SAT to SR-Pair and hence that SR-Pair
is NP-hard. '(

It follows that the application of the Insert, Delete and
Clean-up operations does not make a difficult instance any
easier to reverse. However, we emphasize that the practical
reversal difficulty of a specific N DB depends on the heuris-
tics used to solve it, and hence these operations can decrease
or increase the actual time required by a given heuristic.

The complexity of the algorithms is as follows: Negative
_Pattern _Generate runs in time O(l · |N DB|). Insert takes
O(l3|N DB|) time if Negative _Pattern _Generate is used,
or O(l3|DB|) if Pattern_Generate is employed and inserts
O(l2) strings per call into N DB. The Delete operation runs
in O(l4|N DB|2) or O(l4|N DB||DB|) time depending on
whether the negative or positive pattern generate procedures
are used. Delete causes the addition of O(l2|N DB|) entries
in N DB. The Clean-up time complexity is dominated by its
call to Insert and has the same complexity. Note that these
bounds are due, in great part, to the generality that the algo-
rithms afford. It is expected that the production of hard N DB
instances will require limiting some parameters which will,
in turn, reduce the complexity of the operations.

6 Related work

The algorithms presented in this paper are concerned with
exact representations of U − DB—everything except the
database. There is, however, a growing body of work dealing
with representing data negatively in an imprecise way [20,
24,40], where the negative image of DB might not represent
U − DB entirely. This representations have slightly different
properties and are useful in some scenarios. An alternative
representation for negative databases is investigated in [15].
The cited scheme relies on cryptographic guarantees for the
data security and yields compact representations; however, it
limits some of the manipulations on the data that the present
proposal allows. More operations on negative databases are
presented in [25].

There are several other areas of research that are poten-
tially relevant to the ideas discussed in this paper. These
include: encryption, zero-knowledge sets, privacy-preserving
databases, privacy-preserving data-mining, query restriction,
multi-party computation and negative data.

An obvious starting point for protecting sensitive data is
the large body of work on cryptographic methods, e.g., as
described in [53]. Some researchers have investigated how
to combine cryptographic methods with databases [6,27,28,
56], for example, by encrypting each record with its own
key.

123

342 F. Esponda et al.

Zero-knowledge sets were recently introduced in [44] and
provide a primitive for constructing databases that have many
of the same properties as negative databases, namely, the
restriction of queries to simple membership. There are several
differences between the two approaches. First, zero-
knowledge sets are based on widely believed cryptographi-
cally secure methods. Second, zero-knowledge sets require
a controlling entity for answering queries. The relaxation of
this requirement allows negative databases to perform opera-
tions such as set intersection privately and efficiently. Finally,
to date, there is no efficient way of updating a zero-knowl-
edge set, while Sect. 5.2 gives efficient algorithms for on-line
operations on negative databases. A similar construction to
zero-knowledge sets is presented in [50] in which range que-
ries such as “Are there any keys in [a, b]” are possible.

Cryptosystems founded on NP-complete problems [26]
have been proposed such as the Merkle–Hellman crypto-
system [43], which is based on the general knapsack prob-
lem. These systems rely on a series of tricks to conceal the
existence of a “trapdoor” that permits retrieving the hidden
information efficiently. However, almost all knapsack cryp-
tosystems have been broken [49], and it has been shown
[8,9] that if breaking such a cryptosystem is NP-hard then
NP=CoNP . In general, if a scheme based on a NP-hard
result, such as the one proposed here, is to be used in a pri-
vacy setting it will be necessary to study under what situ-
ations it does indeed produce hard to reverse instances and
if these instances can be readily obtained. There is a large
body of work regarding the issues and techniques involved in
generating hard-to-solve NP-complete problems [34,35,43,
49] and in particular of SAT instances [13,45]. Much of this
work is focused on the case where instances are generated
without knowledge of their specific solutions. Efforts con-
cerned with the generation of hard instances possessing some
specific solution, or solutions with some specific property
include [1,29]. Finally, the problem of learning a distribu-
tion, whether by evaluation or generation [38,47], is also
closely related to constructing the sort of databases in which
we are interested.

Of particular relevance are one-way functions [31,48]—
functions that are easy to compute but hard to reverse—and
one-way accumulators [5,11] which are similar to one-way
hash functions but with the additional property of being com-
mutative. One key distinction between these methods and
negative databases is that the output of a one-way function
is usually compact, and the message it encodes typically has
a unique representation. By representing data negatively, as
described here, a single message has many possible enco-
dings, an idea that is exploited in probabilistic encryption
[7,33].

Multi-party computation schemes [32,57], in which com-
plex operations across databases can be performed privately

are relevant to our discussion, in particular, when they involve
applications such as set intersection. Other approaches to
set intersection include [39,46,55] where several protocols
and data structures are introduced to perform the operation
securely and efficiently.

In privacy-preserving data mining, the goal is to protect the
confidentiality of individual data while still supporting cer-
tain data-mining operations, for example, the computation
of aggregate statistical properties [2–4,16,19,54,56]. In one
example of this approach (Ref. [4]), relevant statistical distri-
butions are preserved, but the details of individual records are
obscured. Negative databases are roughly the reverse of this
approach, in that they support simple membership queries
efficiently but higher-level queries may be expensive.

Negative databases are also related to query restriction
[12,16,17,41,54], where the query language is designed to
support only the desired classes of queries. Although query
restriction controls access to the data by outside users, it
cannot protect an insider with full privileges from inspecting
individual records to retrieve information.

The term “negative data” sounds similar to our method,
but is actually quite different. The deductive database model
(e.g., [30] presents an excellent survey of the foundations
of the model) supports in the intensional database (IDB) the
negative representation of data. The objectives, mechanisms,
and consequences here are quite different from our scheme.
In a deductive database, traditional motivations for “nega-
tive data” include reducing space utilization, speeding query
processing, and the specification and enforcement of integ-
rity constraints.

There is a large body of work in finding compact repre-
sentations of a set of binary strings or functions (for exam-
ple, [10,37,42,51]). Our work differs in its need to obtain a
compact representation of the complement of the input set
without explicitly calculating it, for it may be exponentially
larger than its counterpart. Also, the nature of our represen-
tation makes many operations, such as comparing whether
two functions are equivalent, potentially difficult. This is in
contrast to techniques whose objective is to find compact
representations of Boolean formulas, while preserving the
ability to perform a wide range of operations on their repre-
sentations. However, some of the compaction schemes may
be useful in future work for exploiting other properties of
negative representations.

To summarize, the existence of sensitive data requires
some method for controlling access to individual records.
The overall goal is that the contents of a database be available
for appropriate analysis and consultation without revealing
information inappropriately. Satisfying both requirements
usually entails some compromise, such as degrading the det-
ail of the stored information, limiting the power of queries,
or database encryption.

123

Negative representations of information 343

7 Discussion

In this paper, we have established the feasibility of a new
approach to representing information. Specifically, we have
shown that negative representations are computationally fea-
sible, that they can be difficult to reverse, and that some
interesting operations can be performed on them. However,
there are many important questions and issues remaining.
Which classes of queries can be computed efficiently and
which cannot? Our initial results address two extremes—
the case of testing simple membership for a specific, sin-
gle record and the case of reconstructing the entire positive
database. We would like to understand the computational
complexity at points across the spectrum between these two
extremes, as well as understanding what computational prop-
erties are desirable in a privacy-protecting context. A related
question involves the costs of database updates under our
representation. We have investigated algorithms that perform
inserts and deletes in polynomial time, and we showed theo-
retically what their impact is on the complexity of the result-
ing negative database. We also introduced an operation that
takes as input a negative database N DB and outputs a nega-
tive database N DB ′ which matches exactly the same set of
binary strings as N DB. We would like to investigate ways
in which this operation can be used to explore other poten-
tially hard instances. And, we believe that more efficient algo-
rithms might be designed to make the method practical for
large-scale databases.

Are there other useful representations of N DB? Once we
understand more completely the computational properties of
our current representations, we may be able to devise other
representations whose properties are more appropriate for
some applications.

In this paper, we emphasized the irreversibility properties
of negative databases, as a means of protecting the privacy of
individual records and as a method for privately computing
the intersection of sets owned by different parties. There are
additional characteristics and applications which we intend
to investigate in our future work, such as the properties of
a negative database when it is partitioned into several frag-
ments and the qualities of the operations afforded by it.

Finally, we are interested in inexact representations. The
N DB representation is closely related to partial match detec-
tion [23] which has many applications in anomaly detection.
We are interested in studying how those methods might be
combined with N DB either for designing an adaptive query
mechanism or for approximate databases.

8 Conclusion

In this paper, we introduced the concept of negative represen-
tations of information and presented a specific instantiation
of this idea called negative databases. We established that a

negative database can be constructed in time polynomial in
the size of its positive counterpart. We presented algorithms
for creating and maintaining such a database and offered an
analysis of their properties and the properties of the negative
databases they produce. Further, we investigated one charac-
teristic of negative databases, namely that given a negative
database it is an NP-hard problem to recover its positive
image. We also showed that, even though reversing a nega-
tive database is hard, there are certain types of queries that
can be carried out efficiently, and discussed how this prop-
erty can be exploited to privately compute the intersection
of two sets. In current work we are exploring how to make
the representations and algorithms more practical, and we
are exploring several applications that seem well-suited to
negative representations.

In conclusion, although we have shown that negative rep-
resentations of data are computationally feasible, and in some
cases difficult to reverse, there are many possible avenues for
future work. We are optimistic that by tailoring a negative
representation to particular requirements we can address at
least some of the problems presented by large collections of
sensitive data.

Acknowledgments The authors gratefully acknowledge the support
of the National Science Foundation (CCR-0331580, CCR-0311686, and
DBI-0309147), Defense Advanced Research Projects Agency (grant
AGR F30602-00-2-0584), the Intel Corporation, and the Santa Fe
Institute. F.E. also thanks Consejo Nacional de Ciencia y Tecnología
(México) grant No. 116691/131686 for its financial support.

References

1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating sat-
isfiable problem instances. In: Proceedings of the 7th Conference
on Artificial Intelligence (AAAI-00) and of the 12th Conference
on Innovative Applications of Artificial Intelligence (IAAI-00),
pp. 256–261. AAAI Press, Menlo Park (2000)

2. Adam, N.R., Wortman, J.C.: Security-control methods for statisti-
cal databases. ACM Comput. Surv. 21(4), 515–556 (1989)

3. Agrawal, D., Aggarwal, C.C.: On the design and quantification
of privacy preserving data mining algorithms. In: Symposium on
Principles of Database Systems, pp. 247–255 (2001)

4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Pro-
ceedings of the ACM SIGMOD Conference on Management of
Data, pp. 439–450. ACM Press, New York (2000). http://citeseer.
nj.nec.com/agrawal00privacypreserving.html

5. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentral-
ized alternative to digital signatures. In: Advances in Cryptology—
EUROCRYPT ’93, pp. 274–285 (1994). http://citeseer.nj.nec.com/
article/benaloh93oneway.html

6. Blakley, G.R., Meadows, C.: A database encryption scheme which
allows the computation of statistics using encrypted data. In: Pro-
ceedings of the IEEE Symposium on Research in Security and
Privacy, pp. 116–122. IEEE CS Press (1985)

7. Blum, M., Goldwasser, S.: An efficient probabilistic public-
key encryption scheme which hides all partial information. In:
Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology: proceed-
ings of CRYPTO 84. Lecture Notes in Computer Science, vol. 196,
pp. 289–302. Springer, Berlin (1985)

123

http://citeseer.nj.nec.com/article/benaloh93oneway.html
http://citeseer.nj.nec.com/article/benaloh93oneway.html
http://citeseer.nj.nec.com/agrawal00privacypreserving.html
http://citeseer.nj.nec.com/agrawal00privacypreserving.html

344 F. Esponda et al.

8. Brassard, G.: A note on the complexity of cryptography. IEEE
Trans. Inform. Theory 25(2), 232–233 (1979)

9. Brassard, G., Fortune, S., Hopcroft, J.E.: A note on cryptography
and NP∩ coNP-P. Technical Report TR78-338, Cornell University,
Computer Science Department (1978)

10. Bryant R.E. (1992) Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318
(1992). http://citeseer.nj.nec.com/bryant92symbolic.html

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and
application to efficient revocation of anonymous credentials. In:
Yung, M. (ed.) Advances in Cryptology—CRYPTO ’ 2002, Lec-
ture Notes in Computer Science, vol. 2442, pp. 61–76. International
Association for Cryptologic Research, Springer, Germany (2002).
http://www.springerlink.com/link.asp?id=yklb7xdvbbc0wwgy

12. Chin, F.: Security problems on inference control for sum, max, and
min queries. J. ACM 33(3), 451–464 (1986). doi:10.1145/5925.
5928

13. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfi-
ability problem: A survey. In: Du, D., Gu, J., Pardalos, P.M. (eds.)
Satisfiability Problem: Theory and Applications, Dimacs Series in
Discrete Mathematics and Theoretical Computer Science, vol. 35,
pp. 1–17. American Mathematical Society, Providence (1997)

14. Crawford, J.M., Anton, L.D.: Experimental results on the crossover
point in satisfiability problems. In: Fikes, R., Lehnert, W. (eds.) Pro-
ceedings of the Eleventh National Conference on Artificial Intelli-
gence, pp. 21–27. American Association for Artificial Intelligence,
AAAI Press, Menlo Park (1993)

15. Danezis, G., Diaz, G., Faust, S., Käsper, E., Troncoso, C.,
Preneel, B.: Efficient negative databases from cryptographic hash
functions. In: LNCS (ed.). Information Security Conference,
vol. 4779, pp. 423–436 (2007)

16. Denning, D.: Cryptography and Data Security. Addison Wesley,
Reading (1982)

17. Denning, D., Schlorer, J.: Inference controls for statistical data-
bases. Computer 16(7), 69–82 (1983)

18. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-
generation onion router. In: Proceedings of the 13th USENIX Secu-
rity Symposium (2004)

19. Dobkin, D., Jones, A., Lipton, R.: Secure databases: protection
against user influence. ACM Trans. Database Syst. 4(1), 97–106
(1979)

20. Esponda, F.: Hiding a needle in a haystack using negative data-
bases. In: Proceedings of the 10th Information Hiding Conference
(2008)

21. Esponda, F., Ackley, E.S., Forrest, S., Helman, P.: On-line nega-
tive databases (with experimental results). Int. J. Unconvent. Com-
put. 1(3), 201–220 (2005)

22. Esponda, F., Forrest, S., Helman, P.: Enhancing privacy through
negative representations of data. Technical report, University of
New Mexico (2004)

23. Esponda, F., Forrest, S., Helman, P.: A formal framework for posi-
tive and negative detection schemes. IEEE Trans. Syst. Man Cyber-
net. Part B: Cybernet. 34(1), 357–373 (2004)

24. Esponda, F., Forrest, S., Helman, P.: Protecting data privacy
through hard-to-reverse negative databases. Int. J. Inform. Secu-
rity 6(6), 403–415 (2007)

25. Esponda, F., Trias, E., Ackley, E., Forrest, S.: A relational algebra
for negative databases. Tech. Rep. TR-CS-2007-18, University of
New Mexico (2007)

26. Even, S., Yacobi, Y.: Cryptography and np-completeness. In: Proc.
7th Colloq. Automata, Languages, and Programming. Lecture
Notes in Computer Science, vol. 85, pp. 195–207. Springer, Berlin
(1980)

27. Feigenbaum, J., Grosse, E., Reeds, J.A.: Cryptographic protection
of membership lists 9(1), 16–20 (1992). ftp://cm.bell-labs.com/
cm/cs/doc/91/4-12.ps.gz

28. Feigenbaum, J., Liberman, M.Y., Wright, R.N.: Cryptographic
protection of databases and software. In: Distributed Computing
and Cryptography, pp. 161–172. American Mathematical Society,
Providence (1991)

29. Fiorini, C., Martinelli, E., Massacci, F.: How to fake an RSA signa-
ture by encoding modular root finding as a SAT problem. Discrete
Appl. Math. 130(2), 101–127 (2003)

30. Gallaire, H., Minker, J., Nicolas, J.: Logic and databases: a deduc-
tive approach. Comput. Surv. 16(2), 154–185 (1984)

31. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cam-
bridge University Press, Cambridge (2000)

32. Goldwasser, S.: Multi party computations: past and present. In:
Proceedings of the Sixteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 1–6. ACM Press, New York
(1997). doi:10.1145/259380.259405

33. Goldwasser S., Micali, S.: Probabilistic encryption. J. Comput.
Syst. Sci. 28(2):270–299 (1984). See also preliminary version in
14th STOC, 1982

34. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation
from one-way functions. In: Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pp. 12–24. ACM Press,
New York (1989). doi:10.1145/73007.73009

35. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes prov-
ably as secure as subset sum. In: IEEE (ed.) 30th annual Sympo-
sium on Foundations of Computer Science, October 30–November
1, 1989, Research Triangle Park, NC, pp. 236–241. IEEE Computer
Society Press, USA (1989)

36. Jia, H., Moore, C., Strain, D.: Generating hard satisfiable formulas
by hiding solutions deceptively. In: AAAI (2005)

37. Karnaugh, M.: The map method for synthesis of combinational
logic circuits. Trans. AIEE, pp. 593–598 (1953)

38. Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E.,
Sellie, L.: On the learnability of discrete distributions. In: Proceed-
ings of the Twenty-Sixth Annual ACM Symposium on Theory of
computing, pp. 273–282. ACM Press, New York (1994). doi:10.
1145/195058.195155

39. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching
and set intersection. In: Advances in Cryptology—Eurocrypt ’2004
Proceedings. LNCS, vol. 3027, pp. 1–19. Springer, Berlin (2004)

40. de Mare, M., Secure, R.W.: Set membership using 3sat. In: Pro-
ceedings of the Eighth International Conference on Information
and Communication Security (ICICS ’06) (2006)

41. Matloff, N.S.: Inference control via query restriction vs. data mod-
ification: a perspective. In: On Database Security: Status and Pros-
pects, pp. 159–166. North-Holland Publishing Co., Amsterdam
(1988)

42. McCluskey, E.: Minimization of boolean functions. Bell System
Technical Journal, pp. 1417–1444 (1956)

43. Merkle, R.C., Hellman, M.E.: Hiding information and signatures
in trapdoor knapsacks. IEEE Trans. Inf. Theory 24(5), 525–530
(1978)

44. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: Proceed-
ings of the FOCS 2003, p. 80 (2003)

45. Mitchell, D., Selman, B., Levesque, H.: Problem solving: hardness
and easiness — hard and easy distributions of SAT problems. In:
Proceeding of the 10th National Conference on Artificial Intelli-
gence (AAAI-92), San Jose, California, pp. 459–465. AAAI Press,
Menlo Park (1992)

46. Morselli, R., Bhattacharjee, S., Katz, J., Keleher, P.: Trust preserv-
ing set operations. Tech. rep.

47. Naor, M.: Evaluation may be easier than generation (extended
abstract). In: Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on Theory of computing, pp. 74–83. ACM Press, New York
(1996). doi:10.1145/237814.237833

48. Naor, M., Yung, M.: Universal one-way hash functions and their
cryptographic applications. In: Proceedings of the Twenty First

123

http://dx.doi.org/10.1145/195058.195155
http://dx.doi.org/10.1145/237814.237833
http://citeseer.nj.nec.com/bryant92symbolic.html
http://www.springerlink.com/link.asp?id=yklb7xdvbbc0wwgy
http://dx.doi.org/10.1145/5925.5928
http://dx.doi.org/10.1145/5925.5928
ftp://cm.bell-labs.com/cm/cs/doc/91/4-12.ps.gz
ftp://cm.bell-labs.com/cm/cs/doc/91/4-12.ps.gz
http://dx.doi.org/10.1145/259380.259405
http://dx.doi.org/10.1145/73007.73009
http://dx.doi.org/10.1145/195058.195155

Negative representations of information 345

Annual ACM Symposium on Theory of Computing, Seattle,
Washington, May 15–17, 1989, pp. 33–43. ACM Press, New York
(1989)

49. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems.
In: Pomerance, C., Goldwasser, S., (eds.) Cryptology and Com-
putational Number Theory. Proceedings of Symposia in Applied
Mathematics. AMS short course lecture notes, vol. 42, pp. 75–88.
pub-AMS (1990)

50. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs
for generalized queries on a committed database. In: ICALP:
Annual International Colloquium on Automata, Languages and
Programming, pp. 1041–1053 (2004)

51. Quine, W.V.: A way to simplify truth functions. American Mathe-
matical Monthly, pp. 627–631 (1955)

52. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous
connections and onion routing. IEEE J. Selected Areas Com-
mun. 16(4), 482–494 (1998)

53. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley and Sons, Inc., New York (1994)

54. Tendick, P., Matloff, N.: A modified random perturbation method
for database security. ACM Trans. Database Syst. 19(1), 47–63
(1994). doi:10.1145/174638.174641

55. Vaidya, J., Clifton, C.: Secure set intersection cardinality with
application to association rule mining. J. Comput. Security (2004,
to appear)

56. Wayner, P.: Translucent Databases. Flyzone Press, Baltimore
(2002)

57. Yao, A.: Protocols for secure computations. In: IEEE (ed.) 23rd
annual Symposium on Foundations of Computer Science, Novem-
ber 3–5, 1982, Chicago, IL, pp. 160–164. IEEE Computer Society
Press, USA (1982)

123

http://dx.doi.org/10.1145/174638.174641

	Negative representations of information
	Abstract
	1 Introduction
	2 Representation
	2.1 The prefix algorithm

	3 Reversibility
	4 Applications
	4.1 Queries
	4.2 Set intersection

	5 Negative database algorithms
	5.1 Initialization
	5.2 Updates

	6 Related work
	7 Discussion
	8 Conclusion
	Acknowledgments

