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Abstract—Participatory sensing applications rely on individ-
uals to share local and personal data with others to produce
aggregated models and knowledge. In this setting, privacy is an
important consideration, and lack of privacy could discourage
widespread adoption of many exciting applications. We present
a privacy-preserving participatory sensing scheme for multidi-
mensional data which uses negative surveys. Multidimensional
data, such as vectors of attributes that include location and
environment fields, are challenging for privacy protection and are
common in participatory sensing applications. When reporting
data in a negative survey, an individual participant randomly
selects a value from the set complement of the sensed data value,
once for each dimension, and returns the negative values to a
central collection server. Using algorithms described in this paper,
the server can reconstruct the probability density functions of
the original distributions of sensed values, without knowing the
participants’ actual data. Our algorithms avoid computationally
expensive encryption and key management schemes, conserving
energy. We study trade-offs between accuracy and privacy, and
their relationships to the number of dimensions, categories, and
participants. We introduce dimensional adjustment, a method
that reduces the magnification of error associated with earlier
work. Two simulation scenarios illustrate how the approach can
protect the privacy of a participant’s multidimensional data while
allowing useful aggregate information to be collected.

Index Terms—multidimensional data; negative surveys; pri-
vacy protection; participatory sensing applications

I. INTRODUCTION

Participatory sensing applications [7] sense, collect, analyze,

and share local information or knowledge collected from a

large population of people, enabling a wide range of applica-

tions such as urban planning [8], public health [11], and vehic-

ular transportation monitoring [24], [31]. In these applications,

the privacy of those carrying sensing devices who are willing

to share their information should be respected, especially when

information travels across open wireless networks. On the

other hand, it is desirable to generate high quality data for

policymakers, researchers, and the public. Hence, trade-offs

exist between protecting the privacy of the participants’ data

and the utility gained from examining this content.

We seek to preserve the privacy of multidimensional data

where all dimensions are sensitive. For example, we present a

radiation detection scenario that determines the distribution of

radiation levels at various locations. Participants disguise both

dimensions: their geographic location, and their local radiation

level. Non-sensitive dimensions can remain un-perturbed if (1)

the data cannot be linked to a particular individual and (2)

there are no correlations between sensitive and non-sensitive

dimensions.

Existing approaches for protecting privacy of multidimen-

sional data [1], [19], [30] are designed for database appli-

cations, where large numbers of records from different users

are available to a centralized server that summarizes statistics

about the records [1], [30], [33]. However, in participatory

sensing applications, individual nodes typically have access

only to their own sensed values. Participants might not be

willing to share information with other participants or trust a

central collection server.

Our approach applies negative surveys [15], [16], [24] to

categorical multidimensional data, where the categories might

be symbolic values (e.g., gender) or a coarse-graining of

numerical data into bins. A set of categories forms a proper

partition over each dimension. Individual participants disguise

data by reporting for each dimension a category from the

set complement of the sensed category. A base station is

then able to reconstruct the original distribution of sensed

categories from this disguised data [24]. This approach avoids

complicated encryption and key management schemes, thus

conserving energy on the nodes.

Using privacy and utility metrics taken from Huang et

al. [26], we quantify the trade-offs between the accuracy of

this reconstruction and the amount of privacy protected. These

metrics and some terminology are borrowed from the privacy-

preserving data mining field. We use the terms, disguise,

perturb, and negate interchangeably.

Our threat model treats the base station as an honest but

curious [6], [21] entity. That is, we assume it faithfully follows

the network protocols but could mischievously try to collect

information to use against the nodes. Additional threats come

from eavesdroppers listening to radio communications who try

to intercept packets. We assume that all nodes are equipped

with sensors for data capture.

One of the limitations of previous work with negative

surveys was the requirement for a large number of participants

to reconstruct the data accurately [24], [35]. A slight increase

in the number of categories requires a significant increase

in the number of participants to maintain a given level of

utility. The problem is compounded when the data are multi-

dimensional. We present a method called dimensional adjust-
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ment that controls this error, reducing the number of required

participants and improving utility 2.5 times more than the loss

of privacy.

We illustrate our algorithms with two simulations. In the

first simulation, a cell phone radiation detection scenario

locates radiation threats such as unexploded dirty bombs,

escaped radiation from a nuclear reactor accident, or lost

or stolen medical waste, while not revealing individuals’

locations. The second simulation reconstructs the underlying

probability density function of continuous data, suggesting an

alternative approach to random data perturbation [2].

The main contributions of this paper include: (1) We present

the use of negative surveys on multivariate categorical data

to protect privacy in participatory sensing applications. This

includes a novel efficient reconstruction algorithm. To our

knowledge, this is the first work addressing privacy of mul-

tidimensional data in participatory sensing applications. (2)

We analyze the benefits of using negative surveys in partic-

ipatory sensing applications compared to other perturbation

approaches. (3) We introduce dimensional adjustment which

reduces the needed number of participants to maintain a given

level of utility, at the expense of a small amount of privacy.

And, (4) we study usability in terms of reconstruction error

and the strength of privacy through theoretical analysis and

simulations.

The remainder of this paper is structured as follows. Section

II gives background information on negative surveys and

randomized response techniques. Our protocols are presented

in Section III, and Section IV describes the privacy and utility

metrics used in the analysis. Section V gives the benefits

of using negative surveys. Dimensional adjustment is intro-

duced and analyzed in Section VI. Section VII describes two

simulations, reporting accuracy and privacy results for each.

We discuss our simulations and speculate on how to improve

their performance in Section VIII. Section IX discusses related

work, and Section X gives future work and our conclusions.

II. BACKGROUND

This section reviews background material on randomized

response techniques and a specific instance of these, negative

surveys in their single dimensional form.

Randomized response techniques (RRTs) disguise data by

perturbing a categorical value to another value. For example,

if race is Hispanic, it could be perturbed to Asian. A perturba-

tion matrix, denoted M , gives the probabilities of perturbing

category i to category j. It is an α by α square matrix where

the columns sum to one and α is the number of categories.

Finding the optimal M that balances both privacy and

utility has been the subject of earlier research [4], [26].

Warner described the RRT for binary data [34], however, it

can be extended to categorical data [3] using the following

perturbation matrix, which gives an initial suggestion for M :

M =




p 1−p
α−1 · · ·

1−p
α−1 p · · ·
...

...
. . .


 , (1)

where p is the probability of a category remaining unchanged.

The original data can then be estimated from the disguised

data with the following equation:

Â = M−1Ŷ , (2)

where Ŷ = (Y1, ..., Yα)
τ and Yi is the number of disguised

values in the ith category. Since this is an unbiased maximum

likelihood estimate, Â approaches the original distribution as

the population grows. Equation (2) is known as the matrix

inversion approach. An iterative approach is given by Agrawal

et al. [3] but is not developed for multiple dimensions.

We review a special case of the Warner scheme called nega-

tive surveys [15], [16], [24]. Negative surveys use a specialized

perturbation matrix containing zeros on the diagonal entries

and equal values everywhere else, with the columns summing

to one, i.e., p = 0 in Equation (1). We call these matrices

negative survey perturbation matrices (NSPMs).

A negative survey consists of two protocols. The first,

or node protocol, maps the sensed data into its negative

representation. To do this, each node chooses a category it did

not sense with uniform probability and returns that negative

information to the base station. The second, or base station

protocol, reconstructs the original data at the base station.

Instead of Equation (2), the following simpler equation [15]

can be used:

∀i | Ai = N − (α− 1) · Yi, (3)

where Ai is the reconstructed number of values in category

i, and Yi is the reported perturbed number of values in

category i, with 1 ≤ i ≤ α. N is the total number of sensed

values. Equation (3) has time complexity O(α), compared to

O(α2) for Equation (2) (ignoring matrix inversion), while still

remaining an unbiased maximum likelihood estimate.

III. PROTOCOLS

In our multidimensional protocols, the individual sensing

device also always reports false data. Although, after the base

station receives all the false reports, it reconstructs the data

differently to approximate the true distribution of the original

sensed values. Before we describe the multidimensional node

and base station protocols, we introduce some notation.

For the entire population, X , Y , and A are D-dimensional

matrices which represent the counts of the categories of the

original, disguised, and reconstructed data sets respectively.

For example, if D=3 then X(a, b, c), Y (a, b, c), and A(a, b, c)
are counts of all the values that occur in the ath, bth, and cth

category in the first, second, and third dimensions. Vectors

such as ~x=<a, b, c> will indicate a specific index.

An individual participant senses vector ~x+=<x+
1 , x

+
2 , · · · ,

x+
D> from its environment. Sensed real values are quantized

into categories, if necessary. Each x+
i ∈ ~x+ where 1 ≤ i ≤

D, reflects that category xi was sensed in dimension i. xi

is drawn from a set of categories Ci={1, 2, · · · , αi}, that
form a proper partition over the data in dimension i, and αi

is the total number of categories in dimension i. The “+” in

~x+ denotes the positive or sensed categorical information, as
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Fig. 1. A sensor that reads < 2, b > selects among the white cells to report.

opposed to the negative or perturbed information represented

as ~x−.

A. Node Protocol

There are three phases to the node protocol:

1) Sensing: A node senses a multidimensional value ~x+

from its environment and quantizes into categories if

necessary.

2) Negation: For each x+
i ∈~x+, the node selects uniformly

at random a category x−
i to report to the base station

from the set of possible categories Ci, such that x
−
i 6=x+

i .

It does this for each dimension, creating the perturbed

vector ~x−. The probability of selecting a perturbed

category is 1
αi−1 , where αi is the number of categories in

dimension i. For example in Figure 1, a node has sensed

~x+=<2, b> from its environment, and must choose

among the white cells, for instance ~x−=<3, c>, for a

negative value to report back to the base station.

3) Transmission: After negation, the node sends ~x− to

the base station. We assume no data aggregation in the

network.

Since the number of bits that is required to transmit either

the positive or negative data is identical, there is only a slight

increase in resource cost to compute and transmit the perturbed

value. Hence, the node protocol saves resources compared to

encryption methods with key management [24].

B. Base Station Protocol

The base station collects the reported data, Y , and esti-

mates the original distributions of sensed values, A. In the

single-dimensional case, Equation (3) is used to obtain this

estimate [16], [24]. We give a method for a multidimensional

approach and later present a time optimization.

1) Reconstruction: Each dimension must use a NSPM. If

Equation (3) were extended to D dimensions, the reconstruc-

tion equation would be:

∀~x | A(~x) = N +

D∑

k=1

(−1)k · Γ(~x, k), (4)

where Γ(~x, k) is given as:

Γ(~x, k) =
∑

d∈
B({1,...,D},k)

















∏

j∈d

(αj − 1)



 ·

∑

~y s.t.
yi∈~x,
∀i∈d

Y (~y)













, (5)

and B({1, ..., D}, k) is all the k length possible combina-
tions of members of {1, ..., D}. For example, B({1, 2, 3}, 2)
is {{1, 2},{1, 3},{2, 3}}. Y (~y) is the count of the reported

disguised sensed values that have categories specified by d
from ~x. As an example, Equation (4) with D=3 is given as:

A(a, b, c) = N − (α1−1)
∑

~y s.t.
y1=a

Y (~y)− (α2−1)
∑

~y s.t.
y2=b

Y (~y)

−(α3−1)
∑

~y s.t.
y3=c

Y (~y)+(α1−1)(α2−1)
∑

~y s.t.
y1=a,
y2=b

Y (~y)

+(α1−1)(α3−1)
∑

~y s.t.,
y1=a,
y3=c

Y (~y) + (α2−1)(α3−1)
∑

~y s.t.
y2=b,
y3=c

Y (~y)

−(α1−1)(α2−1)(α3−1)Y (a, b, c), ∀a, b, c (6)

The time complexity of Equation (4) is given as:

O

(
2D ·

D∏

i=1

αi

)
. (7)

This is because there are (D0 ) + (D1 ) + · · · + (D
D
), or 2D,

total Y terms in Equation (4). For example, Equation (6)

has 8 total Y terms. N is another Y term that counts the

entire number of participants. For each Y (d) term, we need a

count of the specific index d, whose time complexity involves

the product of the number of categories in each dimension.

This complexity is exponential with respect to the number of

dimensions.

2) Optimization: We now present a more efficient alterna-

tive to the previous reconstruction process that uses dynamic

programming and could be applied to any perturbation matrix,

not just the NSPM. It is given in Algorithm 1, where αδ is the

number of categories for the δth dimension; “:” is an operation

on a matrix designating every element in that dimension; τ
is a function similar to transpose that takes a row, column,

hyper-row, or hyper-column, and transforms it into a vector

appropriate for matrix multiplication. Mδ is the αδ by αδ

square perturbation matrix for the δth dimension.

The time complexity of Algorithm 1 is:

O




D∑

i=1




D∏

j=1,j 6=i

α2
iαj




 = O

(
D∑

i=1

αi·
D∏

i=1

αi

)
, (8)

ignoring the cost of matrix inversion for each Mδ . Intuitively,

this complexity is based on a matrix multiplication with every

possible vector in Y . However, if only NSPMs are used for

each dimension, the cost of Algorithm 1 reduces to:

O

(
D ·

D∏

i=1

αi

)
, (9)

because line 10 in Algorithm 1 is replaced with the simpler

Equation (3). This dynamic programming algorithm has the

advantage that different parts of Y are updated through each

iteration. Information is reused and does not need to be re-

calculated. The complexity denoted by Equation (9) is clearly

an improvement over the complexity denoted by Equation (7).
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Algorithm 1 Reconstruction Optimization for D Dimensions.

Y is the D dimensional matrix of reported disguised values,

F = [α1, . . . , αD] is a list of the number of categories for each

dimension, and M = [M1, . . . ,MD] contains the perturbation

matrices for each dimension. The symbol : denotes the slice

operator. index is constructed to be a vector of length D, with

a single instance of :. When used as an index into R, it returns

a vector.
1: function reconstruct_matrix(Y,D, F,M )
2: R = Y
3: for δ ∈ [1 : D]
4: update_dim(R,D, [], δ, F,M)

5: end
6: return R
7:

8: function update_dim(R,D, index, δ, F,M )
9: if length(index) = D
10: R(index)←M−1

δ ∗R(index)τ

11: elseif len(index) + 1 = δ
12: new index← index.append([:])
13: update_dim(R,D, new_index, δ, F,M)

14: else
15: for i ∈ [1 : F (length(index) + 1)]
16: new index← index.append([i])
17: update_dim(R,D, new_index, δ, F,M)

18: end
19: end

IV. PRIVACY AND UTILITY METRICS

We give metrics for the privacy and utility of multidimen-

sional negative surveys which are an extended form of the

one-dimensional case given by Huang and Du [26]. These

formulations apply to any perturbation matrix, not necessarily

a NSPM, and serve as a foundation for comparing different

matrices. Both metrics range from 0 to 1, with the lower value

being more desirable.

A. Privacy Metric

Privacy measures the probability of guessing the original

data from the disguised values, and is based on the maximum

a posteriori estimate. It is related to the Shannon Entropy of

the underlying distribution. The higher the entropy, the better

the privacy. If an underlying distribution contains more values

in any particular category than another, it is easier to guess or

predict that category. The privacy metric is:

Privacy =
∑

Υ∈Y (~x)
∀~x

P (Υ|X̂χ) · P (X̂χ), (10)

where

X̂χ = arg max
χ∈X(~x)

∀~x

P (χ|Y ). (11)

Equation (11) calculates for Equation (10) the optimal max-

imum a posteriori estimate for a given index of Y . This

is the index that has the maximum probability in P (X|Y )
(the maximum index in each column of P (X|Y )). This

metric assumes an adversary has no prior knowledge of the

distribution of perturbed data.

B. Utility Metric

Utility, also known as accuracy or reconstruction error,
measures the difference between the original and reconstructed
data distributions. It is measured with the mean square error,
calculated from the variance and co-variance as follows:

Utility = E(P (A)− P (X))2 (12)

=
1

α1·...·αD

∑

~x1

E(P (A = ~x1)− P (X = ~x1))
2

=
1

α1·...·αD

∑

~x1

(

∑

~x2

[

µ(~x1, ~x2)
2
·var(~x2)

]

+
∑

~x3, ~x4 s.t.
ci∈~x3 6= ci∈~x4

[

2·µ(~x1, ~x3)·µ(~x1, ~x4)·cov(~x3, ~x4)
]

)

,

where

µ(~xi, ~xj) =

D∏

k=1

M−1
k (ck ∈ ~xi, ck ∈ ~xj), (13)

denotes the ck ∈ ~xi row and ck ∈ ~xj column in M−1
k ; and

variance and covariance are:

var(~xi) =
1

N
·P (Y = ~xi)·(1− P (Y = ~xi)), (14)

cov(~xi, ~xj) = − 1

N
·P (Y = ~xi)·P (Y = ~xj). (15)

V. BENEFITS OF A NSPM

NSPMs are well suited for participatory sensing applica-

tions, and we identify several reasons to base our scheme on

them:

1) They are appropriate for resource-constrained devices

because perturbation is simplified at the resource-constrained

nodes. M does not need to be stored at a node, or used in the

perturbation process. Negative values are simply chosen with

equal probabilities, which can be beneficial if there are a large

number of categories.

2) All samples are guaranteed to be perturbed for a NSPM,

unlike RRTs. If the perturbation matrix has non-zero values on

the diagonal, there is a small chance of a record maintaining

all of its original values. This could be viewed as a privacy

breach even if it only occurs in 1 record out of a million [17].

3) Sensors often do not know the prior distribution of their

environment. However, in order to find the best perturbation

matrix this distribution needs to be known a priori [26].

Our evidence empirically suggests that for a NSPM, utility

is independent of the underlying distribution. This implies

that utility can be known a priori, even if the underlying

distribution is not.

4) Figure 2 suggests that an optimal value for p in Equation

(1) is zero (a NSPM). The figure plots privacy and utility

metrics against values of p for the perturbation matrices. Ten

categories were used, and there are five different underly-

ing data distributions. Each underlying distribution is drawn

from an ideal distribution that contains a particular Shannon

Entropy, labeled in the legend. The utility values for each
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Fig. 2. Privacy and utility values using different values of p of Equation (1).
Each “checkmark” curve represents the privacy value of a different underlying
distribution, denoted in the legend by its Shannon entropy. Utility is nearly
the same for all 4 different distributions and is given once.

distribution are similar enough that they appear as a single

curve.

Trade-offs exist between privacy and utility: The best pri-

vacy gives the worst utility, and vice versa. For example in Fig-

ure 2, when p approaches 0.1, utility asymptotically increases.

This is explained by the fact that there are 10 categories and

every entry of the perturbation matrix is the same, 1
10 . At the

other extreme, p = 0.1 provides the best privacy, as seen by

examining the minimum of the “checkmark” curves.

Zero is the best value for p. Consider the points at p = 0
and p = 0.2 in Figure 2, where utility is equal but privacy

is not. Privacy is better at p = 0, and has a better combined

privacy and utility value than any other location on the graph,

excepting the tails. If a certain level of privacy is desired,

perhaps below 0.3, there is no better choice for p. As a

caveat, we observe that the underlying distribution must have

a sufficiently high Shannon entropy for NSPMs to be optimal.

VI. DIMENSIONAL ADJUSTMENT

A challenge of NSPMs observed in previous work for

single dimensional data [24], [35] is that a slight increase in

the number of categories significantly increases the required

number of participants for a given utility value. This increase

is compounded with each additional dimension and has limited

negative surveys to small applications. In this paper, we

propose the dimensional adjustment (DA) method to address

this challenge.

DA increases utility by accepting a slight decrease in privacy

for a given number of participants. It accomplishes this by

distributing the same overall number of categories over an

increasing number of dimensions. For example, if an original

one-dimensional negative survey contains 64 categories, it

can be remapped to: 2 dimensions of 8 categories each;

2 dimensions of 4 and 16 categories; or any number of

dimensions where the product of the number of categories

in each dimension equals 64. For space reasons, the details

TABLE I
TWO NEGATIVE SURVEYS OF 10,000 TOTAL CATEGORIES AND 1,000,000

PARTICIPANTS. THE SECOND USES DIMENSIONAL ADJUSTMENT.

1 dimension of 6 dimensions of

10,000 categories 5x5x5x5x4x4 categories

utility 0.00100 0.00014

privacy 0.01457 0.01960

for remapping dimensions have been left out, but are trivial to

implement in the previous protocols.

Splitting data into multiple dimensions with a smaller num-

ber of categories for each dimension improves reconstruction

accuracy (utility). Intuitively, accuracy is related to Figure 1

and the ratio of the white squares (negative information) to

the total number of squares. As the number of dimensions

grows, and the number of distinct categories remains the same,

this ratio decreases, reducing the possible number of cells for

perturbed data, which increases the accuracy of reconstruction.

There are trade-offs between a high number of dimensions

with a low number of categories, versus a low number

of dimensions with a high number of categories. A one-

dimensional negative survey with 64 categories provides the

best privacy but the worst utility, compared to 6 dimensions

with 2 categories each, which provides the worst privacy but

the best utility. The relationship between privacy and utility is

usually nonlinear, providing an opportunity to sacrifice a small

amount of one for a significant gain in the other. For example,

in Table I with 1,000,000 samples and 10,000 categories, we

see privacy degrades 34% while utility improves 86%.

Using Table I and modeling equations for privacy and

utility, we further illustrate these trade-offs. Without loss of

generality, the normal distribution is used as the original

distribution, X , in Table I. The multidimensional negative

survey that uses 6 dimensions and 1,000,000 participants

is comparable to a single dimensional negative survey that

uses 71,414,286 participants. This is calculated by setting the

following utility modeling equation for a single dimension:

Utilitymodel = (α− 2)/N, (16)

to 1.40E-04 (from Table I), α to 10,000, and solving for N .

The same multidimensional negative survey is also equivalent

to a single dimension using 142 categories. This is calculated

by setting Equation (16) to 1.40E-04, N to 1,000,000, and

solving for α. Equation (16) has an R2 value of 0.999.

We perform a similar analysis for the privacy equivalence

with Table I and the following privacy modeling equation

where the values of the input distribution are normal:

Privacymodel =
2.5

(log2(α))2 + 1.5
, (17)

which has an R2 value of 0.976. The multidimensional neg-

ative survey in Table I is equivalent in privacy to using a

single-dimensional negative survey of 2,397 categories, yet

previously it had the same utility as 142 categories.
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VII. APPLICATIONS AND SIMULATIONS

A. Cell phone Radiation Threat Detection

Participatory sensing could help detect and locate radiation

threats, for example a nuclear device or incident such as

a dirty bomb, lost radioactive material, the spreading threat

from a nuclear reactor accident, or medical waste dumps. In

this scenario we assume that cell phones are equipped with

radiation monitors and GPS devices. Locations are quantized

into different groups, with a different label for each group.

Individuals care about the privacy of their locations. We

show that with reasonable parameter assumptions (number of

locations, radiation levels, and participants), multidimensional

negative surveys can maintain confidentiality and determine

which locations contain radiation threats.

Cell phones are ideal for radiation detection, and the United

States Department of Homeland Security has considered their

use [18]. If radiation sensors were installed at fixed locations,

they might be tampered with or avoided, which would be more

difficult with cell phones because they are owned by individu-

als and exist in large numbers. As an incentive to promote

participation, aggregate information could be disseminated

freely to participants. Since readings from an individual cell

phone might not be as accurate as the combined readings from

a larger population, access to aggregate information would be

advantageous. However, for an event such as the Fukushima

Daiichi nuclear accident, participants might prefer to send

the unperturbed data and receive more accurate readings.

Either way, in such a situation, immediate feedback would

be beneficial, especially to determine if radiation has spread

further than publicly acknowledged.

1) Simulation Setup: Before we explain the simulation

setup, we give a small example of a geographic area divided

into a 3x3 grid, shown in Figure 3. The total population of

cell phones (participants) is 450,000 and is equally divided

among the 9 locations. In the actual simulation, we do not

assume a uniform population distribution and instead follow a

more realistic model given by Bertaud et al. [5]. We simulate

three radiation levels: low, medium, and high. Depending on

the level of radiation, each location’s distribution of reported

levels will be shifted lower or higher. For example, in Figure

3, location 6 contains a threat distribution, illustrated by

the black histogram. This distribution, exponentially shifted

towards the higher range, contains 28,571 participants in the

high radiation level, 14,286 in the medium radiation level,

and 7,143 in the low level. Benign locations, characterized by

the non-threat distributions, are shown in black at the other

locations. These distributions are exponentially distributed in

the reverse order.

San Francisco, which has roughly 46.7 square land miles, is

our example city. We chose the number of distinct locations

to be 48, which works well with DA due to its high num-

ber of composites. Each location roughly covers one square

land mile, which is small enough for a response team with

more powerful equipment (such as helicopters equipped with

radiation detectors) to pinpoint the exact location of a threat.
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Fig. 3. Histograms for a multidimensional negative survey of 9 locations
and 3 radiation levels. Location 6 is suspicious since its radiation levels form
a threat distribution. The other locations have non-threat distributions.

San Francisco has a population of about 815,000. We

vary the number of participants from 100,000 to 400,000

in increments of 100,000. The spatial distribution of people

follows a standard urban model taken from Bertaud et al. [5].

The population is most concentrated at the central business

district, and is reduced from the center.

We use 3 categories for the radiation levels. Although our

experiments show that more categories would increase the

granularity of the data, they would not improve accuracy.

In fact, we were able to better determine threats with a

lower number of radiation levels. There is a limit, however.

If there were only 2 radiation levels, privacy would be lost,

and adversaries could determine a user’s location, if a threat

existed.

Each participant’s cell phone, when queried, samples the

environment for the radiation level and notes its location. It

then perturbs this information according to Section III-A and

sends the perturbed values to the base station. After the base

station collects the perturbed data (one sample from each cell

phone), it reconstructs the original distribution.

The base station determines if a threat exists and if so, at

which location. It computes a linear regression at each location

from its reconstructed histogram of radiation levels, assuming

that histogram values are one unit apart. Ideally, we expect

that a location reporting elevated radiation levels will have a

positive slope from the linear regression, and a location with a

non-threat will have a negative slope. Although, we arbitrarily

defined slope thresholds to distinguish threats from not threats,

choosing values that minimized the overall numbers of false

positives and false negatives. The thresholds could be adjusted

to favor one error type over another. For example, one strategy

might send response teams to investigate false positives, rather

than allowing a false negative to slip through. We chose the

thresholds a posteriori, but in a real deployment these values
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TABLE II
RESULTS OF THE CELL PHONE RADIATION DETECTION SIMULATION.

EACH TEST RAN 1,000 TIMES WITH 500 RUNS CONTAINING A RADIATION

THREAT (TRUE POSITIVES) AND 500 RUNS CONTAINING NO THREAT

(TRUE NEGATIVES).

False False Acc. of True Avg. Avg.

Samples Neg. Pos. Pos. % (Ratio) Privacy Utility

1 locational dimension with 48 categories

100,000 246 246 5.5 (14/254) 0.0282 4.54E-04

200,000 244 245 7.8 (20/256) 0.0252 2.27E-04

300,000 244 244 18.0 (26/256) 0.0241 1.51E-04

400,000 241 242 18.9 (49/259) 0.0234 1.13E-04

2 locational dimensions with 8x6 categories

100,000 246 248 11.8 (30/254) 0.0350 1.90E-04

200,000 250 251 21.2 (53/250) 0.0319 9.48E-05

300,000 222 222 31.3 (87/278) 0.0307 6.32E-05

400,000 199 199 39.2 (119/301) 0.0300 4.74E-05

3 locational dimensions with 4x4x3 categories

100,000 203 205 56.6 (168/297) 0.0586 3.09E-05

200,000 139 139 81.7 (295/361) 0.0554 1.54E-05

300,000 87 87 92.5 (382/413) 0.0542 1.03E-05

400,000 58 58 94.3 (417/442) 0.0535 7.71E-06

4 locational dimensions with 2x2x4x3 categories

100,000 17 17 99.4 (480/483) 0.1444 4.41E-06

200,000 0 0 100 (500/500) 0.1411 2.20E-06

300,000 0 0 100 (500/500) 0.1398 1.47E-06

400,000 0 0 100 (500/500) 0.1392 1.10E-06

(and better detection methods) could be chosen a priori, with

additional domain knowledge.

We ran the simulation 1000 times for the various numbers

of participants, assigning the threat distribution to a random

location in 500 of the runs. In the other 500 runs we assigned

a non-threat distribution to all locations.

2) Results and Analysis: Table II summarizes the results,

showing the number of false positives and false negatives.

Accuracy is the percentage of true positives that correctly

determined the threat location. The average privacy and utility

metrics are also shown. Since we are calculating an unbiased

maximum likelihood estimate, more participants reduce the

number of errors and increase reconstruction accuracy.

Because accuracy was low for a single dimension, shown

in the first four rows of Table II, we used DA. We changed

the location dimension of 48 categories to 2 dimensions of 6

and 8 categories; 3 dimensions of 4, 4, and 3 categories; and 4

dimensions of 2, 2, 4, and 3 categories. The results are shown

in Table II. With 4 dimensions, we obtained 100% accuracy

with 200,000 or more participants.

B. Reconstructing Continuous Values

In addition to categorical data such as locations and radia-

tion levels, multidimensional negative surveys could be applied

to continuous data such as temperature or humidity. We recon-

struct the probability density functions of different underlying

distributions and compare the parameters of these distributions

to the original parameters. This could have implications in

privacy-preserving data mining as an alternative to random

data perturbation [2].

1) Simulation Setup: Any fixed point number can be rep-

resented as a collection of categories by labeling each digit’s
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Fig. 4. Parameter reconstruction error from the continuous negative survey
simulation measured as a percentage difference from the original parameter.

position (1’s, 10’s, 100’s,...) with a value ranging from zero to

nine. Thus, a fixed point number with n digits is treated as an

n dimensional negative survey, with each dimension having

ten potential categories; it is then straightforward to apply the

protocols presented previously.

We generated values from two probability distributions,

rounding each value to 2 and 3 significant digits. We used

the following normal and exponential distributions:

N (µ, σ) =
1√
2πσ2

e−
(x−µ)2

σ , E(µ) = 1

µ
e−

x
µ .

Tests used N (500, 100) and E(100), and we truncated the tails

of the distribution at 0 and 1000. To perturb a sensed value,

a random digit not equal to the actual digit is reported for

each position. We varied the number of samples from the two

distributions from 1,000 to 9 billion in exponential increments.

The base station reconstructs the frequency of each number

in the significant digit range (the probability density function)

of the underlying data according to the protocols in Section

III. The parameters from the reconstructed data are determined

using a maximum likelihood estimate and then are compared

to the original parameters used to construct the data.

2) Results and Analysis: We calculated the difference be-

tween the estimated and original parameter and divided by the

original parameter. Each data point is an average of 20 runs.

Figure 4 show the results. It suggests that a theoretical maxi-

mum accuracy depends on the parameter type, the distribution,

and the number of dimensions. All parameters are within 5%

of the original parameter values after 200,000 sensed values.

VIII. DISCUSSION

In the cell phone simulation, because the data are perturbed,

it is almost impossible for the collection server to determine

a participant’s true location1. Most, if not all, encryption

methods must eventually trust the final recipient of the data.

In contrast, our method does not require such trust. Further, it

does not incur the extra computational cost of encryption and

1While the cell phone tower could reveal the node’s location, the base
station cannot determine the location from its own information.
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the additional communication overhead to transmit encrypted

data, nor the extra cost of key distribution and management.

Sometimes nodes will be captured and masquerade as

legitimate nodes, continually sending responses when queried.

These nodes might become dishonest or rogue and try to

corrupt the aggregate information by not following or altering

the node protocol. Rogue nodes could either report the original

sensed value or favor some categories over others. This can

be addressed by adjusting in the reconstruction process the

perturbation matrices, Mδ , for each dimension δ, with the

correct probabilities that categories were favored.

Some participants’ locations might either be constant (if

they are not moving around) or follow regular patterns. If a

single cell phone were to report its negative location regularly,

an adversary might be able to infer its positive location

through long term monitoring of the transmitted values. This is

especially important if an ID is transmitted with the data. This

threat can be addressed if participants are asked to respond to

a base station query only if their location has changed since

the last query, or to limit the amount of information sent to

the base station.

The communications graph in the cell phone simulation

has each node reporting directly to the base station. Routing

in traditional wireless sensor networks usually follows a tree

path. In situations like these, it could be possible to adopt

an aggregation strategy similar to Castelluccia et al. [9], or

the negative histograms could be aggregated using a min/max

scheme from Groat et al. [22] where each value in the negative

histogram is treated as a maximum.

In the second simulation, if participant populations are not

sufficiently large, a single participant could report multiple

sensed values over time, and the base station could accumulate

these multiple reported values to obtain a more accurate

estimate of the parameters. Additionally, DA can improve

accuracy by changing the samples to a lower base or radix.

IX. RELATED WORK

Privacy-preserving algorithms have been developed for data

mining [17], [27], [28], data aggregation [10], [20], [24], and

other applications [29], [32]. There are four main classes

of solutions: perturbation, k-anonymity, secure multi-party

computation (SMC), and homomorphic encryption. The first

class hides data values by perturbing individual data or query

results [17], [27], [28]. These methods usually assume that the

distribution of data/noise is known to obtain accurate results.

However, as shown by Kargupta et al. [28] and Huang et

al. [27], certain types of data perturbation might not preserve

privacy well. The second class, k-anonymization [1], [30],

[33], makes a data value or participant indistinguishable from

k−1 other items. It was originally designed for privacy-

preserving data mining, but in participatory sensing applica-

tions individual participants sense and share their own data.

Hence, there is limited potential to mix individual participants’

data with others’ data. The third class, SMC techniques [12],

[23], [25], rely on a joint computation among a set of involved

peers. This is problematic in participatory sensing applications

which may incur a high communication or computation over-

head when the participant population is large. The fourth class

aggregates data based on homomorphic encryption [10], [20],

which allows a user to perform data aggregation on individual

data without knowing the data. However, in order to interpret

the final aggregation result, a server needs to know which users

reported data, which is not always desirable.

Dwork et al. [14] introduced the term pan-private in the

context of streaming algorithms which can protect the state

of information inside a node. This is useful for node capture

attacks that examine internal data. However, it assumes a

secure stream as a precondition of the algorithm, while the

work reported in our paper protects the stream of information

in transit. Pan-private algorithms, however, work better for

complex aggregates such as the t-incidence items, the t-

cropped mean, and the fraction of k-heavy hitters [14].

Differential privacy [13] aims to provide the maximal ac-

curacy of responses for users querying a statistical database,

while minimizing the ability of these users to identify records

in the database. Differential privacy assumes that a trusted

server handles and responds to the queries, while negative

surveys, on the other hand, do not assume that the server is

trustworthy.

Gaussian negative surveys (GNSs) [35] also reduce the

number of participants needed for accurate negative survey

reconstruction. Xie et al. propose a special perturbation matrix

where each column is represented as a Gaussian distribution

with the mean centered over the original category, which is

represented as zero. With location data, this perturbs an indi-

vidual’s location a Gaussian random distance away from the

original location. This special perturbation matrix eliminates

the need for reconstruction at the base station. However, GNSs

with location data do not protect privacy as well as negative

surveys. The privacy guarantee of an individual participant

depends on the variance of the Gaussian distributions in

the perturbation matrix. This variance must be small enough

to maintain an acceptable level of utility and number of

participants, however, smaller values do not perturb a location

a sufficient amount of distance. This may make it easier for an

adversary to determine the general location of an individual

participant. It is not until the variance is increased to cover

more than the entire column of the perturbation matrix that

GNSs approach the same privacy guarantee as traditional

negative surveys.

X. CONCLUSION AND FUTURE WORK

Information such as physical locations, driving speeds, or

medical information, can have devastating effects if intercepted

by adversarial parties. Multidimensional negative surveys per-

turb data for participatory sensing applications, providing high

levels of privacy. The privacy-preservation problem addressed

here is challenging, because (1) users may not trust the infor-

mation collection server, and (2) embedded or sensor devices

may have limited resources. Thus, we do not rely on standard

encryption schemes or key distribution and management. An

advantage of our work is that privacy and accuracy can be
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managed by simply tuning parameters of the protocols. Our

method scales well because the communication and compu-

tation overhead is low for the sensor nodes, especially when

compared to expensive encryption schemes.

Future work will examine the limits of dimensional adjust-

ment on real-world data sets with large numbers of categories.

Although histograms are useful, we are interested in recon-

structing other aggregates.
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