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ABSTRACT
Evolutionary methods have been used to repair programs
automatically, with promising results. However, the fitness
function used to achieve these results was based on a few
simple test cases and is likely too simplistic for larger pro-
grams and more complex bugs. We focus here on two as-
pects of fitness evaluation: efficiency and precision. Effi-
ciency is an issue because many programs have hundreds of
test cases, and it is costly to run each test on every indi-
vidual in the population. Moreover, the precision of fitness
functions based on test cases is limited by the fact that a
program either passes a test case, or does not, which leads to
a fitness function that can take on only a few distinct values.
This paper investigates two approaches to enhancing fitness
functions for program repair, incorporating (1) test suite se-
lection to improve efficiency and (2) formal specifications to
improve precision. We evaluate test suite selection on 10
programs, improving running time for automated repair by
81%. We evaluate program invariants using the Fitness Dis-
tance Correlation (FDC) metric, demonstrating significant
improvements and smoother evolution of repairs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
F.2.2 [Artificial Intelligence]: Search

General Terms
Algorithms
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1. INTRODUCTION
Maintaining and repairing buggy code is a significant com-

ponent of the software life cycle [22], and several research ef-
forts are exploring how to automate certain aspects of pro-
gram repair, particularly in the software engineering and
program language communities. Evolutionary computation
is one promising approach to this problem (e.g., [7, 27]).
Although the results reported in the original papers are
promising, the fitness function is overly simplistic and un-
likely to scale up to industrial size problems. In this paper
we focus on fitness function enhancements, using the repre-
sentation proposed by Forrest et al. [7].

There are two main approaches to assessing program cor-
rectness that are relevant to program repair evolution: test
suites [7, 19, 27] and formal specifications [2, 26]. For test
suites, the time taken to produce a repair scales with the
product of the number of candidates investigated and the
time to run the test suite, a problem of fitness function effi-
ciency. In practice, complex or critical programs have large,
long-running test suites [14, 21]. Additionally, test suites
exhibit “all-or-nothing” behavior, making partial solutions
difficult to reward. Consider, for example, a bug that can
be repaired by adding two distinct function calls: a lock
acquisition, and a lock release. A candidate repair formed
by adding only the lock acquisition should, ideally, have a
higher fitness value than the original program. Using stan-
dard test cases, however, it will presumably have the same
fitness or lower (e.g., as the unbalanced locking call may in-
troduce deadlocks). We refer to this as a problem of fitness
function precision. In this paper, we propose and evaluate
methods to address both of these problems, although we
have not yet integrated them into a single unified solution.

We address fitness function efficiency by adapting soft-
ware engineering techniques for test suite selection [20, 23],
allowing fitness evaluation to incorporate hundreds of test
cases. Each individual is evaluated on only a small random
subset of the test suite. Once the population has found an
individual that can pass its subset, it is then tested against
the entire test suite, thus guaranteeing that correctness is
not sacrificed for efficiency. This reduces the cost of each fit-
ness evaluation, but introduces a risk of “leading the search
astray” by introducing noise into the fitness function. Our
results show that this is not a problem in practice, a result
corroborated by a large body of work in change impact anal-
ysis (e.g., [13, 17, 18, 20]), which demonstrates that localized
changes need not affect a program’s behavior on test cases
unrelated to those changes.

We address fitness function precision by augmenting fit-



ness functions based on test cases with automatically learned
program invariants. For example, even though a partial re-
pair may not fully pass a test case, it could correctly main-
tain an invariant such as x != 0. In a pre-processing step,
we derive a set of predicates that predict buggy behavior
in the baseline program, using its positive and negative test
cases. We then instrument programs to record the values
of each predicate at run-time [6]. Finally, we combine this
information using measures such as “fraction of the impor-
tant predicates that should be true that are made true by
this variant” and use them to augment the fitness function.
This leads to a smoother fitness gradient, which we quantify
using Fitness Distance Correlation (FDC) [11].

Enhancing the fitness function is a key step for scaling
evolutionary approaches to program repair, so that they can
tackle larger programs and more complex bugs. This paper
addresses this goal with following contributions:

• Fitness function enhancements for evolutionary pro-
gram repair, which improve efficiency and precision.
• An empirical evaluation of fitness function performance.

We replicate repairs from prior work with 81% im-
provement in running time. We measure precision us-
ing FDC, obtaining an improvement from 0.04 to 0.65
over earlier fitness functions. We show that the en-
hanced function is more precise in terms of mutation
distance of variants from a repair.
• New repairs for programs with large test suites. We

repair 10 programs with 1206 total test cases, an order
of magnitude more than the 58 total test cases reported
in previous work [27].

2. BACKGROUND
This section describes relevant previous work in genetic

programming for automated program repair, noisy fitness
functions, test suite selection, dynamic predicates, and fit-
ness distance correlation.

2.1 Automated Program Repair using GP
Earlier work on automated program repair demonstrated

a framework for GP-based patch generation [27] and ex-
plained the evolutionary characteristics of the approach [7].
In this work, a GP evolves programs that avoid a particu-
lar bug. The GP system begins with a working program in
C, an input that causes the program to behave incorrectly,
and a set of regression tests that the program passes. In-
dividuals in the GP system’s population are variants of the
original buggy program. An abstract syntax tree (AST) rep-
resents each program variant. Test cases serve as the fitness
function, where a test case consists of input to the program
(e.g., an image to be processed, or an HTTP request to be
served) and an oracle comparator function that defines the
correct program response [4]. A program passes a test case
if it produces the expected output when run on the input,
as defined by the oracle comparator; otherwise, it fails the
test case. A positive test case is a standard (regression) test
case that encodes correct program behavior; the program’s
existing test suite comprises the positive test cases. A nega-
tive test case is a program input that demonstrates the bug
and a comparator that detects it. To compute a variant’s
fitness, its AST is printed as source code, compiled, and then
run against test cases in a sand box. The weighted sum of
the total number of positive and negative test cases passed

is its fitness. A repair is a program variant that passes all
test cases. As a post-processing step, redundant code can
be eliminated from the repair with program minimization
techniques (the final repair).

2.2 Fitness Function Design
Test suite selection introduces noise into fitness evalua-

tion and it is well known that evolutionary algorithms per-
form well in the presence of noise e.g., [8]. There has been
significant work assessing the impact of noisy fitness func-
tions in different contexts (e.g., [10]), but most of this work
focuses on evaluating an individual several times to get a
better estimate of the true fitness. Our approach addresses
the slightly different problem of partial function evaluation
through sampling [28]. This resembles function approxima-
tion, where the candidate function (individual) is evaluated
on a finite number of inputs. Although sampling methods
have been studied in the context of Search Based Software
Engineering (e.g., [24, 25]), they have not to our knowledge
been used previously on the problem of automated software
repair. The closest work to our predicate-based fitness eval-
uation is that of Arcuri [2] who proposed using formal meth-
ods in a GP to automate software repair, demonstrating the
idea on a hand-coded example of bubble sort.

2.3 Test Suite Selection
Reducing the costs associated with testing is a mature

area of software engineering research. We use the term pri-
oritization to describe techniques that permute test orders
to find defects more quickly and reduction (e.g., [9]) to de-
scribe techniques that remove test cases from consideration
and thus reduce execution time. Of special interest are im-
pact analysis techniques that use static and dynamic infor-
mation to identify tests that could possibly be affected by a
source code change.

We consider two sampling algorithms, both of which are
parametric with respect to the desired test suite size. Ran-
dom sampling chooses test cases uniformly at random, with-
out replacement, and time-aware test suite reduction as de-
scribed by Walcott et al. [24] uses the GA to select a test
suite that optimizes for both coverage and efficiency.

Li et al. empirically evaluated greedy algorithms for test
suite prioritization [14]. Notably, greedy algorithms that
found local minima within the search space sometimes pro-
duced suboptimal results. A greedy algorithm applied to
the scenario considered in this paper suffers from all the dif-
ficulties they describe, such as concerns about fitness metric
choice and landscape properties. Our experiments showed
that a näıve greedy sampling algorithm performed similarly
to a purely random one.

2.4 Impact Analysis
Although test suite reduction has a number of advantages,

it is not always appropriate (e.g., even though reduction
approaches can maintain 100% requirement coverage, they
may have different fault detection behavior from the original
test suite [23]). Thus, developers often prefer impact anal-
ysis-based approaches [13, 17, 18, 20] that use static and
dynamic analyses to determine which tests could possibly
be affected by a source code change.

The Chianti tool [20] is an example of a safe [21] change
impact analysis. The tool decomposes program edits into
sets of atomic changes and produces two types of informa-



tion. First, it enumerates a set of all possibly-affected test
cases for the set of changes. Second, for each test case,
it produces a list of which changes are responsible for the
change in behavior. Empirical results show that an affected
unit test is often influenced by only 4% of atomic changes.
Impact analysis is relevant to evolutionary program repair
because Chianti’s atomic actions are similar to the actions
of our mutation operator [27]. The DejaVu tool of Rother-
mel and Harrold is another example of a safe analysis; it
emphasizes statement-level coverage [21].

2.5 Dynamic Predicates
There are several mature techniques for automatically learn-

ing program invariants, or predicates, that characterize nor-
mal or erroneous program executions [15]. These techniques
are used in specification mining [6], dynamic repair of de-
ployed software in an N-variant system [19], and error isola-
tion [15], among other applications. In this work, a program
is instrumented to track predicates over program values,
such as those contained in branch conditions. The instru-
mented program is then executed on an indicative workload
or monitored during normal operation. Each run produces
both program output and a set of predicates that were true
over the course of the run.

These sets can be statistically analyzed to identify which
are most strongly correlated with program failure. Given
a predicate P , Liblit et al. [15] define Failure(P ) as the
probability that the program will fail given that P is true,
Context(P ) to be the probability that the program will fail
given that the line on which P is tested is ever reached, and
Increase(P ) to be the amount that P being true increases
the probability of failure. The result of this analysis is a set
of facts about the program that are correlated with failure,
such as “the branch condition at line 5 in file foo.c is of-
ten true.” In Section 4.4 we adapt these measurements to
produce a finer-grained fitness function.

2.6 Fitness Distance Correlation
Fitness distance correlation (FDC) measures the correla-

tion between a fitness function and an estimate of the true
distance between an individual and the global optimum [11].
In bit-based genetic algorithms, distance is typically esti-
mated by the Hamming Distance between the individual
and the global optimum. Applying FDC to program repair
presents two complications: (1) because we are operating in
the space of ASTs, Hamming Distance is not a natural met-
ric; and (2) there may be many global optima (i.e., many
repairs that pass all the test cases). These complications are
addressed in Section 4.4.

Jones and Forrest used the correlation coefficient r (co-
variance divided by the product of two standard deviations)
between fitness and true distance to approximate the diffi-
culty of a GA search problem [11]. Their results suggested
that (−0.15 < r < 0.15) signifies a difficult GA problem,
where the fitness function is not well correlated with true
distance.1 We use FDC to evaluate the original fitness func-
tion described in [7, 27] and compare the results to those of
our enhanced fitness function which includes automatically
derived program invariants.

1Desired numbers vary depending on whether minimization
or maximization problems are considered; we treat program
repair as a minimization problem in our FDC analysis.

3. FITNESS FUNCTION ENHANCEMENTS
As stated earlier, our goal is to improve the fitness func-

tion for GP-based program repair by increasing both its
efficiency and its precision. In the original work, fitness
evaluation was limited to six [27] to twenty test cases [7].
If the fitness function does not provide useful information
about partial solutions, the GP system is reduced to ran-
dom search because there is no fitness gradient correlated to
program structure. Complex repairs that require combining
separate portions of a solution from two distinct variants will
thus benefit from a good fitness function. We hypothesize
that the original fitness function based on a small number
of all-or-nothing test cases is not sufficient for this purpose.

3.1 Fitness Efficiency: Test Suite Selection
We use sampling to reduce test suite size for positive tests.

When a program variant’s fitness is evaluated, a subset of
the positive test suite is chosen, and the program is run
against that subset together with all negative test cases.
If the variant passes all test cases in its subset, it is then
tested against all remaining test cases (the final test) to
determine if it is correct. If the variant fails the final test, its
assigned fitness value is its score against its original sample.
The original method is a special case of this framework in
which a retest-all sampling strategy is used. Note that in the
new scheme, every individual is assigned its own sample on
each generation, potentially introducing noise to the fitness
evaluation. A sampling-based fitness function will save time
if the reduced cost outweighs the increased number of fitness
evaluations required due to noise.

This framework handles positive and negative test cases
asymmetrically: individuals are always evaluated against all
negative test cases to ensure a maximally correct repair. The
final test guarantees that the sampling-based fitness function
is as correct as the original algorithm: A candidate repair
is only reported if it passes all test cases, just as with the
original algorithm.

3.2 Fitness Precision: Dynamic Predicates
In a pre-processing step, we instrument and run the buggy

program on all test cases to record observed program pred-
icates. This produces several interesting sets:

• Increase Set : predicates P such that Increase(P ) > 0.

• Context Set : predicates P such that Context(P ) > 0.

• Four Universal Sets of predicates: (1) those always
true on all test case executions, (2) those always false
on all test case executions, (3) those true only on exe-
cutions that produce the correct output, and (4) those
false only on executions that produce the correct out-
put.

We write B (“baseline”) to refer to the set of those six
predicate sets for the original buggy input program. We
also observe predicate behavior for each variant i in a GP
population and write Vi for the set of predicate sets thus
observered. We characterize the difference between a vari-
ant and the original program by comparing Vi to B. This
characterization estimates the distance to a hypothetical re-
paired program.

We can use the sets B and Vi to define a number of con-
crete metrics that may characterize important differences in
program behavior. For example, we can ask which or how



many predicates that once predicted failure are no longer ob-
served on failing runs in variant i; or how many predicates
that were never observed on failing runs are observed on fail-
ing runs in variant i. We can simply count the cardinality
of these set differences; we can compute a weighted sum of
the Context or Increase scores of the contained predicates;
or we can weight the result by the number of successful or
failing runs on which the predicates are observed; and so
forth.

In total, considering all possible difference sets, weight-
ings, and test cases passed and failed, each individual i is
described by a large set of scalar features fi. Since we don’t
know a priori how these features relate to fitness, we use
learning to identify a linear combination of the features. A
training set of example variants is used to learn global coeffi-
cients cj (j indexes metrics in the feature set fi) and a global
intercept c0, which are then used to compute the fitness for
each individual i:

predicate fitness(i) = c0 +
X

j

cjfi,j

This learning is applied only once per buggy program and
is detailed in Section 4.4. We hypothesize that good vari-
ants change the feature values of predicates correlated with
failed runs and are unlikely to change those of predicates
correlated with successful runs. We further conjecture that
if the features fi,j are combined as just described, the result-
ing fitness function will improve the FDC. The experimental
results in the next section support this claim.

3.3 Optimal Fitness
Computing the FDC requires knowing the distance be-

tween any individual and the optimal fitness. When evolving
strings of bits, the Hamming distance between an individual
and the optimal solution often suffices. For numerical opti-
mization, the Euclidean distance may serve. In the domain
of program repair, however, there are often multiple solu-
tions and the abstract syntax tree representation does not
have an obvious metric.

We define a tree-structured distance metric for quantifying
the distance between two program variants. A natural ap-
proach might employ graph isomorphism algorithms. How-
ever, they are rarely used on ASTs or control flow graphs
because of efficiency concerns (e.g., subgraph isomorphism is
NP-complete and even a 5000-line program may have thou-
sands of AST nodes). Tree-structured difference algorithms
are a common substitute. They typically gain speed at
the expense of true accuracy by making assumptions (e.g.,
planar graphs or trees) or using heuristics (e.g., specially
weighting leaf nodes when looking for a correspondence).
We use the diffX structural differencing algorithm [1] which
measures the difference between two ASTs in terms of a
number of insertions, deletions and moves required to trans-
form one into the other. These operations closely approxi-
mate those used by our GP system, so the tree-structured
difference between a variant and a solution is essentially the
number of atomic mutation operations required to reach the
solution from the variant.

However, merely counting mutations is misleading, as some
mutations have no semantic effect. Consider the example
mentioned earlier of a program that requires two mutations
to fix (e.g., inserting one locking function and one unlock-
ing function call). If all mutations are weighted equally, a

variant that adds one required function call and also inserts
three no-ops will appear to be farther away from a repair
than the original, when in fact it should have a higher fitness
value. By minimizing the output of diffX we can identify
extraneous changes and weight them lower than essential
changes. We have found that a weighting factor of 1/10 for
extraneous changes works well. Given a number of known
final repairs, the optimal fitness dopt of a variant is thus
its minimal weighted diffX distance to any of those known
final repairs.

4. EXPERIMENTS
In this section, we present results from several experi-

ments. First, we investigate performance gains from test
suite sampling, demonstrating dramatic speedups in fitness
evaluation. Second, we evaluate parent/offspring fitness cor-
relation to explore the potential benefit of optimal safe change
impact analysis. This result suggests that even a perfect
understanding of parent/offspring fitness correlation would
not admit equivalent performance gains. Third, we measure
the FDC of the predicate-based fitness function, showing
that predicates based on program invariants dramatically
improve fitness function precision. The final experiment ex-
plores the shape of the fitness function in the vicinity of
a valid repair, showing that dynamic predicates provide a
smoother signal to the GP process than the previous ap-
proach.

4.1 Experimental Setup
The experimental benchmarks are shown in Figure 1. Some

benchmarks were chosen for the purposes of direct compari-
son to previous work [7, 27], and appear here with expanded
test suites; others are presented for the first time. The gcd

program is a simple example; imagemagick and tiff are im-
age processing applications; leukocyte is a computational
biology program; nullhttpd and lighttpd are web servers;
zune is the code responsible for the locking up over two
million Microsoft music-playing devices on December 31st,
2008; the remaining programs are operating system utilities.
The test suites for deroff, gcd, look, uniq, and zune are
taken from Miller et al.’s work on fuzz testing [16], in which
programs are subjected to random inputs. The web server
tests consist of captured traffic requests from the University
of Virginia Computer Science Dept. web server; the remain-
ing programs use developer-provided or otherwise built-in
test suites. Each program has a single defect exercised by a
single negative test case. The defect and negative test case
were taken from public forums or black hat security lists
for nullhttpd2, lighttpd3, zune [3], tiff4, leukocyte, and
imagemagick5.

We adopt GP parameters from previous work [27]. Popu-
lation size is 40; the GP is run for a maximum of ten gener-
ations; stochastic universal sampling [5] selects individuals
to propagate; the crossover rate is 1.0. A trial consists of at
most two serial invocations of the GP loop using each of the
following sets of values for path weight WPath and mutation

2
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2002-1496, http://www.mail-archive.com/bugtraq@

securityfocus.com/msg09178.html

3
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-4727, http://www.milw0rm.com/exploits/4437

4
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2285

5
http://trac.imagemagick.org/changeset/511, http://www.shaik.com/pngsuite



Total Module #
Program LOC LOC Tests Test Suite Description Defect Description

deroff utx 4.3 2236 2236 100 fuzz input (as typesetting directives) segfault
look utx 4.3 1169 1169 100 fuzz input (for both needle and haystack strings) segfault
uniq utx 4.3 1146 1146 100 fuzz input (as duplicate-containing text file) segfault
zune 28 28 100 fuzz input (as days since 1 January 1980) infinite loop
gcd 22 22 100 fuzz input (as pairs of integers) infinite loop
lighttpd 1.4.15 51895 3829 200 HTTP requests from cs.virginia.edu buffer overrun
nullhttpd 0.5.0 5575 5575 200 HTTP requests from cs.virginia.edu buffer overrun
leukocyte 6718 6718 100 video microscopy images segfault
tiff 3.8.2 84067 1084 106 image suite bundled with tifflib segfault
imagemagick 6.5.2 450416 5858 100 images from pngsuite test suite wrong output

total 603272 27665 1206

Figure 1: Benchmark programs, with size in lines of code (LOC). “Total” shows total program size; “Module” shows

the size of the portion of the program considered for repair. “# Tests” shows the total number of positive test cases.

Figure 2: Performance gains achieved by sampling-

based fitness functions. “random” performs an unbiased

random selection of the test suite; “Walcott” shows re-

sults using the Walcott et al. algorithm.

chance Wmut , stopping early if a repair is discovered:

{WPath = 0.01, Wmut = 0.06}
{WPath = 0.00, Wmut = 0.03}

The primary metric used in the first two experiments
is “average test case evaluations per successful repair”, or
atce/r. The atce/r value is the average number of positive
test cases executed during a successful repair divided by the
fraction of repair trials that succeed. For example, if 20,000
individual test case evaluations are required to produce a
repair, but the GP system only produces a repair one time
in three, the atce/r value is 60,000. atce/r approximates the
average time and effort necessary to generate one success-
ful repair. We report “test cases” rather than “wall clock
seconds” to fairly compare algorithmic gains independent of
how long a particular program’s test cases take to run. A
lower atce/r number indicates a more efficient repair.

4.2 Sampling-Based Fitness Performance
The first experiment measured the effect of test case sam-

pling on GP performance. We studied two algorithms: Ran-
dom which selects a subset of the test suite at random, with-
out replacement, and Walcott which uses the test suite re-
duction algorithm of Walcott et al. [24]. Performance gains

are reported in atce/r and are relative to the unmodified
retest-all fitness function used in previous work [27].

In Figure 2 each bar represents the performance gain when
2% of the test suite is sampled on each fitness evaluation,
averaged over at least 5 different repair trials. Performance
gains scale almost linearly with the percentage of the test
suite unsampled, up to 98% (data not shown). For both
sampling strategies, all candidate final repairs were subse-
quently tested on all remaining test cases; the cost of this
final test is included in Figure 2.

The results show that sampling reduces the effort required
to produce a repair by 81%. The heavier-weight Walcott et
al. method performs slightly worse because of its compu-
tational overhead, not because of the quality of the subsets
selected. A typical single trial repair may require as many
as 1520 fitness evaluations, each one of which requires se-
lecting a sample. The overhead of Walcott et al.’s sampling
algorithm as measured by atce/r is therefore negligible for
programs with long-running test cases, such as leukocyte,
but significant for test suites consisting of individually rapid
tests, such as lighttpd. The Walcott algorithm’s perfor-
mance equals or exceeds that of Random when its overhead
is ignored.
lighttpd and tiff are significant outliers, and represent

worst-case scenarios for sampling test cases. The repairs for
these are typically produced in under twenty fitness evalua-
tions, minimizing the potential for improvement.

The performance impact of the sample-based fitness func-
tion is significant. The ten programs in Figure 1 were re-
paired in 1.8 minutes each, on average. On the same hard-
ware, leukocyte was repaired in 6 minutes instead of over
90 minutes for the retest-all method, and imagemagick was
repaired in 3 minutes instead of 36. The repairs produced
by both approaches are equivalent.

4.3 Safe Impact Analysis
The second experiment investigates the hypothesis that

the performance benefits obtained with the sampling-based
fitness function arise from high parent/offspring fitness cor-
relation. To test this hypothesis, we analyzed the effect of a
perfect change impact analysis on the test suite and used the
results to compare parent/offspring overlap. As mentioned
earlier, change impact analysis determines which tests (re-
gression, unit, etc.) will potentially be affected by a given
program change (and therefore need to be rerun). Tests
that are unaffected can be skipped, since their previous re-



Figure 3: Cumulative performance gain from optimal

safe impact analysis compared to the fitness function de-

scribed in Section 3.1. Optimal safe impact analysis im-

proves performance (i.e., reduces the effort to construct

a repair) by just over 29%, while the sampling-based fit-

ness function improves performance by 81%.

sults will remain unchanged. In the context of our system
the fraction of test cases that are the same between parent
and offspring6 represents the maximal performance savings
that a hypothetical perfect safe change impact analysis could
provide to a fitness function.

We ran each benchmark program’s entire test suite on
each variant generated during a representative repair run.
We measured the percentage of an offspring’s individual test
case results that were the same as its parent’s. We repeated
this process at least five times for each benchmark and cal-
culated the average percentage of test case results shared
between all parents and their offspring.

Figure 3 shows that even an optimal safe analysis (e.g., [20,
21]) could only reduce the average number of test case eval-
uations per successful repair by 29%, the average proportion
of the test suite that remains unchanged between a parent
and its offspring. This is significantly less than the 81% av-
erage reduction achieved with random sampling. Our fitness
function can be more aggressive because of the final test and
because GP is more noise tolerant than regression testing.

The lighttpd program is an outlier, for which many in-
dividuals are very likely to have the same test case behavior
as their offspring, and thus an optimal safe impact anal-
ysis could account for all of the performance increase ob-
served. Note that the efficacy of impact analysis is not solely
a function of program type or test suite: Both lighttpd and
nullhttpd are web servers, and both use exactly the same
test suite in these experiments, but impact analysis would
only improve performance on nullhttpd by 10%. A key con-
tributing factor is the nature of the defect and the localiza-
tion provided by the weighted path. The bug in lighttpd

is well-localized, while the bug in nullhttpd is not. The
poorer localization in nullhttpd means that variants and
their offspring differ by a wider range of statements and are
thus less likely to have correlated test case behavior.

We also tested the hypothesis that test-suite sampling is

6In crossover, each variant is combined with the original pro-
gram to produce two offspring: this crossback operator [27]
allows each offspring to have one associated parent.

effective because of high overlap in the test suites. For ex-
ample, if all test cases were the same, choosing a subset of
them at random would save time with no cost. We con-
structed high-overlap and low-overlap suites and used them
to conduct the repairs of all 10 programs. Test case over-
lap is measured roughly by the number of executed lines of
code they have in common. To construct test suites with
high or low overlap, we subsampled the original test suite
for a given benchmark to find, for example, the 50 test cases
with the highest overlap, as well as the 50 test cases with
the least overlap. Overall there was only a 3% performance
difference between low- and high-overlap test suites (1.02 vs.
0.99 compared to a 1.00 baseline of the time taken to find
the repair on the original test suite).

We conclude that change impact analysis and test suite
dependence alone cannot explain the overall performance
gain we observe, even though there is a non-trivial overlap
between parent and offspring fitness.

4.4 Predicate-based Fitness Function
The third experiment explores the effect of extending fit-

ness evaluation to include learned runtime predicates. We
focus on a detailed analysis of the nullhttpd benchmark be-
cause it has a rich, hand-crafted set of test cases, encoding
required functionality, that are separate from the test suite
in Figure 1. In addition, it contains a real-world error that
is neither very easy nor very hard for the GP to repair [7]
and is thus a good exemplar.

We first combined the predicate metrics defined in Sec-
tion 2.5 to produce a fitness function that correlates well
with the dopt . We used fourteen known repairs for the
nullhttpd program as the basis for the optimal fitness dis-
tance dopt (see Section 3.3). We collected the predicate set
information B for the original (buggy) program. We then
generated 1772 unique variants of nullhttpd using our GP
operators. For each variant i, we collected its associated
predicate set measurements Vi, and thus its scalar features
fi,j .

We used linear regression on training subsets of these 1772
data points to construct a model, consisting of a set of co-
efficients cj and an intercept c0 that, when applied to the
predicate-based features, yields a fitness function designed to
approximate the distance between a variant i and its closest
potential repair (see Section 3.2). We used cross-validation
and avoided testing and training on the same data (see Sec-
tion 5). A per-feature analysis of variance substantiates
the validity of the model, indicating with high confidence
(p < 0.05) that the predicate metrics and the test cases
passed are predictive (F substantially greater than 1.0) of
the ideal fitness dopt .

We used FDC to estimate fitness function precision. In
this setting an ideal fitness function would correlate perfectly
with the optimal distance dopt (r = 1.0). We evaluated a
random fitness function as a baseline. As expected, it does
not correlate well with dopt : −0.04 ≤ r = 0.01 ≤ 0.06 (95%
confidence interval). We used testcase(1, 10) to denote the
fitness function from our previous work [7, 27] because it
weights each positive test case by one and each negative
test case by 10. The testcase(1, 10) function also does not
correlate well with dopt : 0.00 ≤ r = 0.04 ≤ 0.09, suggesting
that it describes a difficult GA search problem [11].

Because testcase(1, 10) uses somewhat arbitrary weights
for positive and negative test cases (i.e., 1 and 10), we con-
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Figure 4: Fitness as mutations to repair increases.

The light line shows testcase(10, 1); the dark line shows

predicate fitness. Each data point averages 40 variants.

jecture that setting these more carefully would lead to an
increased FDC, thus reducing search difficulty even with-
out adding new predicates. To test this, we trained a sec-
ond linear model to learn coefficients for the testcase fitness
function. The resulting testcase(−3.7, 14.0) function corre-
lates much more strongly with optimal fitness: 0.39 ≤ r =
0.43 ≤ 0.47, suggesting that even this simple enhancement
could make the search easier. Although additional research
is necessary to understand why this scheme weights positive
test cases negatively, a possible explanation is that such a
weighting facilitates escape from the local maximum of the
original program, which passes all positive tests.

The predicate fitness function demonstrates an even stronger
FDC: 0.63 ≤ r = 0.65 ≤ 0.67, a substantial improvement
over the best result obtained with the testcase family of fit-
ness functions. According to Jones and Forrest [11], this
improvement is sufficient to transform the program-repair
problem out of the realm of a difficult search problem.

4.5 Predicate-based Repair Evolution
The final experiment shows that predicate fitness decreases

more smoothly than testcase(10, 1) as the mutation distance
between a variant and a repair increases. We generated vari-
ants of nullhttpd that are a specified number of mutations
from a known repair. A mutation is a swap, delete, or in-
sert of a statement at some point on the weighted path.
We consider only variants that compile but fail at least one
testcase.

Figure 4 shows how mutation distance to a repair com-
pares to fitness for both predicate fitness and testcase(10, 1).
Solid lines plot the learned functions. predicate fitness is lin-
early related to mutation distance via f(x) = −0.01x+0.65,
while testcase(10, 1) is modeled by f(x) = 0.67x−1.40. Con-
fidence in the fit and slope for both this and predicate fitness
exceeds 0.9995.

Most variants close to a solution receive a testcase(10, 1)
fitness of zero, e.g., light blue points in figure at x = 2. The
variance of testcase(10, 1)is low (standard deviation of 0.07)
at all points > 1, but high for variants one mutation from

repair (0.42). The standard deviation of predicate fitness
over all points is 0.12. Figure 4 supports the hypothesis that
the all-or-nothing nature of a testcase impedes the ability of
testcase(10, 1) to provide an adequate signal to the GP repair
process, especially near solutions (compare distance 1 with
distance 2).

Figure 4 suggests that predicate fitness evaluates fitness
more smoothly, precisely and consistently, and is more pre-
cise than is possible with the testcase(10, 1) function. This
enhancement may allow the GP repair system to tackle more
complicated repairs than those attempted to date. The lin-
ear decrease with predicate fitness as a variant’s mutation
distance increases is encouraging.

5. DISCUSSION AND LIMITATIONS
These results extend our earlier work in four key ways.

First, we demonstrated repairs on four new programs (e.g.,
lighttpd, leukocyte, tiff, imagemagick) from different
domains. Second, we improved the efficiency of GP-based
program repair by incorporating sampling and test suite re-
duction into the fitness function. We observed an 81% per-
formance improvement over earlier results while retaining
equivalent repair quality. Third, we gave evidence of GP-
based automated program repair scaling to programs with
non-trivial numbers of test cases, by presenting repairs on
ten programs with at least one hundred test cases each in
1.8 minutes on average. Fourth, we proposed an enhanced
fitness function, predicate fitness, that includes the behav-
ior of dynamic program predicates in the fitness calculation.
We showed that its FDC is 0.64, compared to 0.04 for the
weighted test case function employed in previous work; this
improved FDC value transforms the GP search problem so
that it is no longer in the difficult problem category. We
also showed that predicate fitness provides a more consistent
signal to the GP process, and more accurately evaluates in-
termediate program variants.

Although the results suggest that aggressive sampling-
based fitness functions can improve performance, they may
not generalize to all programs. First, the benchmark pro-
grams and the faults they contain may not be representa-
tive of the spectrum of buggy programs. We attempted to
mitigate this concern by choosing programs from many ap-
plication domains containing multiple types of faults (e.g.,
crashes, infinite loops, incorrect output, buffer overruns).
However, the programs and bugs used in our experiments
are of the same order as those reported earlier [7, 27]. Also,
the test suites we used may not be indicative of industrial
practice. Although the suites are of varied character (e.g.,
fuzz tests, web server requests, images, language confor-
mance tests, etc.), they are freely available and may not
be of equivalent size or quality to those commonly used in
industry. Also, the experiments used only test suites with
uniform costs: our results might not apply to heterogeneous
test suites. We note, however, that the Walcott et al. algo-
rithm includes both test coverage and test cost and is only
2% worse, on average, than the random sampling function.
Thus the technique could be applied directly to heteroge-
neous test suites.

One limitation of the predicate-based fitness function study
is potential over-fitting of the model to the training data.
We addressed this concern with 10-fold cross validation [12];
bias is suspected if the average results of cross-validation



(over many random partitionings) differ from the original.
Our delta was 0.03%, indicating little or no bias.

Finally, the predicate-based fitness function experiments
were conducted on a single benchmark program, a limita-
tion that we hope to address in future work. However, our
evaluation used a large population of unique variants; the
measured statistics demonstrate significance at or above the
95% confidence level. Importantly, the benchmark includes
a real-world error and set of hand-crafted test cases that
exercises critical functionality. This is likely both the most
indicative and unforgiving of our available benchmarks.

6. CONCLUSION
Automated program repair with GP is a promising tech-

nique for reducing debugging costs. In this setting, the effi-
ciency and precision of the fitness function are primary con-
cerns, We aspire to apply automated repair to complicated
bugs (which require a precise fitness function) in interesting,
critical programs (which require efficient fitness evaluation).
The previous work in this area considered only small test
suites and a fitness function with only a few discrete values.

We presented two fitness function enhancements: test suite
sampling and dynamic predicates. Overall, we note that
both enhancements exploit the tradeoff between efficiency
and precision. Sampling increases efficiency but reduces pre-
cision. However, we demonstrated empirically that the sam-
pling enhancements can produce the same repairs in 81%
less time on 10 benchmark programs with 1206 test cases.
The dramatic performance increase allows GP-based auto-
mated repair to scale to more realistic systems (1206 test
cases vs. 58 in earlier work) and to incorporate more test
cases for correctness guarantees. We performed experiments
to account for the source of this performance increase, and
found that even an optimal safe impact analysis that fully
exploits parent/offspring correlation could provide only 29%
of the performance gains of the sampling approach. More-
over, little of the performance gain are attributable to test
case dependence.

Conversely, dynamic predicates increase precision but re-
duce efficiency. Recording predicate information introduces
an overhead of 3% [15]. However, our detailed case study
showed that dynamic predicates can increase the FDC from
0.04 to 0.65. The new fitness function is a significant im-
provement over weighted test cases, even when the weights
are optimized with learning. We measured the fitness of
variants as they were mutated away from a known repair to
show that a predicate-based fitness function more smoothly
and precisely evaluates the fitness of intermediate variants
than the function employed in earlier work.
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