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ABSTRACT
This paper focuses on the network on chip of multi-core sys-
tems and proposes empirical and theoretical lower bounds
on the energy consumption of applications. The empirical
method consists of an linear programming model that simul-
taneously reduces communication distances and network traf-
fic. When applied to standard benchmarks, our method shows
that locality exploitation can lead to 50% energy reduction on
average compared to no optimization. The theoretical lower
bound is based on the Rent’s rule model from VLSI design,
and is obtained analytically from the communication graph
structure of applications. The theoretical results show excel-
lent agreement with the empirical lower bound.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks

General Terms
Design, Performance, Theory

Keywords
Network on chip, energy, multi-core, traffic locality, lower-
bound, Rent’s rule

1. INTRODUCTION
In Chip Multi-Processors (CMP) with a large number of

cores, communication between cores over a Network on Chip
(NoC) accounts for a significant fraction of the power budget
of the system. For example, the NoC consumes 36% of power
in the MIT Raw microprocessor [9], 10% in the Intel 48-core
SCC [7], and 28% in the Intel Terascale 80-core chip [4]. As
the number of cores on a die grows exponentially and network
traffic increases, the need for efficient on-chip communication
also increases. In this scenario, intelligent data placement
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strategies can be used to increase communication locality and
significantly reduce NoC energy consumption.

In this paper, we analyze parallel applications running on
homogeneous many-core architectures and determine empiri-
cal and theoretical lower bounds on the energy consumption
for a 2D-mesh NoC. The empirical approach consists of an
optimal data placement model that minimizes communication
distances while increasing cache capacity utilization, thus si-
multaneously reducing the energy per packet and the network
traffic. Based on a few assumptions, this method provides
an accurate estimate of the minimum energy consumption
achievable through locality optimization. Our simulation re-
sults show an average energy reduction of 50%, and up to
84%, on a system with 64 cores. The theoretical approach is
based on the Rent’s rule model [1] from VLSI circuit analysis.
We adapt this model for CMPs and show that a theoretical
lower bound can be obtained analytically from the topology
of the communication graph of applications. The theoretical
results agree closely with the empirical lower bound.

2. EMPIRICAL ANALYSIS
NoC energy consumption is a function of the communica-

tion locality and the total network traffic of an application.
Because these two factors often conflict with each other, data
placement optimization for energy minimization is a complex
problem. In this section, we describe an linear programming
model which, with a few simplifying assumptions, achieves
the minimum NoC energy consumption.

2.1 Optimal data placement
We guarantee minimum energy consumption under the fol-

lowing assumptions: (1) The energy dissipated to transmit a
packet is nearly proportional to distance (measured in num-
ber of hops). (2) The application workset fits in the aggregate
cache capacity of the system. The first assumption is known
to be approximately true in practice [5], and is used to de-
fine our cost function. The second simplifies the problem by
guaranteeing the existence of a configuration with minimal
traffic.

We define the cost of assigning a block i to core p as

Cip =
N∑

p=1

πip

N∑
j=1

wij · dpj , (1)

where dpj is the distance between core p and the core running
the thread j, wij corresponds to the total communication be-
tween the block and the thread, and N is the total number of



cores. Finally,

πip =

{
1 if block i is in position p

0 otherwise
(2)

determines the assignment of a block to a particular core. We
now define the following load-balancing constraints:

N∑
p=1

πip = 1 (3)

B∑
i=1

πip ≤ K. (4)

Equation 3 expresses the constraint that a block can only be
assigned to a single position. Equation 4 restricts the number
of blocks assigned to each node to be smaller than or equal
to the capacity constraint K, where K is the cache capacity
of a node. Using the equations above, we define an Integer
Programming (IP) model for data placement in multi-core
systems as

Optimize:

min
Π
Ctotal :

B∑
i=1

N∑
p=1

πip

N∑
j=1

wij · dpj

Subject to:

N∑
p=1

πip = 1,

B∑
i=1

πip ≤ K, and πip ≥ 0

∀i ∈ {1, 2, . . . , B} and ∀p ∈ {1, 2, . . . , N},

where the goal is to find the placement matrix Π containing
all the variables π. The solution to this model corresponds
to the maximum communication locality with the least traffic
and, therefore, provides minimum energy consumption.

Unfortunately, because IP is NP-hard, the above model
may not be computationally tractable even for relatively small
instances. However, we were able to prove that the constraint
matrix for this particular formulation is totally unimodular,
which allows for a relaxed version of the problem, where the
variable π takes continuous values, and which can be solved
in polynomial time with any linear programming technique,
such as the simplex algorithm.

2.2 Simulation setup
Full-system simulations were performed with Graphite [8].

Cores feature in-order, single issue execution. The L1-I and
L1-D caches are 4-way set-associative with 32 KB cache-capa-
city, and 64-byte blocks. The L2-cache is 8-way set-associative
with 512 KB capacity, and 64-byte blocks. The directories
are full-map with no broadcast and use cache-line granular-
ity. NoC energy consumption was measured with Orion-2 [6],
and each hop on the 2D-mesh network takes one cycle. All
simulations were performed on a 64-core system, and run-
time and energy were measured after the initialization phase
of applications. The parallel applications used in the simu-
lations are POSIX Threads implementations of the modified
SPLASH-2 benchmark [10].

2.3 Experimental results
We computed and ran the optimal placement for 10 scien-

tific benchmarks using our model to determine the minimum

Figure 1: Normalized energy results.

Figure 2: Normalized runtime results.

NoC energy consumption. We use bin hoping, which has no
locality optimization, as a baseline of comparison, and present
normalized results for energy and runtime. We also report re-
sults for first-touch, a widely used heuristic for data placement
optimization, in which a block of data is dynamically assigned
to the first core that tries to access it.

The energy results are shown in Figure 1, where an energy
reduction of approximately 50% on average was obtained by
our model relative to bin hopping, and up to 84%, for the
ocean_non_contiguous application. Notice that for most ap-
plications first-touch also obtains significant energy improve-
ments, approaching in some cases the lower bound defined by
our algorithm, although never surpassing it. In other cases,
however, it performs poorly. The extreme case is LU_conti-

guous in which energy is increased by 7×!
We also report a small performance improvement with our

algorithm, as shown in Figure 2. Runtime is reduced because
packets travel a smaller number of hops, which decreases la-
tency. However, because many factors that impact perfor-
mance are not accounted for in our formulation, there is no
true guarantee this is also a performance lower bound. First-
touch also obtains performance improvements in some cases,
but for four applications it slows down execution significantly.

An analysis of the number of cache misses reveals why first-
touch performs poorly in some cases. Similar to bin hopping,
the IP model takes full advantage of the aggregate cache ca-
pacity of the system and, therefore, no capacity misses or
evictions are observed in the entire execution of the appli-
cations. However, first-touch does not constrain the number
of blocks assigned to each core, which may result in unbal-
anced placements. The poor runtime results for first-touch in



cholesky, FFT, LU_contiguous, and radix are all correlated
with a large number of evictions (ranging from the order of
105 evictions for FFT, up to 106 for LU_contiguous).

Our data placement formulation allows an optimal, polyno-
mial-time solution to a complex problem, providing an empir-
ical lower bound on NoC energy consumption for multi- and
many-core systems. This creates a baseline for assessing the
quality of data placement algorithms as well as revealing the
potential for communication locality exploitation in parallel
applications.

3. THEORETICAL ANALYSIS
We now analyze NoC energy consumption theoretically.

This analysis requires no optimization heuristic, and is based
only on the topology of the communication graphs.

3.1 The bandwidth version of Rent’s rule
Rent’s rule is a fractal pattern observed in the interconnec-

tion structure of digital circuits. The applicability of Rent’s
rule to multi-core chips was first discussed in [2], where the
bandwidth version of Rent’s rule was proposed. In [3], the
authors applied the hierarchical partitioning algorithm to the
communication graph of several parallel applications, show-
ing that, similar to digital circuits, they also follow a fractal
pattern. The bandwidth version of Rent’s rule is given by

B = bNp, (5)

where B is the communication bandwidth sent or received by
a cluster of N network nodes, b is the average communication
per node, and 0 ≤ p ≤ 1 is the Rent’s exponent. A communi-
cation graph follows Rent’s rule if its behavior when plotted
on a log-log plot of N vs. B can be approximated by a straight
line, where the slope of this line is the Rent’s exponent. To
measure p and b, we applied the hierarchical partitioning al-
gorithm to the communication graph of the benchmark appli-
cations and obtained a wide variation in the Rent’s exponent
from 0.36 up to 0.94.

3.2 Modeling Communication Locality
Rent’s rule can be used to provide a theoretical upper-

bound on communication locality. We use the Wire Length
Distribution (WLD) model of [1], which was initially devel-
oped for VLSI circuits, and compute the average distance
traveled by a message in different applications. Equation 6
defines the probability of having a wire connecting two logic
gates with Manhattan distance d. We use this equation to rep-
resent the probability of communication between cores, where
N is the number of cores on a square mesh network.

Region I: 1 ≤ d <
√
N

P (d) =
Γ

2N (1−Np−1)

(
d3

3
− 2
√
Nd2 + 2

√
Nd

)
d2p−4

Region 2:
√
N ≤ d < 2

√
N − 2

P (d) =
Γ

6N (1−Np−1)

(
2
√
N − d

)3

d2p−4 (6)

where Γ is a normalization constant. From the above for-
mula, the average communication distance is computed as
the weighted sum of the probabilities with their respective

distances as

d =

2
√
N−2∑

d=1

d · P (d). (7)

Figure 3(a) shows the results of the model using the Rent’s
exponents, p, computed in the previous section. The figure
compares the empirical (after optimization with our model)
and theoretical lower bounds on the communication distance
of applications. The dashed line represents values where the
predicted values equal the measured ones. It is evident that
all points fall below the dashed line, suggesting that the Rent’s
rule model provides an overly-optimistic lower bound, under-
estimating the empirical distance values with an average error
of 27.52%.

Part of the error is explained by the fact that the empirical
locality is constrained by the limited capacity of nodes, which
is not accounted for by Rent’s rule. In fact, we found in
our experiments that a system with no capacity constraints
would lead to communication distances which are 8% smaller
on average. Another contributing factor is the small scale of
the analyzed system. By measuring Rent’s rule on a 64-node
system, the weight of Region II of Rent’s rule is greater in
the measurements, thus biasing the Rent’s exponents towards
lower values. In VLSI, Rent’s rule is generally applied to
systems with tens of thousands of nodes.

However, the high correlation coefficient of 96% shows that,
even at this small scale, Rent’s rule can explain most of the
variation in communication distance and is, therefore, a good
predictor of communication locality in CMP applications. To
improve the accuracy of the model and account for the de-
viations described above, we performed a linear correction
by adding a multiplicative coefficient to the model. Using
least squares regression, a coefficient value 1.38 was extracted
which maximizes the fit of the model to the data. The new
curve, which has average error of 4.58% and maximum er-
ror of 8.64%, is shown in Figure 3(b). Once adjusted in this
manner, the results generalize for new parallel applications
running on the same system.

3.3 Energy predictions
The energy consumption of the interconnect is easily com-

puted from the estimated average communication distances.
The energy used by a message of length l (in bytes) when
traversing one hop on a 2D-mesh NoC is given by

Ehop(l) = Erouter(l) + Elink(l), (8)

where Erouter and Elink are the average energy used by the
message when traversing a router and a link, respectively. The
average energy used per byte can be obtained by

Ehop(1) =

∑
lEhop(l) ·Nl∑

l l ·Nl
, (9)

where Nl is the number of messages of size l. Using the esti-
mated average distance traveled by a message (Equation 7),
the energy used by a byte when traversing a hop (Equation
9), and the average number of bytes per node (the parameter
b of Rent’s rule) the total energy of the application can be
calculated:

Etotal = d× Ehop(1)×N × b, (10)

where N × b is the total number of bytes sent and received
over the network.



Figure 3: (a) Comparison between empirical and theoretical
average communication distances. (b) Empirical and theo-
retical communication distances after linear least squares fit.
(c) Empirical and theoretical NoC energy consumption.

We compare the theoretical and empirical energy lower bo-
unds in Figure 3(c), where the theoretical values were ob-
tained using the corrected Rent’s rule model. The results
show excellent agreement, with a high correlation coefficient
of 99.82%, average error of 4.53%, and maximum error of
8.64%. Notice that the total energy requires the two Rent’s
rule parameters, p and b, while the average distance only re-
quires the Rent’s exponent. Because there is little uncertainty
regarding the measurement of b, the correlation coefficient for
total energy is actually higher in this case.

4. CONCLUSION

This paper presented an empirical and a theoretical meth-
ods for determining the maximum energy savings from com-
munication locality exploitation in an NoC. The empirical
method uses a polynomial time algorithm that computes the
optimal allocation of data to cores such that energy is min-
imized. The theoretical one is based on a model from VLSI
design called Rent’s rule and can be used for fast, first order
energy estimates that do not require simulation or optimiza-
tion. We showed that the empirical and theoretical results are
highly consistent with each other. Our methods can be used
as a baseline for designing better data placement heuristics as
well as more energy efficient applications.
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