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Abstract
We present a method for automatically repairing arbitrary software
defects in embedded systems, which have limited memory, disk and
CPU capacities, but exist in great numbers. We extend evolution-
ary computation (EC) algorithms that search for valid repairs at the
source code level to assembly and ELF format binaries, compen-
sating for limited system resources with several algorithmic inno-
vations. Our method does not require access to the source code or
build toolchain of the software under repair, does not require pro-
gram instrumentation, specialized execution environments, or vir-
tual machines, or prior knowledge of the bug type.

We repair defects in ARM and x86 assembly as well as ELF
binaries, observing decreases of 86% in memory and 95% in disk
requirements, with 62% decrease in repair time, compared to sim-
ilar source-level techniques. These advances allow repairs previ-
ously possible only with C source code to be applied to any ARM
or x86 assembly or ELF executable. Efficiency gains are achieved
by introducing stochastic fault localization, with much lower over-
head than comparable deterministic methods, and low-level pro-
gram representations.

When distributed over multiple devices, our algorithm finds re-
pairs faster than predicted by naı̈ve parallelism. Four devices using
our approach are five times more efficient than a single device be-
cause of our collaboration model. The algorithm is implemented on
Nokia N900 smartphones, with inter-phone communication fitting
in 900 bytes sent in 7 SMS text messages per device per repair on
average.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.3.2 [Language Classifications]:
Macro and Assembly Languages; I.2.8 [Artificial Intelligence]:
Heuristic methods

General Terms Experimentation, Languages

Keywords Automated program repair, evolutionary computation,
fault localization, assembly code, bytecode, legacy software
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1. Introduction
Automated software repair is an emerging research area in which
algorithmic and heuristic approaches are used to search for, gen-
erate, and evaluate candidate repairs for software defects. It has
received attention in programming languages (e.g., [15]), operat-
ing systems (e.g., [26]) and software engineering (e.g., [33, 35])
venues. Automated repair methods have been applied to multiple
classes of software engineering and security defects (e.g., [35])
including hard-to-fix concurrency bugs [15], have won human-
competitive awards [9], and automatic repairs have been success-
fully pitted against DARPA Red Teams to demonstrate quality [26].
With bug repair dominating software development costs (90% of
the total cost of a typical software project is incurred after deliv-
ery [28]) such automated techniques are of increasing importance.

However, few automated repair techniques apply to resource
constrained embedded systems, instead targeting desktop client
software such as Firefox [15, 26], server software such as MySQL [15]
or webservers, or design-by-contract Eiffel programs [33]. Given
the tight coupling between embedded software and the unique ex-
ecution environments in which they operate, desktop testing and
repair tools are often insufficient. Current research in this field is
increasingly out of step with the needs of industry, in which em-
bedded microprocessors account for more than 98% of all produced
microprocessors [4]. One example of a wide-reaching embedded
defect was the “Zune bug,” in which 30GB Microsoft Zune Media
Players froze up on the last day of a leap year [2]. In addition,
previous repair techniques that apply to binaries [26] or assem-
bly language [27] have uniformly targeted Intel x86, despite “the
widespread dominant use of the ARM processor in mobile and
embedded systems” [8].

Evolutionary computation (EC) is a stochastic search method
based on Darwinian evolution, which has been applied to the au-
tomated repair problem. Like other search methods, EC is relevant
when it is easier to evaluate a candidate solution than to predict the
form of a correct solution [5].1 Although EC techniques do not yet
synthesize large programs in traditional languages, they can repair
a wide variety of real defects at the source-code level in real-world
software applications [20].

We propose to repair assembly language and executable binary
programs directly using EC across multiple architectures, including
embedded and mobile systems. Resource constraints in embedded

1 In this paper we use the term genetic algorithm (GA) interchangably with
evolutionary computation (EC). GAs and Genetic Programming (GP) are
two concrete realizations of the general EC framework. GAs are typically
defined over linear strings and GP typically refers to tree-based executable
representations of programs. Our method uses linear strings that are exe-
cutable.



and mobile systems preclude the use of existing techniques. For ex-
ample, it is not feasible to trace all operands that CPU instructions
read or write (as in [26, Sec. 2.1.1]) or even to trace all instruc-
tions visited (as in [35]). A pre-set, unified locking discipline may
not be available (as used by [15]). Source code with debugging in-
formation may not be available, so statements and abstract syntax
trees cannot be accurately identified to reduce search-space size
(as used by [35]), and, formal pre- and post-condition annotations
are unlikely to be present (as used by [33]). Finally, most embed-
ded devices do not ship with a complete compiler toolchain, and
a deployed device may not have the storage or RAM to support its
original mission together with a heavyweight repair framework that
uses the GCC toolchain. The closest assembly-level repair work is
a preliminary four-page short paper [27] that proposes automated
program repair on x86 assembly language, but does not address
fault localization, multiple architectures, repairing executables, or
distribution across multiple systems.

The main contributions of this paper are as follows:

• An architecture-independent representation and stochastic fault
localization algorithm that supports automatic program repair at
the assembly and binary levels. We demonstrate applicability to
x86 and ARM processors. Although sampling for fault localiza-
tion is not new, its application and evaluation in the domain of
program repair is, and our technique is an order-of-magnitude
faster and of comparable accuracy to deterministic methods.
• An empirical demonstration that disk space and memory re-

quirements are 95.22% and 85.71% smaller, respectively, than
similar methods, allowing application to mobile and embedded
systems.
• An empirical comparison across different levels of program

representation with respect to EC’s success and efficiency at
finding repairs.
• A demonstration that most source-statement-level repairs re-

ported previously [35] can also be carried out at the assembly
and binary level with a 62.43% average decrease in the time
required to perform a repair between the AST and ELF levels.
• A distributed GA that performs automated program repair

across multiple embedded devices. Four devices using our ap-
proach are five times faster than a single device for our repair
benchmarks.
• Empirical demonstration of the repair method on Nokia N900

smartphones (600 MHz ARM Cortex-A8 CPU, 256 MB mem-
ory). Using two phones, the distributed algorithm conducts re-
pairs with just under 900 bytes sent (or 7 SMS messages) per
participant per repair.

2. Background
In automated software repair (e.g., [26, 33, 35]), defects are cor-
rected by searching over and evaluating a solution space of possible
repairs. The set of repairs (fixes) may be generated from random
variations of the instructions in the program, as in GenProg [20];
from formal source code annotations, as in AutoFix-E [33]; or
from a pre-defined library, such as the locking changes used by
the AFix project [15] or the clamp-variable-to-value operation of
Clearview [26].

Our work is based on the EC approach [9, 35, 36]. EC mimics
Darwinian evolution in a computational algorithm that searches for
candidate solutions to a given problem [14]. In the program repair
context, a population of program variants is generated by applying
random mutations to the original buggy source code. These vari-
ants are then compiled using the program’s build toolchain, and the
resulting executables are evaluated against the program’s test suite.

The test suite assesses the goodness, or fitness, of each variant, and
the fitness value is used to select which variants will remain in the
population, undergoing additional mutations. In addition to muta-
tion, the algorithm uses crossover to exchange instructions between
two variants, producing a recombination of partial solutions. The
process iterates until a variant passes all test cases and also fixes
the bug, or until an upper time limit is reached.

To reduce the size of the search space of possible repairs, muta-
tion and crossover operators are limited to re-organizing statements
present in the original program. No new statements are created,
and sub-statement program elements, such as expressions, are not
changed directly. Fault localization (e.g., [16]) focuses the muta-
tion operators on statement nodes executed on the buggy input. To
collect this information, an execution trace is recorded from an in-
strumented version of the program run against the test suite.

We extend this previous work to run directly on compiled
assembly files and linked ELF executables, and we introduce a
stochastic method of fault localization appropriate for these lower-
level representations. These extensions remove the requirement for
source code availability and the need for compilation and linking
(for the ELF level) as part of the search process. It is applicable to
arbitrary assembly and ELF programs rather than only C-language
programs and enables repairs that are not expressible at the C state-
ment level.

3. Technical Approach
Build processes generate intermediate representations, each of
which is a possible target for automated repair, and each of which
poses unique challenges for the repair method. These challenges
include: the form of the representation and mutation operators, the
granularity of fault localization information, and the tools required
to express a representation as an executable program. The follow-
ing subsection reviews the repair framework at a high level, which
mirrors the AST algorithm [35, 36]. We summarize the technical
and algorithmic aspects of ASM and ELF repairs, including the
resources required by each level of representation, the effects of
representation on mutation operations, and the requirements for
expression as executable programs.

3.1 Evolutionary Repair Algorithm
The algorithm shown in Figure 1 applies to source-level ASTs,
compiled ASM, and compiled and linked ELF repairs. Section 4.1
reports values for the parameters, such as popsize, used in our ex-
periments. The next subsections present the stochastic fault local-
ization algorithm, ASM and ELF representations, and mutation and
crossover operators.

The overall structure in Figure 1 is iterative. Tournament selec-
tion selects variants for the next iteration (generation) (Lines 8, 12);
retained variants exchange sub-strings to produce offspring (Line
9); all variants are mutated (Line 16), and the process repeats until
a solution is found (Line 18).

3.2 Stochastic Fault Localization
In large programs, it is reasonable to assume that most parts of
the program are not related to a given bug [16], and fault localiza-
tion methods often target code executed on the bug-inducing input.
Accurate fault localization is critical for targeting the repair oper-
ators [35, Fig. 5] and is an important factor in running time [36,
Fig. 1].

Our earlier work recorded entire sequences, or paths [35], of
executed statements using various weighting factors [16], which
required expensive program instrumentation or runtime harnesses.
A key challenge is obtaining accurate enough information for guid-
ing automated repairs, while maintaining the efficiency required for
embedded devices.



Input: Program P to be repaired.
Input: Set of positive testcases p ∈ PosT .
Input: Set of negative testcases n ∈ NegT .
Output: Repaired program variant V .

1: PathPosT ←
⋃

p∈PosT locations visited by P (p)

2: PathNegT ←
⋃

n∈NegT locations visited by P (n)

3: Path ← set weights(PathNegT ,PathPosT )
4: Pop ← initial population(P, pop size)
5: repeat
6: NewPop ← ∅
7: for i = 1→ (pop size× cross percent) by 2 do
8: V1, V2 ← tournament(Pop), tournament(Pop)
9: NewPop ← NewPop ∪ {crossover(V1, V2)}

10: end for
11: for i = 1→ (pop size× (1− cross percent)) do
12: NewPop ← NewPop ∪ {tournament(Pop)}
13: end for
14: Pop ← ∅
15: for all 〈V,PathV 〉 ∈ NewPop do
16: Pop ← Pop ∪ {fitness(mutate(V,PathV ))}
17: end for
18: until ∃〈V,PathV , fV 〉 ∈ Pop | fV = max fitness
19: return V

Figure 1. High-level pseudocode for EC-based automatic program repair,
which applies to all levels of representation. Representation-specific sub-
routines such as fitness(V ) and mutate(V,PathV ) are described subse-
quently.

Many traditional code profilers (e.g., gcov) are language spe-
cific and rely on the insertion of assembly instrumentation con-
suming unacceptable storage and run-time resources. For exam-
ple, instrumentation of the flex benchmark [35] at the C-language
level required storing sequential ordering information from about
443,399 raw statement visits, with program instrumentation in-
creasing the CPU run-time by a factor of 100. Direct extensions 2

such as deterministic sampling of the program counter (e.g., using
ptrace) performed poorly in our preliminary work.

memory addr.

to instruction

movq 8(%rdx), %rdi
xorl %eax, %eax
movl %eax, (%r15)
addl $1, %r14d
call atoi
movq -80(%rbp), %rdx
movq %rdx, -80(%rbp)
addq $4, %r15
movq 8(%rdx), %rdi
xorl %eax, %eax
movl %eax, (%r15)
addl $1, %r14d

Sample
Program Counter

Raw Sample
Counts

Smoothed Sample
Counts

CPU
Machine-code
Instructions

Figure 2. Stochastic Fault Localization (raw and smoothed samples from
the merge-cpp benchmark).

To address these constraints, we propose a sampling approach
to fault localization (Figure 2), which is applicable to arbitrary
assembly and ELF programs and dramatically reduces resource
requirements compared to earlier work. We sample the program
counter (PC) across multiple executions of the program. These
sampled memory addresses are then mapped to bytes in the .text
section of ELF files or to specific instructions in ASM files. The
result is a count of the total number of times each instruction in
the program was sampled. Stochastic sampling only approximates
control flow and is vulnerable to gaps, elided periodic behavior,

2 Code available at http://github.com/eschulte/tracer.

over-sampled instructions, etc. To overcome these limitations, we
apply a 1-D Gaussian convolution to the sampled addresses with a
radius of 3 assembly instructions, s.t. the smoothed value of each
sample G(x) is a weighted sum of the raw value F (x) of itself and
its 6 nearest neighbors.

G(x) =

3∑
i=−3

F (x+ i)× 1√
2π
e−

1
2
i2

This simple transformation increases the chance that instructions
that are executed but not directly sampled will be counted, and
it improves the correlation between stochastic and deterministic
samples (Section 4.2).

Gaussian convolution is an accepted method of smoothing data
to reduce detail and noise in fields such as computer vision [29].
However, to our knowledge it has not previously been applied to
fault localization. Section 4.2 compares the fault localization infor-
mation produced by our stochastic sampling to a fully deterministic
program trace.

Samples are collected from multiple runs of each of the pro-
gram’s tests. Despite multiple executions of each test, the CPU time
required is less than comparable deterministic techniques (Sec-
tion 4.4). The union of every instruction included in the fault lo-
calization from the positive tests, and the union of every instruction
included in the fault localization from the negative tests are col-
lected into the positive and negative fault localization respectively.
These sets of are then used to guide program repair.

3.3 ASM and ELF Program Representations
In contrast to the tree-structured (nested) source code representa-
tion [35], our assembly and ELF level representations use a linear
sequence of instructions e.g., as produced by gcc -S or objdump
-d -j .text respectively. Candidate repairs are generated by
swapping, inserting or deleting instructions. Pseudo-operations
and directives at the assembly level (e.g., .section .rodata),
and all elements outside of the .text section of the executable at
the ELF level, are retained in each variant but never modified by
mutation. To reduce search space size, each instruction, together
with its operands, is treated atomically, and operands are not mu-
tated independently. Both representations are source language and
architecture agnostic.

3.3.1 Genetic Operators
ASM and ELF representations are modified using four operators
designed for the linear representations: three mutation types and
one crossover type (Figure 3). Instructions appearing in the nega-
tive localization are ten times more likely to be mutated than in-
structions appearing in both.

Linked ELF executables often contain hard-coded memory ad-
dresses included as literals in the program .text. Since there is no
general way to distinguish an integer literal from an address literal,
our mutation operators occasionally create invalid addresses (re-
cent work may enable improved treatment of literal addresses [1]
in the future).

To minimize disturbance of literal addresses and information
outside of the .text section, the ELF mutation and crossover
operators attempt to maintain the length of the linear instruction
array in bytes and minimize changes to the in memory addresses of
existing instructions.

Delete: A single instruction selected by weight is removed. At the
ELF level, every byte of the deleted instruction is replaced with
a nop byte.

Insert: A single instruction selected at random is copied to a new
location selected by weight. At the ELF level, changes to offsets

http://github.com/eschulte/tracer


Original
movq 8(%rdx), %rdi
xorl %eax, %eax
movq %rdx, -80(%rbp)
addl $1, %r14d
call atoi
movq -80(%rbp), %rdx
movl %eax, (%r15)
addq $4, %r15

Result
movq 8(%rdx), %rdi
xorl %eax, %eax

addl $1, %r14d
call atoi
movq %rdx, -80(%rbp)
movl %eax, (%r15)
addq $4, %r15

(a) Delete

Original
movq 8(%rdx), %rdi
xorl %eax, %eax
movq -80(%rbp), %rdx
addl $1, %r14d
call atoi
movq -80(%rbp), %rdx
movl %eax, (%r15)
addq $4, %r15

Result
movq 8(%rdx), %rdi
xorl %eax, %eax
movq -80(%rbp), %rdx
addl $1, %r14d
call atoi
movq %rdx, -80(%rbp)
movq -80(%rbp), %rdx
movl %eax, (%r15)
addq $4, %r15

(b) Insert

Original
movq 8(%rdx), %rdi
xorl %eax, %eax
movq %rdx, -80(%rbp)
addl $1, %r14d
call atoi
movq -80(%rbp), %rdx
movl %eax, (%r15)
addq $4, %r15

Result
movq 8(%rdx), %rdi
xorl %eax, %eax
movq -80(%rbp), %rdx
addl $1, %r14d
call atoi
movq %rdx, -80(%rbp)
movl %eax, (%r15)
addq $4, %r15

(c) Swap

Originals Results

(d) Crossover

Figure 3. Genetic operators for ASM. ELF mutations have the same form
but manipulate bytes instead of text instructions. They also use padding to
minimize length changes.

are minimized by removing a number of nearby nop instruction
equal to the size of the inserted code. In the rare case where
there are insufficient nop instructions, the size of the .text
section increases, which usually reduces individual fitness.

Swap: An instruction selected at random is swapped with an in-
struction selected by weight. This operation is naturally length-
preserving and requires no special treatment at the ELF level,
although swapping two instructions of different lengths may al-
ter instruction offsets in the short region between those two lo-
cations.

Crossover: Given two parent programs (Figure 1, line 11), a single
index less than the length of the shorter parent program, is se-
lected at random. Single-point crossover is performed, concate-
nating the instructions from one parent up to the selected index,
and the instructions from the other parent after the selected in-
dex. This operation produces two new variant programs. At the
ELF level, the index is selected such that the number of bytes
before the index is the same in each parent.

3.3.2 Fitness Evaluation
Before fitness evaluation, the variant must be converted to an
on-disk executable. Generating an executable from an ASM rep-
resentation requires writing the array of ASM instructions (and
any assembly directives or pseudo-operations) to disk and assem-
bled/linked using instructions taken from the program’s original
build sequence. The ELF representation is written directly to a
binary executable ELF file on disk without any elements of the
software project’s build toolchain.

The executable is then run against the program’s test suite and
negative test case. To protect against dangerous behavior by the ran-
dom variants, a lightweight sandboxing solution was readily con-
structed from standard Linux utilities (e.g., ulimit and chroot).
All experimental results presented in the paper include the cost of
sandboxing. Repairs to kernel-level embedded code that manipu-
late hardware directly would require different methods. Fitness is
assessed by running the executable on all test cases, computing a
weighted average score based on the passing test cases, where neg-
ative test cases count twice as much as positive ones.

3.4 Motivating Example
Consider the program for exponentiation shown in Figure 4, which
illustrates the expressive power of ASM- and ELF-level repairs.

It contains a bug in which the two arguments are assigned to the
wrong variables.

Buggy Exponentiation Program
1 int main(int argc , char *argv []) {
2 double a,b,c;
3 a = atoi(argv [2]); // should be argv [1]
4 b = atoi(argv [1]); // should be argv [2]
5 c = 1;
6
7 while(b > 0) {
8 c = c * a;
9 b--;

10 }
11
12 printf("%g\n", c);
13 return 0;
14 }

Figure 4. Exponentiation with transposed arguments. This program can-
not be repaired by simple reorganization of extant C statements.

The repair for this program should assign atoi(argv[1]) to a
and atoi(argv[2]) to b. This is not possible using only combi-
nations of extant statements (as in [35]), because each assignment
is atomic and subexpressions may not be altered. However, when
operating at the lower levels of compiled assembly instructions or
linked executables, the repair may be expressed trivially through
the transposition of two mov instructions. In fact, this program was
repaired at the ASM and ELF levels with 3842 and 6453 test exe-
cutions respectively, but it was not repaired in over 1000 runs of the
algorithm at the AST level. In addition to bugs such as this, which
are not repairable using combinations of existing atomic source-
level statements, other bugs are markedly easier to repair at the
ASM and ELF levels (Section 4.3).

3.5 Distributed Genetic Algorithm (DGA)
The methods described in Section 3.2 and Section 3.3 enable au-
tomated repair in devices with severely limited disk and memory
resources. For example, the Nokia smartphones used in our exper-
iments provide only 256 MB of memory. Also, such devices may
not be fast enough to find and evaluate a successful repair in a rea-
sonable amount of time on their own. To address these concerns, we
present a distributed genetic algorithm (DGA) that allows multiple
devices to collaborate in finding a repair.

As illustration, we consider a group of mutually trusting smart-
phones cooperating to repair the same bug. The repair may be found
more quickly if the search burden can be distributed over many de-
vices. This is a plausible use case given the large number of homo-
geneous installs of smart phone applications.3

The DGA is considered successful, compared to naı̈ve paral-
lelism in which all devices work independently, if the total number
of fitness evaluations required to find a repair is reduced, thus re-
ducing time and power costs. A second design goal is to minimize
network communication. In the smartphone scenario, we assume
that communication occurs via infrequent SMS messages, rather
than high-power, high-bandwidth links.

Distributed GAs [17] are based on the insight that separate ge-
netic populations sharing a small amount of data can often outper-
form a single population of the same total size. Each participating
device maintains its own population of variants and periodically
shares high-fitness variants with other devices. GAs are known to

3 In theory, repairs from an untrusted source could be self-certifying
(cf. [3]). In this paper we consider only networks of trusted, uncompro-
mised devices.



be more effective when they operate over genetically diverse pop-
ulations [18], and there is a large literature on the problem of “pre-
mature convergence” in GAs (e.g., [10]). Because the search in
each sub-population is dominated by local high-fitness variants, di-
verse sub-populations on each device can explore different parts of
the search space in parallel. Performance is thus enhanced by max-
imizing diversity among the sub-populations stored on each device.
We hypothesize this to contribute to our DGA’s superlinear reduc-
tion in fitness evaluations over naı̈ve parallelism (see Section 4.5).

Two novel aspects of the DGA for software repair are: splitting
the fault-localization search space among devices, and diversity-
based migration.

3.6 Splitting the Search among Participants
To maximize sub-population diversity, we use fault localization in-
formation to constrain the search such that each device explores a
different region of the search space. Recall that the repair algorithm
modifies only those parts of the program identified by fault local-
ization (Section 3.2) and that positive fault localization instructions
are weighted differently from negative instructions with respect to
choosing mutation locations. Let S be the ordered list of atomic el-
ements of the program representation (e.g., assembly instructions,
or groups of bytes) identified by fault localization over the positive
test cases. Given N devices, we assign each device responsibility
for two contiguous sub-sequences of S of size k = |S|

N
, although

each device contains the entire program and a list of the statements
visited by negative test cases only (Section 3.2). We hypothesize
that contiguous statements are likely relevant to the same repair.
Formally, if sj ∈ S is the jth element of S counting in representa-
tion order, then device i of N only modifies elements of Si where:

Si =

{
sj ∈ S imod N ≤ sj

k
< (i+ 2) mod N

∨ visited on negative tests only(sj)

}
Note that since the insert and swap operators take one operand

from the fault localization weighting and one at random, this divi-
sion does not formally partition the search space, but it does divide
the work of searching it into slightly overlapping parcels.

3.7 Diversity-based Migration
Each device periodically communicates a subset of its current pop-
ulation to a subset of the other devices. We hypothesize that search
performance is improved if diverse variants are shared. We mea-
sure diversity between variants as the number of unique edits in
their representations. An iterative calculation identifies the n most
diverse variants in a subpopulation. Each variant is assigned one
point for each genetic change that is unique across the (initially
empty) output set; the candidate with the most points is placed in
the output set, with ties broken randomly (this is common in the
first generation, when the output set is empty); and the process re-
peats until the output set contains the desired number of variants.

3.8 Distributed Algorithm Details
Given these methods for dividing the search among different de-
vices, and for identifying diverse variants to share among devices
we now formalize the DGA algorithm in Figure 5. The DGA is ex-
ecuted concurrently by N networked nodes, each of which starts
with the same information—program to repair, test suite, network
topology (for exchanging information), and fault localization. Each
node then creates a local initial subpopulation of variants (lines 2–
4; Figure 1) and carries out one generation of the repair algorithm.

Each node selects a diverse set of d variants from its subpopula-
tion (Figure 5, line 6). The exact migration topology does not gen-
erally affect algorithmic performance [6]. To minimize communi-
cation, we use a simple permutation topology, which changes each
generation: Each participant passes variants to its “right” neighbor

Algorithm: Distributed Repair
Input: Program P to repair.
Input: Set of positive testcases p ∈ PosT .
Input: Set of negative testcases n ∈ NegT .
Input: Number d of variants per migration.
Input: Number N of networked participants.

1: Subpop← initial population(P, pop size)
2: for generation = 1→ gen do
3: Id ← temporary device specific network identifier
4: Subpop← run(Subpop,PosT ,NegT ) (Fig. 1, 6–17)
5: Migrants← div select(Subpop, d) (Sec. 3.7)
6: send(succ(Id),Migrants)
7: Migrants← receive(pred(Id))
8: Subpop← Subpop ∪Migrants
9: end for

Figure 5. Distributed genetic algorithm (DGA) for program repair. The
search is distributed among participants that share information (diverse
high-fitness program variants) after each generation.

(line 6) in the permutation, receiving a similar set from its “left”
neighbor (line 7). The incoming variants are added to each node’s
subpopulation and are subject to selection in the next generation.
The process then repeats. When participant finds a repair, the re-
pair is sent in an out-of-band message, and the process terminates
early (not shown).

The number of variants exchanged is at mostN×d×gen. Since
d is chosen to be small, and the number of generations is small,
communication cost is effectively linear in the number of partici-
pants. Because all variants share a common ancestor in the original
program, only the edit history needs to be communicated (cf. [20,
Sec. III-B]). For example, a variant created by deleting instruction 3
and then swapping instructions 1 and 2, can be serialized in a form
such as “d(3)s(1,2)”. In practice, we encode the operation (delete,
insert, or swap) in one byte and operation-specific operands in one
or two 16-bit integers. Fitness is included as a final byte. This en-
coding assumes self-contained compact descriptions of edits, and
thus does not admit crossover.

4. Experimental Results
This section presents empirical results evaluating the ASM and
ELF representations and the DGA. The results show the following:

1. Stochastic fault localization closely approximates the determin-
istic approach (Section 4.2).

2. Repair success at the ASM and ELF representation levels is
similar to that reported previously for ASTs (Section 4.3).

3. The ASM and ELF representations, together with stochastic
fault localization, have small resource footprints, suitable for
running on embedded devices (Section 4.4).

4. The DGA increases success rates while reducing total fitness
evaluations required to find a repair (Section 4.5).

4.1 Experimental Setup
Table 1 lists the benchmark defective programs evaluated in this pa-
per. For ease of comparison they are taken from earlier work [35]
with two additions. merge sort was added to evaluate the stochas-
tic fault localization algorithm on a test suite with full assembly
statement coverage, and merge-cpp was added to demonstrate a
language other than C. Each program comes with a regression test
suite, used to validate candidate repairs, and at least one test case
indicating a defect. These programs have on average 3.69× more
assembly instructions and 9.55× more bytes in the .text section
of ELF files than lines of source code.



Program C LOC ASM LOC ELF Bytes Program Description Defect

atris 9578 39153 131756 graphical tetris game local stack buffer exploit
ccrypt 4249 15261 18716 encryption utility segfault
deroff 1467 6330 17692 document processing segfault
flex 8779 37119 73452 lexical analyzer generator segfault
indent 5952 15462 49384 source code processing infinite loop
look-s 205 516 1628 dictionary lookup infinite loop
look-u 205 541 1784 dictionary lookup infinite loop
merge 72 219 1384 merge sort improper sorting of duplicate inputs
merge-cpp 71 421 1540 merge sort (in C++) improper sorting of duplicate inputs
s3 594 767 1804 sendmail utility buffer overflow
uniq 143 421 1288 duplicate text processing segfault
units 496 1364 3196 metric conversion segfault
zune 51 108 664 embedded media player infinite loop

total 31862 117682 304288

Table 1. Benchmark programs used in experiments, taken from Weimer et al. [35] with the addition of merge. Program size is reported as follows: Lines of
code (LOC) in the original C source, LOC in the assembly files (x86, as produced by gcc -S), and size (in bytes) of the .text sections of the x86 ELF files.
Each program has a regression test suite and a failing test case indicating a fault.

We used the following GA parameters: population size popsize =
1000; maximum number of fitness evaluations in a trial evals =
5000, mutation rate mut = 1.0 per individual per generation and
crossover rate cross = 0.5 crossovers per indivdiual per genera-
tion.

Most experiments were run on a machine with 2.2 GHz AMD
Opteron processors and 120 GB of memory. The wall-clock evalu-
ation of the DGA was conducted on a single server-class machine,
with 3.0 GHz Intel Xeon CPUs and 15.6 GB of memory. Cell phone
experiments were conducted on Nokia N900 smartphones, each of
which features a 600 MHz ARM Cortex-A8 CPU and 256 MB of
mobile DDR memory.

4.2 Fault Localization Evaluation
We collected program counter samples using oprofile [21], a
system-wide profiler for Linux systems, which doesn’t alter the
profiled program, runs on embedded devices, and when appropri-
ately configured, has minimal impact on system-wide performance.

We process the samples as described in Section 3.2, explicitly
comparing to deterministic approaches (below) and evaluating util-
ity in the context of program repair in Section 4.3. The direct com-
parison used merge sort, which is small and exhaustively tested
with 100% statement and branch coverage, as well as deroff,
which is larger and has less-complete test coverage. The stochastic
and deterministic traces taken from the failing test cases of both
programs are shown in Figure 6. Inputs for the failing test case ex-
ercise the bugs described in Table 1.

Ten stochastic samples and one deterministic sample were
collected for both programs. We find high correlations of 0.96
(merge) and 0.65 (deroff) among the stochastic samples, indicat-
ing consistency across samples. We find lower correlations of 0.61
(merge) and 0.38 (deroff) between the naı̈ve stochastic (no Gaus-
sian convolution) and deterministic samples, which increase to 0.71
(merge) and 0.48 (deroff) after Gaussian convolution, indicating
that smoothing provides significant improvement.

4.3 ASM and ELF Repair Success
Table 2 compares ASM and ELF to AST, averaging over 100 trials
of the standard (non-DGA) algorithm for each tested configuration.
Memory usage, which varies insignificantly across runs, was calcu-
lated from a single run.

Our Nokia smartphones have 256+768 MB of RAM plus swap.
In that environment, only 8 of 13 programs can be repaired at the
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Figure 6. Fault localization in program address space. Results for
stochastic sampling shown in black identify program regions similar to
those found deterministically, shown in gray.

AST level (i.e., memory is exhausted or the repair fails) compared
to 10 at the ASM level and 11 at the ELF level.

We expected the repair process to be much less efficient, espe-
cially at the ELF level, both in terms of success rate and time to
first repair. Generally, EC searches are more challenging in larger
search spaces—more locations to choose for a mutation and more
possible instructions to choose from when performing an insertion.
However, differences among the average percentage of successful
repairs across representations are not large, with values of 65.83%,
70.75% and 78.17% for ELF, ASM and AST respectively. Using
Fisher’s Exact test to compare success rates we find no significant



Memory (MB) Runtime (s) % Success Expected Fitness Evaluations
Program AST ASM ELF AST ASM ELF AST ASM ELF AST ASM ELF

atris 2384∗ 2384∗ 496 22.87 † 385.63 83 0 5 27.44 † 48806.00
ccrypt 6437∗ 3338∗ 334 39.15 342.23 21.58 100 100 100 7.00 673.00 25.00
deroff 1907∗ 811 453 37.33 1366.61 292.88 100 98 100 48.00 50.00 454.00
flex 691 381 162 1948.84 1125.44 † 6 1 0 78340.50 496255.00 †
indent 3242∗ 1669∗ 572 3301.88 3852.47 † 4 41 0 62737.25 13517.48 †
look-s 420 62 29 747.59 353.81 6.00 100 100 100 41.00 71.00 3.00
look-u 430 52 62 12.68 6.38 3.66 100 100 100 90.00 16.00 19.00
merge 152 45 57 842.74 100.93 161.35 54 100 84 4456.85 621.00 1008.19
merge-cpp † 50 60 † 121.87 90.56 100 79 † 314.00 2135.2658
s3 152 76 43 14.43 23.46 28.02 100 96 50 4.00 4.00 95.00
uniq 358 72 72 105.18 3.46 7.18 100 100 100 8.00 46.00 8.00
units 572 162 95 1075.16 18778.70 501.54 91 13 51 930.23 57374.63 8538.47
zune 76 17 29 36.93 28.79 71.49 100 100 100 17.00 26.00 45.00

average 1402 756 200 323.47 2333.82 121.52 78.17 70.75 65.83 622.45 6542.40 1132.85
w/o units 1242 559 135 229.50 278.20 74.02 77.00 76.00 67.18 583.98 188.38 207.15

Table 2. Resource comparison of abstract syntax tree (AST) assembly source (ASM) and ELF binary (ELF) repair representations. “Memory” reports the
average max memory required for a repair (as reported by the Unix top utility). “Runtime” reports the average time per successful repair in seconds. “%
Success” gives the percentage of random seeds for which a valid repair is found within 5000 runs of the full test suite. “Expected Fitness Evaluations” counts
the expected number of evaluations per repair (Equation 1). † Indicates that there were no successful repairs in 5000 fitness evaluations. Rows with † are
excluded when calculating “Memory”, “Runtime” and “Expected Fitness Evaluations” averages. ∗ Indicates memory requirements in excess of the 1024
available on the Nokia smartphones.

difference between AST and either ASM or ELF with p-values of
1 (between AST and ASM), and 0.294 (between AST and ELF).
This suggests that automated repair at the ASM and ELF levels is
a practical alternative to source-level repair.

Some bugs are more amenable to repair at particular levels of
representation. For example, atris and units are repaired most
easily at the AST level, indent at the ASM level, and merge sort
at the ASM and ELF levels.

The atris repair involves deleting a call to getenv. At the
AST level this requires a single deletion, while at the ASM level,
three contiguous instructions must be deleted and the repair was
not found. The repair was found at the ELF level, and all of the five
repairs found were unique, each involving from 3 to 7 accumulated
mutation operations.

The merge repair involves replacing an if statement with its
else branch. At the AST level this requires swapping exactly those
two statements, which is 1 of 4900 possible swap mutations. At the
ASM and ELF levels, modification of a single comparison instruc-
tion suffices to repair the program. This is one of only 218 such
changes possible and is much more easily found by our technique.

The “Expected Fitness Evaluations” column reports the ex-
pected number of fitness evaluations per repair.

expected = fits + (runs − 1)× fitf where (1)
fits = average evaluations per successful run
fitf = average evaluations per failed run
runs = average runs per success

Given that repair time is dominated by fitness evaluation, which in-
cludes compilation and linking at the AST level, and linking at the
ASM level, and that for all programs but units (an outlier in this
regard) the expected number of evaluations is roughly equivalent
between levels of representation, we conclude that, when repairs
are possible, the repair process is usually more efficient at the ASM
and ELF levels than at the AST level.

4.4 Resource Requirements
We desire a repair algorithm that can run within the resource con-
straints of mobile and embedded devices. We consider three key

constraints: CPU usage and runtime, memory requirements, and
disk space requirements. Section 4.5 also evaluates network com-
munication for the DGA.

CPU Usage. Runtime costs associated with GA bookkeeping
(e.g., sorting variants by fitness, choosing random numbers, etc.)
are typically dwarfed by the cost of evaluating fitness. For exam-
ple, on an average run of deroff, bookkeeping accounted for only
13.5% of the runtime. The primary costs are computing fault local-
ization information and fitness evaluation (including compilation
and linking depending upon the representation used).

Stochastic fault localization requires from 50 to 5000 runs of
the original unmodified program. Importantly, the absolute run-
ning time determines the number of required executions, so slow
programs require fewer executions and only quickly terminating
programs require more than 50 executions. By contrast, AST-level
repairs require compilation of an instrumented program with a
100× slowdown per run (Section 3.2). Related executable-level ap-
proaches introduce a 300× slowdown to compute fault localization
information [26, Sec 4.4], and ptrace full deterministic tracing
incurs a 1200× slowdown. Our fault localization approach is an
order-of-magnitude faster than these previous approaches.

After fault localization is complete, both ASM and ELF repre-
sentations have lower fitness evaluation costs than the AST-level
because compilation and linking are not required. However, the
search problem for ASM and ELF is potentially much larger than
for AST (compare the size columns in Table 1), suggesting they
may need more fitness evaluations to find a repair. If the time to
conduct a repair at the AST level is normalized to 1.0, on aver-
age ASM repairs take 7.22× and ELF repairs take 0.38×. Using
a Mann-Whitney U-test the runtime difference between ELF and
AST is a significant improvement, with a p-value of 0.055. While
the ASM-level repair is slower, this can be mitigated through col-
laboration across multiple devices (Section 4.5).

Memory. Memory utilization is important for mobile and em-
bedded devices. The earlier work was conducted on server ma-
chines with 8 GB [26] to 16 GB of RAM [35]. By contrast, the
Nokia N900 smartphones we consider as indicative use cases have
256 MB Mobile DDR—an order of magnitude less.



Table 2 reports the memory used (in MB) for repairs at the
AST, ASM and ELF representations, showing that ASM requires
only about 53.91% of the memory of a source-based representa-
tion, while ELF is significantly smaller, requiring only 14.29% of
the memory. We attribute the low requirements for ELF to the ELF
parser we used, which stores only the .text section of ELF bina-
ries in memory.

Disk space. Beyond the subject program and its test suite, disk
usage is composed of two main elements: the repair tool and the
build suite of the program to be repaired. The size of these elements
varies greatly with representation level of the repair. For example,
repairs at the ELF level do not require the build tool-chain of the
original program, enabling repair of embedded programs that are
cross-compiled and cannot be built locally. We next discuss the disk
space requirements at all three levels.

AST requires the source code and build tool chain of the original
program. Our baseline comparison, GenProg, takes 23 MB on
disk (including the tool itself, the gcc compiler and header files,
the gas assembler, and the ld linker).

ASM requires only the assembly code, assembler, and linker. This
is a significantly lighter build requirement. Our ASM imple-
mentation is currently incorporated into the AST repair frame-
work [35] to ensure a controlled environment for comparison.
It requires 12 MB on disk (including the tool itself, the gas as-
sembler, and the ld linker).

ELF requires only a compiled executable. Like ASM, our proto-
type is a modification of the AST-level repair framework, re-
placing the source-code parser with an ELF parser. It requires
only 1.10 MB on disk, an order of magnitude decrease com-
pared to AST.

As one concrete example of the resource limitations of embed-
ded devices, the Nokia N900 smartphone ships with 256 MB of
NAND flash storage (holding the Maemo Linux kernel and boot-
loader, etc., with about 100 MB free), and a 32 GB eMMC store
holding a 2GB ext3 partition, 768 MB of swap, and about 27 GB
of free space in a vfat partition. The vfat partition is unmounted
and exported whenever a USB cable is attached to the device, mak-
ing it unsuitable for a deployed system repair tool. Linux packages
install to the NAND flash by default, quickly exhausting space.
Repartitioning is possible but uncommon for casual users. Thus,
even though the device claims 32 GB of storage, significantly less
is available for a stable repair tool. Although these are merely im-
plementation details, we argue that such conditions and the need
to minimize the on-disk footprint are indicative of many embedded
devices.

4.5 Distributed and Embedded Repair Results
Table 3 summarizes the performance of the DGA with the number
of nodes ranging from one to four. The “% Success” column lists
the fraction of trials for which a successful repair is found, nor-
malized so that a single non-networked participant has 1.0. Overall
success rate improves by 13% from one to four participants be-
cause they share diverse variants and collaborate on the search by
exploring different portions of the program space.

In most instances, the time to find the first repair is critical.
The “Expected Fitness Evals” column measures that effort in a
machine-independent manner (Section 4.3). In practice, fitness
evaluations (which require repeatedly running the program test
suite) account for the majority of algorithmic runtime. The number
of fitness evaluations required to find a repair drops by a factor of 5
and the average standard deviation by 62%. Each fitness evaluation
includes the time to run the test suite of the subject program.

% Success Expected Fitness Evals
→ #nodes→ → #nodes→

Program 1 2 3 4 1 2 3 4

atris 1 1.00 1.00 1.00 1 0.53 0.40 0.27
ccrypt 1 1.00 1.00 1.00 1 0.62 0.27 0.24
deroff 1 1.00 1.00 1.00 1 0.58 0.44 0.32
flex 1 1.13 1.87 2.07 1 0.87 0.46 0.40
indent 1 1.04 1.04 1.04 1 0.25 0.16 0.10
look-s 1 1.00 1.00 1.00 1 0.50 0.55 0.29
look-u 1 1.00 1.00 1.00 1 0.76 0.37 0.32
merge 1 1.69 2.14 2.31 1 0.43 0.22 0.18
s3 1 1.00 1.00 1.00 1 0.47 0.31 0.24
uniq 1 1.00 1.00 1.00 1 0.49 0.46 0.31
units 1 1.27 1.33 1.33 1 0.32 0.11 0.07
zune 1 1.00 1.00 1.00 1 0.47 0.36 0.27

h.mean 1 1.07 1.12 1.13 1 0.47 0.28 0.20

Table 3. Distributed repair results as a function of the number of par-
ticipant nodes. “Success Rate” gives the percentage of random trials that
produce a repair, normalized to 1.0 for 1 node. “Expected Fitness Evals”
approximates the time and effort required by the first machine to find a re-
pair and is defined in Section 4.3; it is normalized to 1.0 at 1 node. As the
number of participants grows from 1 to 4, repairs are found 13% more of-
ten and the number of fitness evaluations required decreases by a factor of 5
(harmonic mean of all benchmarks). The results listed in this table are from
runs at the AST level and thus merge-cpp is not included.

As a baseline, we also measured the performance of naı̈ve paral-
lelism (i.e., using two Nokia cell phones to run two separate copies
of the repair algorithm and stopping when the first repair is found)
to demonstrate that the distributed algorithm is responsible for the
performance gains. For a meaningful comparison, we focused on
benchmarks that take more than one generation to repair (i.e., flex,
indent, merge and units) and thus reached the distributed portion
of the DGA algorithm described in Figure 5. Over 100 trials, two
nodes running DGA use only 442 total fitness evaluations per re-
pair compared to 848 for naı̈ve parallelism (not counting evalua-
tions performed after the first repair is found). On two nodes, DGA
thus requires 48% fewer fitness evaluations than naı̈ve parallelism.

Finally, we calculate the network bandwidth consumed by
DGA. Recall that at the end of each generation, each machine sends
d = popsize/20 = 50 diverse variants to a neighbor. After the first
generation, each variant has one edit in its history (mutp = 1.0).
One third of all mutations are deletions, which can be represented
by four bytes (the opcode and the operand and the fitness). Inser-
tions and swaps require six bytes (the opcode, two operands, and
the fitness). The expected data size sent from one participant to an-
other after the first generation is thus 50× (4× 1

3
+6× 2

3
) = 267

bytes. After the second generation, each of the d variants sent will
typically have two edit operations in its history, follow the same
distribution (and thus require twice as much bandwidth to com-
municate). Since each of the N networked participants send one
batch of variants after every generation, the expected cumulative
total network bandwidth used, as a function of the number of gen-
erations G before the repair is found, is estimated as:

bytes sent(G) '
G∑

i=1

N × d× i× (4× 1

3
+ 6× 2

3
)

With our default parameters, this estimate implies 801 bytes sent
per participant (spread over two network sends or six SMS mes-
sages per participant) by the end of the second generation. Empiri-
cally, we find that our measured results match this model to within
10%. For example, over eight random trials to repair merge with



two participants averaging 2.4 generations, DGA sent a total of
7000 bytes in such a way that 51 SMS text messages were required.
This implies that just under 875 bytes (or 6.4 SMS text messages)
were required per node per trial. We claim that this low communi-
cation cost is well within what would be considered reasonable for
the task of program repair across embedded or mobile systems.

To measure the impact of communication on run time we next
evaluated wall-clock times for the DGA, the original serial algo-
rithm, and an ideal naı̈ve parallel adaptation of the original algo-
rithm with no inter-node communication, all at the AST source
code level. These runs were performed on a single server-class ma-
chine, with 4 3.0 GHz Intel Xeon CPUs and 15.6 GB of memory
using TCP over Ethernet. The DGA incurs a cost from inter-node
communication, but the results in Table 4 show that this cost is
more than offset by the increased algorithmic efficiency of search
space splitting and migration of high-fitness variants among the
nodes.

Table 4 shows the mean wall clock time in seconds to find a
repair for the DGA and a naı̈ve parallel version of the original serial
algorithm. We report results for one to four participating repair
nodes (in practice all nodes were run in parallel on a single multi-
core). The naı̈ve algorithm running on a single node is exactly the
original serial algorithm.

Table 4. Mean wall clock time in seconds to find a successful repair at the
AST source code level. Communication in the DGA is bulk synchronous.
The column “Rounds” gives the number of communication rounds. Results
are averaged over 10 attempted repairs of the units program. The other
three programs that require multiple generations to repair show the same
trend with from 1 to 4 nodes, and using DGA or naı̈ve parallel repair
algorithm.

DGA Naı̈ve Parallel
# Nodes Seconds Rounds Seconds

1 205.531
2 173.868 43.2 195.821
3 135.17 28.2 201.346
4 115.566 14.5 211.989

At each level of parallelization, the distributed algorithm finds
repairs faster than the ideal naı̈ve parallelization of the original
algorithm. Judging the significance of these differences using the
Kolomogorov-Smirnov test (used instead of a T-test because these
distributions are not normal given the large differences between
runs which do or do not find a repair) yields a value of 0.5 with
p = 0.000214. The wall clock performance gained by using the
distributed algorithm over a naı̈ve parallel algorithm is statistically
significant.

5. Related Work
Genetic Algorithms and Evolution of Machine Code. Previous
work can be divided into two broad categories. One designs muta-
tion operators to preserve the validity of the programs they manipu-
late, both over CISC instruction sets [23] running on hardware and
more recently over Java byte code [13, 25] running on the Java vir-
tual machine. An alternative is to use generic mutation operators,
relying on safety mechanisms built into the CPU and operating sys-
tem to catch and terminate invalid individuals [19].

Our work follows the second approach, using general operators
that can be applied across both CISC x86 and RISC Arm architec-
tures. Given the low cost of linking ASM individuals and writing
ELF individuals to disk, we favor using the CPU to check validity,
finding that it is adequate.

“Evolvability” analysis [24] has led some to declare x86 assem-
bly code an unfit medium for evolutionary computation [31]. Based

on this belief, translations between x86 and more evolvable inter-
mediate languages have been proposed, both to construct evolvable
malware [7] and to distribute binary patches [1]. Our results provide
a counterexample, showing that EC at the ASM and ELF level can
efficiently generate viable program variants. By operating on whole
instructions, the negative effects of “argumented instructions” [24]
are minimized. Similarly, through the use of nop padding in ELF
level mutation, changes in the absolute offset are minimized, thus
reducing the impact of direct addressing.

Assembly Program Repair. Schulte et al. provide the closest
instance of related work proposing automated program repair for
assembly programs [27]. This preliminary short paper describes
EC-generated program repairs to x86 assembly programs, focusing
only on x86 assembly as a lowest common denominator for high-
level languages (such as C and Haskell). Here, we extended that
work to target both ASM and ELF representations, multiple assem-
bly languages (x86 and ARM), propose stochastic fault localiza-
tion, demonstrate that our technique scales to embedded devices,
and propose and demonstrate a novel distributed repair algorithm.

Executable Program Repair. The closest instance of related
work that automatically repairs binary executables is the Clearview
system [26], which patches errors in deployed Windows x86
binaries. Clearview uses a split-phase learning-and-monitoring
approach—program instrumentation is used to learn invariants, and
later monitoring notices violations in deployed programs. If a viola-
tion occurs, Clearview considers possible patches, evaluating them
against an indicative workload of test cases. Clearview focuses on
specific error types and prespecifies a set of repair templates (e.g.,
breaking out of a loop, clamping a variable to a value, etc.). It is
therefore less general than our method, although it has obtained
impressive results in its domain, patching nine out of twelve his-
torical Firefox vulnerabilities, even in the face of a DARPA Red
Team. However, the Clearview approach seems heavy weight; they
report experiments involving rack-mount server machines with 16
GB of RAM, VMware virtualization, and a 300× slowdown dur-
ing the learning phase [26, Sec. 4.4]. By contrast, our work targets
resource-constrained embedded environments and uses stochastic
sampling to reduce the cost of fault localization, which does not
require program instrumentation.

A distributed repair technique has also been described for
Clearview which protects application communities, but that work
did not report performance results [26]. Their distributed algorithm
amortizes the cost of learning invariants (i.e., of computing fault
localization information), and ignores the time to find a candidate
repair. By contrast we demonstrate a distributed algorithm that
finds repairs more quickly.

Distributed Evolutionary Algorithms. The large literature on
distributed and parallel genetic algorithms dates back to Grosso [11],
who explored the idea of subdividing a GA population into smaller
subpopulations with occasional exchanges of fit individuals among
the populations. More recent work ranges from implementations
tailored to particular hardware configurations [12, 22] to a wide
variety of algorithms in which the population is partitioned and
individuals are shared among the partitions according to different
schemes, e.g., [22]. Parameter tuning (population size, migration
rate, etc.) is a concern, with recommendations available for several
problem types [6]. Perhaps most relevant to the current work is
a Doctoral Colloquium describing a distributed genetic program-
ming implementation on a wireless sensor network [32], although
that work is still quite preliminary.

6. Discussion
Compared to automated program repair over C statements, an as-
sembly representation operates over a finite alphabet of elements. A
typical assembly instruction consists of an opcode and two or three



operands, while C statements may be of arbitrary size and com-
plexity (e.g., x = 1 + 1 + . . . ). In addition, there are typically
at least three times more assembly instructions than C statements.
These combined facts give an assembly representation limited to
permutations of elements of the original program much higher sam-
ple rates in the space of possible programs. In a system where the
linking of an assembly file does not introduce new instructions or
arguments, the alphabet and expressive power of the ASM and ELF
representations are equivalent.

We see the effects of this increased coverage in Section 3.4 in
which the program is only repaired at the ASM and ELF levels,
and in Section 4.3 in which some repairs are much more easily
expressed at the ASM and ELF levels.

While introducing new bugs is a possibility, We typically find
very small changes which address only the buggy behavior. Specifi-
cally we reviewed the repairs presented here and found no evidence
of introduced bugs.

While moving from the tree AST representation to the vector
ASM and ELF representations may seem minor, the EC community
has two separate sub-fields, GP and GA, dedicated to the study of
tree- and vector-based representations respectively, each with their
own research challenges (e.g., bloat in GP), application domains,
best practices, journals and conferences.

There were several technical challenges in the implementation,
particularly regarding the manipulation of ELF files. Existing tools
such as the GNU ELF tool suite (libfd) and its BSD equivalent
(libelf) do not support changes to the contents of existing ELF
files. We thus developed our own libraries for manipulating ELF
files, including support for the automated updates to ELF file meta-
data in response to an altered .text section4.

Although ELF files do support symbolic addressing through
symbol names and run-time linkers, direct addresses pose a signifi-
cant problem for the randomly changing raw binary code sections.
This is mitigated by mutation operators that minimize disruption to
the location of compiled code.

It is sometimes useful to consider the total number of unique re-
pairs produced. For example, additional candidate repairs help de-
velopers create high-quality final patches [34]. Because our DGA
explicitly manages diversity across sub-populations, we hypothe-
size that it might produce a wider variety of distinct repairs. We
measured uniqueness in terms of changes made to the code: Two
repairs are distinct if they use edit operations, treated as unordered
sets, that are not identical. With four participants, our DGA found
20% more unique repairs than with one participant. If we consider
only the challenging flex, indent, merge and units repairs, the the
number of discovered unique repairs increases to 73%.

Some may argue that it is aesthetically unappealing to modify
code at all, particularly with a stochastic algorithm such as EC. We
believe that distributed automated repair methods will be necessary
in the future, as embedded devices become ubiquitous and are
deployed in a wide range of environments. As the computational
power of distributed embedded devices eclipses that of centralized
servers, timely centralized testing and repair becomes infeasible
(cf. already 28–29 day lag times are reported in recent surveys for
centralized repairs [30]).

There are several areas of potential future work. For example,
we expect that variations of this technique could be used to opti-
mize performance of programs for specific environments. A sec-
ond area is proactive diversity to disrupt software monocultures. In
security settings, randomization is often inserted into compiled pro-
grams to prevent malicious attacks. Assembly code evolution could
be used to add diversity to deployed software.

4 Code available at: http://github.com/eschulte/rw-elf and
http://github.com/eschulte/elf.

6.1 Limitations and Caveats
The fine granularity of repairs at the ASM and ELF levels may be a
poor match for conventional test suites. For example, we have ob-
served ASM-level repairs that change the calling convention of one
particular function. Such a repair has no direct representation at the
C source level, and a test suite designed to maximize statement cov-
erage (for example) may not speak to the validity of such a repair.
Producing efficient test suites that give confidence that an imple-
mentation adheres to its specification remains an open problem in
software engineering. Our work shares this general weakness with
all other approaches that use test suites or workloads to validate
candidate repairs (e.g., Clearview [26] and GenProg [35]). In this
regard, sandboxing is crucial: we have observed ASM variants that
subvert the testing framework by deleting key test files, leading to
perfect fitness for all subsequent variants until the test framework
is repaired.

Benchmark selection is a threat to the external validity of our
experiments. We used benchmarks taken from published papers to
admit direct comparison; to mitigate this threat we augmented the
benchmark set with very high test coverage and non C-language
examples.

Our DGA uses a self-contained compact encoding of each vari-
ant, to facilitate communication among nodes via SMS. This en-
coding precluded the use of crossover because it would not be
meaningful to exchange information between two variants under
the encoding, even though crossover is an important feature of
many GAs. This restriction implies that our results might not gen-
eralize to other GAs. Since crossover can improve search time and
success rates, it is possible that our results would be improved
with a DGA implementation that supports crossover. This could
be tested using a recently published patch representation [20] that
supports a concise encoding of crossover.

7. Summary and Conclusion
This paper extends previous work on automated program repair
at the AST level to compiled (ASM) and linked (ELF) programs.
The new representations allow repairs when source code cannot be
parsed into ASTs (e.g., due to unavailable source files, complex
build procedures or non-C source languages). They also reduce
memory and disk requirements sufficiently to enable repairs on
resource constrained devices. We also introduce a stochastic fault
localization technique, which is applicable to these representations
and devices, and present a distributed repair algorithm that allows
costly repair processes to be split across multiple devices.

Importantly for embedded devices, our techniques reduce mem-
ory requirements by up to 85%, disk space requirements by up
to 95% (Section 4.4), and repair generation time up to 62% (Sec-
tion 4.4), which enables application to resource-constrained envi-
ronments. We demonstrate our technique on Nokia N900 smart-
phones whose resource constraints which serve as a practical proxy
for future low power computing systems.

Our fault localization algorithm is based on stochastic sampling
and Gaussian convolution. It provides the instruction- and byte-
level precision required by the ASM and ELF representations,
while retaining sufficient accuracy to guide automated repair. In
addition, it is ten times faster than previous approaches and more
suited to devices where direct instrumentation is infeasible.

We take advantage of these reduced resource requirements in
a distributed repair algorithm in which multiple cell phones com-
municate via SMS messages to find repairs more quickly. Sections
3.8 and 4.5 detail the algorithm. Using four devices we increase
success rates by 13% and reduce fitness evaluation burdens by a
factor of five—a superlinear improvement over naı̈ve parallelism.
The distributed algorithm’s use of multiple populations could also

http://github.com/eschulte/rw-elf
http://github.com/eschulte/elf


be used to speed up serial repair on a single device. Communica-
tion costs are low: two phones require under 900 bytes (or 7 SMS
messages) per participant per repair on our benchmarks.

Taken together, these techniques constitute the first general au-
tomated method of program repair applicable to binary executables,
and are a first step in the application of automated software repair
to the growing field of mobile and embedded devices.
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