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Abstract Neutral landscapes and mutational robustness are believed to be

important enablers of evolvability in biology. We apply these concepts to software,

defining mutational robustness to be the fraction of random mutations to program

code that leave a program’s behavior unchanged. Test cases are used to measure

program behavior and mutation operators are taken from earlier work on genetic

programming. Although software is often viewed as brittle, with small changes

leading to catastrophic changes in behavior, our results show surprising robustness

in the face of random software mutations. The paper describes empirical studies of

the mutational robustness of 22 programs, including 14 production software pro-

jects, the Siemens benchmarks, and four specially constructed programs. We find

that over 30 % of random mutations are neutral with respect to their test suite. The

results hold across all classes of programs, for mutations at both the source code and

assembly instruction levels, across various programming languages, and bear only a
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limited relation to test suite coverage. We conclude that mutational robustness is an

inherent property of software, and that neutral variants (i.e., those that pass the test

suite) often fulfill the program’s original purpose or specification. Based on these

results, we conjecture that neutral mutations can be leveraged as a mechanism for

generating software diversity. We demonstrate this idea by generating a population

of neutral program variants and showing that the variants automatically repair latent

bugs. Neutral landscapes also provide a partial explanation for recent results that use

evolutionary computation to automatically repair software bugs.

Keywords Mutational robustness � Genetic programming � Mutation

testing � Proactive diversity � N-version programming � Neutral landscapes

1 Introduction

The ability of biological organisms to maintain functionality across a wide range of

environments and to adapt to new environments is unmatched by engineered

systems. Understanding the intertwined mechanisms and evolutionary drivers that

have led to the robustness and evolvability of biological systems is an important

subfield of evolutionary biology. In this paper we focus on neutral landscapes and

mutational robustness, applying these concepts to software.

Today’s software arose through fifty years of continued use, appropriation, and

refinement by software developers. The tools, design patterns and codes that we

have today are those that have proven useful and were robust to software

developer’s edits, hacks and accidents, and those that survived the economic

pressures of the marketplace. We hypothesize that these evolutionary pressures have

caused software to acquire mutational robustness resembling that of natural systems.

Mutational robustness in biological systems is believed to be intimately related to

the capacity for unsupervised evolution and adaptation. We posit that software

mutational robustness points to the potential for powerful methods of unsupervised

software enhancement and evolution.

Robustness is important in software engineering, especially as it relates to

reliability, availability or dependability. Here we focus on genetic robustness,

defining software mutational robustness in terms of changes to computer code. In

this context, we define a neutral mutation to be a random change applied to a

program representation (source code, abstract syntax tree, assembly, binary, etc.)

such that the mutated program’s behavior remains unchanged on its regression test

suite.1 Thus, software fitness is assessed by the program’s performance on a set of

test cases. In Sect. 6.1 we discuss the use of test suites to assess software fitness. In

Sect. 3.1 we present a formal definition of software mutational robustness as the

fraction of mutations to a program which do not change its correctness as assessed

by a set of regression tests.

Software mutational robustness measures the fraction of software mutants that

are neutral. Neutral variants are equivalent to the original program with respect to

1 This definition is not to be confused with the ‘‘equivalent mutants’’ of mutation testing, see Sect. 2.3.1.
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the test suite. They may or may not be semantically equivalent (compute the same

function) to the original program, they may or may not have the same non-

functional properties (run-time, memory consumption, etc.), and they may or may

not satisfy the specification (required behavior) of the original designers.

Empirically, we find that the program’s test suite is an acceptable proxy for the

program specification. We find many neutral variants that are both semantically

distinct from the original program and still satisfy the original program’s

specification or intended behavior.

This result can be understood more easily when one considers that there are an

infinite number of ways to encode any algorithm in software. For example, consider

this fragment of a recursive quick-sort implementation:

Swapping the order of the last two statements to changes

the run-time behavior of the program without changing the output, giving an

alternate implementation of the specification. We find that neutral mutations are

prevalent in software and contribute to evolvability, as discussed in Sect. 4.4.

Our mutation operators (delete, copy, and swap) are described in detail in Sect. 3.

They are notable because they do not create new code de novo. Delete and copy are

both plausible analogs of genetic operations on DNA, and all three are edit

operations that are routinely performed by programmers. They are also related to

operators commonly used in the genetic programming community, although we note

that we do not have an explicit terminal set as typical in genetic programming. In

effect, our terminal set corresponds to all of the statements contained in the program

being studied.

We are interested in the extent to which mutational robustness enables software

evolvability by which we mean the use of automated methods for software

development and maintenance. In particular, there is increasing interest in automatic

program repair, and many of the more promising approaches rely on unsound

program transformations (Sect. 2.4.1). These may involve both source-level edits

(e.g., [16, 36, 92, 93]) and modification to program state at run-time (e.g., [66]).

Mutational robustness may help explain why program transformations, such as

swapping two statements [92] or clamping an integer value [66], can produce

acceptable program behavior.

The primary contributions of the paper include:

1. The empirical measurement of software mutational robustness in a large

collection of off-the-shelf software, demonstrating that mutational robustness is

prevalent. We find largely uniform mutational robustness scores with an

average value of 36.8 % and a minimum across all software instances of

21.2 %. We evaluate this claim using 22 programs involving over 150,000 lines

of code and 23,151 tests.
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2. An application of software mutational robustness to repair unknown software

defects proactively. As an illustration, we seeded bugs into 11 programs,

generated populations 5,000 of neutral variants using mutation, and studied the

behavior of the variants on the seeded bugs using test cases withheld during

neutral variant generation. In eight of the programs, the neutral population

contained at least one variant that ‘‘repaired’’ the latent bug, passing the

withheld test case.

3. An alternate interpretation of the software engineering technique known as

mutation testing to include neutral mutations and software robustness. We

discuss the relation between software functionality, software test suites and

specifications, demonstrating the value of neutral mutations, both for proac-

tively repairing unknown bugs and as a likely enabler of automated software

evolution techniques.

In the remainder of the paper, we review related work in Biology and Software

Engineering in Sect. 2. We then describe our software representations and mutation

operators in Sect. 3. The experimental design and experimental results are given in

Sect. 4. We present a practical application of software mutational robustness in Sect.

5. Finally, we analyze our results and discuss potential threats to validity and

implications in Sects. 6 and 7.

2 Background

The previous work most closely related to software mutational robustness includes

work on neutral theories in biology, investigations of the effect of neutrality in

fitness landscapes in evolutionary computation and the field of mutation testing in

software engineering. In the following three subsections we highlight some of the

most relevant aspects of these fields.

2.1 Biology

Biological evolution is understood in terms of the interplay between genotype and

phenotype. The genotype is the informational representation that specifies the

organism, and the phenotype is the physical appearance and behavior of organisms

interacting with their environment. There is a corresponding type of robustness for

each of these levels of description: mutational robustness and environmental

robustness respectively [45]. Mutational robustness is the organism’s ability to

maintain phenotypic traits in the face of internal genetic mutations, and

environmental robustness is its ability to maintain functionality across a wide

range of environments [87].

The two types of robustness are closely related. Many of the causes of mutational

robustness are also causes of environmental robustness [52]. It is thought that the

pervasive mutational robustness observed in biological systems may have arisen as

a by-product of evolutionary pressure for environmental robustness [54]. However
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mutational robustness has been shown to be beneficial in its own right, especially in

its impact on an organism’s evolvability [13, 63].

Over time, populations of organisms accumulate mutations in their genome. Of

the many mutations that occur in a single individual, only a tiny fraction spread to

fixation in the population. Mutations accumulate at a fairly constant rate known as

the genetic clock [98]. Initially, only those mutations which increased fitness were

thought to become fixed in the population, an idea known as selectionism [21]. In

1968 Kimura suggested that because populations have finite size, the majority of

accumulated mutations might be effectively neutral, with no impact upon fitness

[42]. Kimura noted that as a consequence of neutral mutation, ‘‘we must recognize

the great importance of random genetic drift due to finite population number in

forming the genetic structure of biological populations.’’

Recent work [19] estimates that roughly 50 % of the fixed mutations provide a

selective advantage in Drosophila fruit flies, which have effective population sizes

on the order of 106, while in hominids, with effective populations sizes of 104, a tiny

percentage of fix mutations were adaptive. In this study, roughly 16 % of non-

equivalent mutations in Drosophila were found to be effectively neutral compared to

roughly 30 % of non-equivalent mutations in hominids.

The variants of an organism produced through neutral mutations are called

‘‘neutral neighbors.’’ Connected sets of neutral neighbors are called ‘‘neutral

spaces’’ [43] and can occupy sizeable regions of an organism’s fitness landscape

[74]. Mutational robustness and the resulting neutral spaces in fitness landscapes are

believed to contribute to a population’s ability to evolve [32].

Mutational drift through neutral spaces gives populations access to new

phenotypes located along the mutational border of the neutral space. Neutral

spaces thus allow populations to increase diversity and to accumulate new genetic

material through drift. This accumulation of genetic material has been shown to be

required for large evolutionary innovations [13, 55, 63, 88].

In effect, mutational robustness of an organism is a metric of its fitness

landscape. A number of metrics of fitness landscapes have been devised in an

attempt to statistically characterize landscapes [29] and to directly measure those

properties of a landscape that encourage evolution [80]. Our proposed software

mutational robustness begins the work of applying such metrics to real-world

software.

2.2 Evolutionary computation

The role of neutrality in evolutionary computation has been explored in several

specific contexts. In simple GP systems whose fitness landscapes have similarities to

those of RNA, neutral mutations have been shown to enhance exploration in

evolutionary searches [6]. Neutrality was shown to be beneficial for evolving digital

circuits, both in retrospective analysis of successful experiments [28], and in

directed experiments using synthetic fitness landscapes designed with variable

amounts of neutrality [85]. Some GP methods such as Cartesian genetic

programming [56] have been explicitly designed to leverage neutrality in genetic

search.
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Using a population genetics model, varying levels of mutational robustness have

been shown to either inhibit or encourage evolution, depending on population size,

mutation rate, and fitness landscape [18]. Some studies (e.g., using a GA to optimize

robot movement [81]) suggest that with certain complex genotype-phenotype

mappings, periods of neutral evolution do not measurably increase a population’s

evolvability. Although none of this prior work studies neutrality in software per se,

it does suggest that success in evolving software (e.g., repairing bugs) may be

related to neutral landscapes in the space of program representations.

2.3 Software engineering

Three subfields of software engineering, namely mutation testing, n-version

programming, and program transformation are most relevant to this work.

2.3.1 Mutation testing

The software engineering community has studied randomly generated program

mutants for over 30 years under the mantle of ‘‘Mutation Testing’’; however, the

interpretation and use of program mutants has been limited to measuring test suite

adequacy. In their landmark review of mutation testing Jia and Harmon [35]

describe the field as follows.

Mutation Testing is a fault-based testing technique which provides a testing

criterion called the ‘‘mutation adequacy score.’’ The mutation adequacy score

can be used to measure the effectiveness of a test set in terms of its ability to

detect [mutants] faults.

In mutation testing, non-equivalent mutants are presumed to indicate a fault

(either in the mutant or the original program). Thus, mutants that pass a program’s

test suite indicate test suite failures and lower the test suite’s ‘‘mutation adequacy

score.’’ Mutation testing recognizes the existence of ‘‘equivalent mutants’’ which

are semantically identical to the original program (cf. the Equivalent Mutant

Problem [12]) and viewed as problematic for the mutation testing paradigm. The

mutation testing literature, however, does not recognize the possibility of valid

neutral mutants; i.e., mutants that are semantically distinct from the original

program but still satisfy the original program’s specification (and its test suite).

Figure 1 shows the syntactic space surrounding a program. This is similar to a

fitness landscape; each point in the space represents a syntactically distinct program,

and each program is associated with a semantic interpretation although that is not

shown in the figure. Randomly mutating a program’s syntactic representation can

have several possible semantic effects, which are shown in the figure.

Our results are based on the following insight: for every specification there exists

multiple non-equivalent correct implementations. This emphasizes a different view

of software than is implicit in the mutation testing technique, namely, that for every

program specification all correct implementations are semantically equivalent.

To see how this follows from mutation testing, assume that A programs a and

b s.t. a is not equivalent to bða 6 ð�1 cm : 1:5 cmÞcircleð1 cmÞbÞ and both a and
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b satisfy specification S. Without loss of generality let a be the original program and

b be a mutant of a. Let T be a test suite of S. According to Offut [60] there are two

possibilities when T is applied to b. Either ‘‘the mutant is killable, but the test cases

is insufficient’’ or ‘‘the mutant is functionally equivalent.’’ The former case is

impossible because b is assumed to be a correct implementation of S and thus

should not be killed by any test suite of S. The later case is impossible because we

assume a 6 ð�1 cm : 1:5 cmÞcircleð1 cmÞb: By contraction, V a and b satisfying the

same specification S, a (- 1 cm:1.5 cm) circle (1 cm) b or V specification S A! a s.t.

a satisfies S.

Taking this perspective, by requiring test suites to kill all non-equivalent neutral

mutants, mutation testing could lead to test suites that are more restrictive than the

specification. To illustrate this point, consider the specification and programs in

Fig. 2. Programs a and b both satisfy the specification S, yet they are not equivalent

(notably on many four element arrays). Any test suite for S which kills one of these

implementations will be overly restrictive.

In the following sections, we study non-equivalent neutral mutants and

investigate their relative frequency in our benchmark programs. Our study

extends work on mutation testing by emphasizing non-equivalent neutral

mutations (cf. neutral mutants 2 and 3 in Fig. 1 which behave identically to

the original program with respect to a given test suite), discussing how they can

be leveraged, and by providing a biological interpretation for the phenomenon of

neutral mutations.

Program Syntactic Space

Specification
(acceptable)

Original Program

Test Suite

0

2

1

4

3

5

Neutral Mutants

Equivalent Mutant

Killed Mutants

Fig. 1 Syntactic Space of a Program. The set of programs satisfying the program specification are
shaded blue (left), the set of programs passing the program’s test suite are shaded red (right), and the set
of equivalent programs are shown in green (center). The relative size of these spaces and of their
intersection is unknown. Three classes of mutants are shown and labeled. This work leverages the
existence of valid neutral mutants such as 2 which lie in the intersection of the specification and the test
suite (Color figure online)
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2.4 N-version programming

There has been considerable research on the use of automated diversity in security,

for example, the special issue of IEEE Computer Security devoted to IT

Monocultures [33]. Common mechanisms for introducing diversity include Address

Space Randomization [10, 23] and Instruction Set Randomization [9, 40], among

many others. In these applications, diversity is introduced to reduce the risk of

widely replicated attacks, by forcing the attacker to redesign the attack each time it

is applied [96]. Our proposed use of diversity, outlined in Sect. 5, is closer in spirit

to n-variant systems [15], where multiple variants of a program are run in parallel,

giving each variant identical inputs and checking that they all behave similarly

before forwarding the output to the user.

Our proposed application also resembles n-version programming [53] where

multiple independent, or quasi-independent, manually written implementations of

critical programs reduce the risk of implementation errors going undetected. Our

approach differs from n-version programming: Instead of relying on teams of

human programmers to generate full implementations independently, we use

lightweight mutation operators to automatically generate variants that are seman-

tically similar to the original. This addresses the cost issue identified in earlier

studies [46] and potentially addresses the assumption that independent teams of

humans are likely to generate programs that will fail independently; studies suggest

that this assumption does not hold in practice [48]. Because we generate variants

automatically, there is a better chance of achieving independence among the

variations, either with the mutation operators we describe here or with others to be

developed in the future.

2.4.1 Unsound program transformation

Traditionally, automated program transformation techniques (e.g., compiler opti-

mizations) refrain from altering the semantics (or behavior) of the original program.

Such program transformations are ‘‘sound’’ because they are guaranteed to preserve

program semantics. Recent work has experimented with ‘‘unsound’’ program

Fig. 2 Specification S and two correct, non-equivalent implementations
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transformations, which do not necessarily preserve the exact semantics of the

original program.

Self-healing systems [26] acknowledge that proactive developer efforts at

providing fault tolerance and reliability are often insufficient, suggesting instead the

idea of reactive methods of runtime protection. For example, the Assure system [77]

adds rescue points to software which catch otherwise fatal errors, and handle them

by re-purposing error handling code already present in the application. Similarly,

failure oblivious computing [68], handles common memory errors, such as out-of-

bounds reads and writes, by simply ignoring them or automatically re-mapping

invalid memory addresses to arbitrary valid memory address, allowing the program

to continue execution. Such trade-offs of correctness for robustness are desirable for

applications such as web servers where availability is paramount.

Loop perforation [57] is a run-time method that sacrifices exact program

accuracy in return for reduced running time or energy consumption. Loop

perforation eliminates some of the computation specified in the original program

by dropping some iterations of selected program loops.

Another important class of unsound program transformations are automated

repair techniques. These techniques share a common approach: defining a notion of

correct and incorrect program behavior (e.g., from test cases [66, 92], implicit

specifications [36], or explicit specifications [93]); generating a set of candidate

repair transformations (e.g., at random [92], by constraint solving, or from an

established set [36, 66]), and validating the candidates produced by the transfor-

mations until a suitable repair is found.

Evolutionary methods have been widely used in this work, both to repair bugs

seeded into constructed programs using a subsets of the Java programming language

[5] and to repair real programs written in C [50, 92], including a systematic study of

over 100 bugs mined from open-source software repositories [51]. Recent work

emphasizes evolving software patches directly, rather than complete program

representations [2, 51], evolving repairs at the assembly and binary code levels [72,

73], and evolving the Java Byte code compiled from extant programs using

specialized mutation operators including a technique of compatible crossover [64,

65]. Finally, Wilkerson used GP to co-evolve C?? applications in competition with

sets of test cases [95].

3 Technical approach

In this section, we define software mutational robustness, describe the program

representations used in our experiments, and for each representation specify the

representation-specific mutation operations.

3.1 Software mutational robustness

We formalize software mutational robustness with respect to a software program

P (a member of the set of all software programs P), a set of mutation operators
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M (where each m [ M is a function mapping P ! P), and a test suite T : P !
ftrue; falseg: A program P is said to pass the test suite iff TðPÞ ¼ true:

Given a program P, a set of mutation operators M, and a test suite T such that

TðPÞ ¼ true, we define the software mutational robustness, written

MutRBðP; T;MÞ, to be the fraction of all direct mutants P0 = m(P), V
m [ M which both compile and pass T:

MutRBðP; T ;MÞ ¼ j P0jm 2 M:P0 ¼ mðPÞ ^ TðP0Þ ¼ truef gj
j P0jm 2 M:P0 ¼ mðPÞf gj

Based on this definition, software mutational robustness depends on three

parameters, P, T and M. Perhaps surprisingly, the empirical results of Sect. 4 show

that software robustness does not depend strongly on P or T for human-constructed

software systems. Our mutation operators M, described below, are adapted from

genetic programming and are simple and natural analogs of biological mutation. We

believe that they are also general and appropriate to software. For example, earlier

work has shown that the set M, together with crossover, is sufficiently strong to

generate successful repairs for a wide variety of defects in a wide variety of software

[51, 50, 92]. Additionally, they reflect common human edit operations.

3.2 Representation and operators

We consider two levels of program representation: abstract syntax trees (AST)

based on high-level program source code, and low-level assembly code (ASM). We

use the CIL toolkit [58] to parse and manipulate ASTs of C source code. CIL

simplifies some C constructs to facilitate manipulation by computational tools and

supports source to source translations such as our mutation operations. The ASM

representation is the linear sequence of instructions taken directly from the compiled

.s assembly code file produced by standard compilation (i.e., ‘‘gcc -O2 -S’’) on a

64-bit Intel platform, which is split on line breaks [73], but with directives and other

pseudo-operations protected from mutation. Our choice of one tree-based and one

linear representation increases our confidence that the results do not depend on such

representation details. For example, our AST representation is at the statement level.

That is, each node in the AST corresponds to a legal statement in C. This relatively

coarse representation level provides a distinct contrast to the fine-grained ASM

representation, where approximately three assembly statements represent each C

statement.

Given a source code or assembly language program, we consider three simple

language-independent mutation operators: copy, delete and swap. Copy duplicates

an AST statement-level subtree or assembly instruction and inserts it at a random

position in the AST or immediately after a randomly chosen instruction. Delete

removes a randomly chosen statement-level AST subtree or assembly instruction.

Swap exchanges two randomly chosen statement-level AST subtrees or assembly

instructions. Figure 3 illustrates these operators. Because AST mutations manip-

ulate subtrees, a large amount of code might be inserted or deleted by a single

mutation, depending on how high in the tree the mutation is applied. In the

experiments, mutations modify only AST statements or ASM instructions that are
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actually visited by the test suite. This restriction is similar to mutating only those

parts of genome that are known to be involved in the phenotype being assayed.

Mutations to untested statements would likely be neutral under our metric, unfairly

biasing the results towards overly high estimates of mutational robustness.

4 Experimental results

We report results for five experiments on the mutational robustness of programs in

both representations (AST and ASM). Throughout this section we remain conscious

of the threat that our results may measure the poor quality of program test suites

instead of the intrinsic mutational robustness of software. Much of our experimental

design addresses this particular concern.

We investigate: (1) the level of mutational robustness of several computer

programs (we specifically select benchmark programs with the highest quality test

suites available); (2) the extent to which mutational robustness depends on or can be

explained by test suite quality; (3) a taxonomy of neutral mutations (indicating

which mutations would no longer remain neutral under perfect testing), (4) the

effect of cumulative neutral mutations mutations in a simple program, and (5)

generality of mutational robustness across multiple programming languages and

paradigms.

4.1 Benchmark programs

We selected 22 programs for our experiments (Table 1). Fourteen are off-the-shelf

programs selected to measure mutational robustness in real-world software. Four are

taken from the Siemens Software-artifact Infrastructure Repository, created by

Siemens Research [31] and later modified by Rothermel and Harold [70] until each

‘‘executable statement, edge, and definition-use pair in the base program or its

control flow graph was exercised by at least 30 tests.’’ The space test suite, which

was generated by Vokolos [86] and later enhanced by Graves [27], which covers

every edge in the control flow graph with at least 30 tests. These programs are

Fig. 3 Mutation operators: Copy, Delete, Swap
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Table 1 Mutational robustness of benchmark programs

Program Lines of code Test suite Mut. robustness

ASM C # tests % stmt. AST ASM

Sorting algorithms

bubble-sort 184 34 10 100 27.3 25.7

insertion-sort 170 29 10 100 29.4 26.0

merge-sort 233 38 10 100 29.8 21.2

quick-sort 219 38 10 100 28.9 25.5

Siemens [31]a

printtokens 2419 536 4130 81.7 21.2 25.8

schedule 922 412 2650 94.4 34.4 29.1

space 18098 9126 13494 91.1 37.7 32.1

tcas 544 173 1608 96.2 33.5 25.9

Systems programs

bzip2 1.0.2 18756 7000 6 35.9 33.0 26.1

— (alt. test suite) 22 71.0 46.4 23.6

ccrypt 1.2 15261 4249 6 29.5 33.0 69.7

— (alt. test suite) 16 40.4 34.6 69.7

grep 28776 10929 119 24.9 50.0 36.7

imagemagick 6.5.2 6128 147 145 0.8 33.3 66.3

jansson 1.3 6830 2975 30 28.8 33.3 28.0

leukocyte 40226 7970 5 45.4 33.3 39.9

lighttpd 1.4.15 34165 3829 11 40.1 61.5 56.9

nullhttpd 0.5.0 5951 5575 6 64.5 41.5 37.8

oggenc 1.0.1 299959 59094 10 38.4 33.4 22.1

— (alt. test suite) 40 58.8 40.5 72.3

potion 40b5f03 80406 15033 204 48.4 33.3 48.9

redis 1.3.4 44802 17203 234 9.2 33.3 34.0

sed 17026 8059 360 42.0 33.0 25.6

tiff 3.8.2 22458 1732 10 15.4 33.3 90.4

vyquon 335426d 20567 4390 5 50.6 33.3 69.0

Total or average 664100 158571 23151 40.9 33.9 ± 10 39.6 ± 22

Lines of Code’’ columns report the size of the program in terms of lines of C source code and lines of

compiled assembly code. The ‘‘Test Suite’’ columns show the size of the test suite both in terms of

number of test cases and the percentage of all AST level statements in the program that are exercised by

the test suite. The ‘‘Mut. Robustness’’ columns report the percentage of all first-order mutations that were

neutral. The ± values in the bottom row indicate one standard deviation. For each program, at both the

AST and ASM level we generated at least 200 unique variants using each of the three mutation operations

(copy, delete and swap). Mutation operations were applied at locations chosen randomly from all those

visited by the test cases. For three programs (bzip, ccrypt and oggenc) we also evaluated on

three independent alternate test suites
a Although the Siemens benchmark suite claims complete branch and statement coverage, we find

\100 % statement coverage. This is due to our use of finer-grained Cil statements in calculating cov-

erage. See Sect. 3.2 for discussion of the Cil program representation
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included for comparability to previous research and to study the robustness of

programs with extremely high-quality test suites. We include four simple sorting

algorithms taken from http://rosettacode.org to demonstrate the robustness of pro-

grams with full statement, branch-level and assembly instruction test coverage.

Each program has an associated test suite. The tests either came with the program

as part of its established regression test (e.g., Siemens, potion, redis, jansson)

or were constructed manually (e.g., sorting algorithms, webservers). A number of

our benchmarks implement invertible transformations (e.g., compression, encryp-

tion, serialization, image manipulation), which form an implicit formal specification

and permit simple testing [90]. The three invertible programs (bzip, ccrypt and

oggenc) are thus each evaluated on two independently constructed test suites. For

lighttpd and imagemagick, we restricted mutations to mod_fastcgi.c and

convert.c respectively, demonstrating application to modules as well as to whole

systems.

4.2 Software mutational robustness

We first demonstrate that a variety of software programs exhibit significant

mutational robustness under the mutation operators described in Sect. 3. In this

experiment, we measure the percentage of random mutations to code visited by at

least one test case which leave the program’s behavior unchanged on all of its test

cases. In every case, the initial program passes all of its test cases. For each mutation

operator we generate program variations making at least 200 copies of the original

program and then applying a single random mutation to each copy. We refer to these

as first-order, mutations. We then run the mutated program on its test suite and

count it as neutral if it passes all of its tests.

Table 1 shows the results of this experiment on the benchmark programs. We

wish to rule out trivial mutations, such as the insertion of dead code (e.g., statements

that appear after a return) or the transposition of independent lines, that are visible

in the source code but would produce equivalent assembly code. Since program

equivalence is undecidable [12], we approximate this by compiling the AST using

‘‘gcc -O2 -S,’’ which includes dead code elimination, SSA form, and instruction

scheduling. Multiple source code variants that produce the same optimized

assembly code (modulo label names and other directives) are counted only once

in Table 1. Similarly, any two ASM-level mutations which produce the same

executable are counted only once.

Although the results vary by program (e.g., grep is more robust than

printtokens), the results show a remarkably high level of mutational robustness:

Across all programs, operators, and representations (source or assembly) 36.8 % of

variants continue to pass all test cases with no systematic difference between the

AST and ASM representation. In the next two subsections we ask to what extent

these results arise from inadequate test suites (4.3) or from semantically equivalent

mutations (4.4).
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4.3 Does mutational robustness depend on test suite quality?

The results in Table 1 are striking, but they could potentially be entirely the result of

inadequate test suites. In Fig. 4 we plot the data from Table 1, showing the

mutational robustness of software grouped by the quality of the software test suite.

We consider both the quantitative metrics of code coverage of these test suites, as

well as qualitative differences between the program test suites by panel.

Qualitatively the program classes in the three panels of Fig. 4 have very different

test suites.

Sorting program suites all share a single test suite. This test suite leverages the

simplicity of sorting programs to provide complete code coverage (at both the

statement and assembly instruction levels) with only 10 test cases.

Siemens program suites taken from the testing community where they have been

developed by multiple parties across multiple publications [31, 70] until each

Fig. 4 Mutational robustness shown by quality of test suite. The simple sorting programs in a have
complete code and ASM instruction coverage with few carefully constructed test cases. The Siemens
programs in b have complete branch and def-use pair coverage and thousands of test cases for relatively
small programs. The Systems programs in c have test suites that vary greatly in quality
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‘‘executable statement, edge, and definition-use pair in the base program or its

control flow graph was exercised by at least 30 tests.’’

Systems program suites are taken directly from real world software development

projects. These test suites reflect the great range of test suites used in practice.

Quantitatively, the sorting programs in Panel 4a have 100 % code coverage and

the Siemens benchmark programs in Panel 4b have close to 100 % code coverage.

By contrast the Systems programs in Panel 4c have 37.63 ± 19.34 coverage.

Despite this wide range of coverage, the average mutational robustness varies

relatively little between Panels at 26.7 % (Panel 4a), 29.8 % (Panel 4b) and 43.7 %

(Panel 4c) respectively, and the minimum mutational robustness measurements for

each Panel are even closer at 21.2, 21.2 and 22.1 % respectively.

The lack of correlation between code coverage and mutational robustness is not

surprising, both because we explicitly limit the mutation operators to code that is

visited by test suites, and because statement coverage is known to be an insufficient

metric of test suite quality [30].

In fact, the lack of correlation between mutational robustness and test suite

quality is not true in either limit. At one extreme, even high-quality test suites (such

as the Siemens benchmarks, which were explicitly designed to test all execution

paths) and test suites with full statement, branch and assembly instruction coverage

have over 20 % mutational robustness. At the other extreme, a minimal test suite

that we designed for bubble sort, which does not check program output but requires

only successful compilation and execution without crash, has only 84.8 %

mutational robustness.

These results show that, in practice, for both real programs and comprehensively

tested ones, mutational robustness is not fully explained by test suite quality or

inadequacy.

4.4 Taxonomy of neutral variants

To provide insight into our results, we chose bubble sort as an example of an easy-

to-understand and easy-to-test program. We then studied the effect of 35 first-order

neutral mutations on bubble sort at the AST level, developing a taxonomy of the

neutral mutations. After manual review, all 35 neutral variations were confirmed to

be valid implementations of the sorting specification. We next categorized them

with respect to their operational differences from the original. The results are shown

in Table 2.

These categories have different effects on program execution. Only categories 1

and 5 affect the externally observable behavior of the program by changing output

and return values in ways not specified by the program specification. Categories 2,

3, 4 and 7 may affect the running time of the program. Category 2 includes the

removal of unnecessary variable assignments, re-ordering non-interacting instruc-

tions and changing state which is later overwritten or never again read. Many

changes, such as types 2, 3 and 4, produce programs that will likely be more robust

to further manipulation by inserting redundant (occasionally diverse) control flow

guards (i.e., conditionals that control if statements) and variable assignments.
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Across most of these categories we find alternative implementations that are not

semantically equivalent to the original but which conform to the program

specification.

Of these classes of neutral programs, only classes 4, 5 and 6 could possibly have

no impact on runtime behavior and could possibly be equivalent. Under the

mutation testing paradigm, tests would be constructed to ‘‘kill’’ the remaining 29 of

35 neutral mutants. Given the sorting specification used (namely to print whitespace

separated integer inputs in sorted order to STDOUT separated by whitespace), none

of these classes of neutral mutations could be viewed as faulty implementations.

Consequently, any such extra tests constructed to tell them apart (e.g., for mutation

testing) would over-specify the program specification. Rather than improving the

test suite quality, such over-constrained tests would potentially judge future correct

implementations as faulty.

4.5 Cumulative robustness

The previous experiments measured the percentage of first-order mutations that are

neutral. This subsection explores the effects of accumulating cumulative neutral

mutations in a small assembly program. We begin with a working assembly code

implementation of insertion sort. We apply random mutations using the ASM

representation and mutation operations defined in Sect. 3.2. After each mutation, the

resulting variant is retained if neutral, and discarded otherwise. The process

continues until we have collected 100 neutral variants. The mean program length

and mutational robustness of the individuals in this population are shown as the

leftmost red and blue points respectively in Fig. 5a. From these 100 neutral variants,

we then generate a population of 100 second order neutral variants. This is

accomplished by looping through the population of first-order mutants, randomly

mutating each individual once retaining the result if it is neutral and discarding it

Table 2 Taxonomy of 35 neutral first order AST variations of bubble sort

# Functional category Frequency/

35

1 Different whitespace in output 12

2 Inconsequential change of internal variables 10

3 Extra or redundant computation 6

4 Equivalent or redundant conditional guard 3

5 Switched to non-explicit return 2

6 Changed code is unreachable 1

7 Removed optimization 1

Categorized by manual review. ‘‘Different whitespace in output’’ describes variants whose output differs

from the original program only in whitespace characters which are not detected by the test suite.

‘‘Inconsequential change of internal variables’’ describes variants whose mutations change the behavior

of the program while executing but do not change the tested output of the program, e.g., mutations which

change the values of variables in memory which do not later affect program output or variants which

change the ordering of non-interacting instructions
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otherwise. Once 100 neutral second-order variants have been accumulated, the

procedure is iterated to produce higher-order neutral variants. This process produces

neutral populations separated from the original program by successively more

neutral mutations. Figure 5 shows the results of this process up to 250 steps

producing a final population of 100 neutral variants, each of which is 250 neutral

mutations away from the original program.
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Fig. 5 Random walk in neutral landscape of ASM variations of Insertion Sort. A series of populations of
100 neutral variants from 1 to 250 edits away from the original program. At each step on the X-axis, the
mean number of lines of code and mutational robustness of the members of the population are shown. In
Panel a the size of neutral variants is allowed to vary, while Panel b allows only variants that are less than
or equal to the length of the original program (in ASM LOC). On the 32-bit machine used for this

experiment insertion-sort compiles to 175 assembly LOC. Both the average size and the

mutational robustness of mutant variants are shown on the Y-axis, the X-axis shows the cumulative
number of mutation operators applied
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The results show that under this procedure mutational robustness increases with

the mutational distance away from the original program. This is not surprising given

that at each step mutationally robust variants are more likely to produce neutral

mutants which will be included in the subsequent population. We conjecture that

this result corresponds to the population drifting away from the perimeter of the

program’s neutral space. Similar behavior has been described for biological

systems, where populations in a constant environment experience a weak

evolutionary pressure for increased mutational robustness [87, Ch. 16].

The average size of the program also increases with mutational distance from the

original program (Fig. 5a), suggesting that the program might be achieving

robustness by adding ‘‘bloat’’ in the form of useless instructions. To control for

bloat, Fig. 5b shows the results of an experiment in which only individuals that are

the same size or smaller than (measured in number of assembly instructions) the

original program are counted as neutral. With this additional criterion, mutational

robustness continues to increase but the program size periodically dips and

rebounds, never exceeding the size of the original program. The dips are likely

consolidation events, where additional instructions are discovered that can be

eliminated.

This result shows that not only are there large neutral spaces surrounding any

given program implementation (in this instance, permitting neutral variants as far as

250 edits removed from a well-tested \200 LOC program), but they are easily

traversable through iterative mutation. Figure 5b shows a small increase in

mutational robustness even when controlling for bloat. Further experimentation

will determine if these results generalize to multiple programs.

4.6 Multiple languages

The source language and compilation process impose important regularities on the

assembly representations of programs. In this section we investigate how mutational

robustness varies across assembly code derived from different languages. We

evaluated the mutational robustness of sorting algorithms compiled from five

languages that span three programming paradigms (imperative, object-oriented, and

functional). We focused on sorting algorithms because they are small and

sufficiently well-understood to test comprehensively: Test suites were hand-crafted

to cover all executable assembly instructions, branches, and corner cases.

The results shown in Table 3 demonstrate that mutational robustness is found

across multiple programming languages and paradigms. It is striking that even for a

small, comprehensively tested sorting program, on average 28 % of the first-order

mutations did not change the program’s functionality.

This experiment addresses the question of whether our results depend on

idiosyncrasies of a particular language implementation or programming paradigm,

and they support the claim that mutational robustness occurs at a significant rate in a

wide variety of software.
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5 Application of mutational robustness to proactive bug repair

The previous sections demonstrated the prevalence of mutational robustness in

software, independent of language, algorithm, or test suite coverage. Section 4.5

suggests that multiple mutations can be accumulated in the same program without

loss of functionality. This section provides one example of how we might leverage

software mutational robustness in a practical application proactively repairing

unknown bugs that are not covered by a program’s test suite.

We generate a population of multiple variations of a program, which contain

nontrivial changes to the algorithm or implementation but remain within the

program’s neutral space. Although these variants are neutral to the original program

with respect to the existing test suite, they may not be neutral to the original if the

test suite were later enhanced (e.g., by including tests for as yet unknown bugs). We

find that some of these program variations are immune to latent bugs in the original

program, and they can be used to automatically pinpoint repairs when new bugs

arise.

The term artificial diversity describes a wide variety of techniques for

automatically randomizing non-functional properties of programs with the goal of

disrupting widely replicated attacks. Many methods have been proposed, including

stack frame layouts, instruction set numberings, or address space layouts [7, 23, 34].

Although the idea of diversifying certain aspects of a program’s implementation has

been previously proposed [8], neutral mutations provide a much more general and

practical approach. We extend earlier work in this area by generating program

variants that are distinct algorithmically but neutral with respect to the test suite.

These distinct variants could be used in an n-variant system [15], in which a diverse

population of programs is run simultaneously on the same inputs. When the neutral

variants contain algorithmic or implementation changes (rather than simple

remappings, as in address space layout randomization or instruction set random-

ization), the approach is known as implementation diversity [14]. Such a system

could be used to flag potential bugs when there are discrepancies in observed

behavior, and may be more robust to bugs which only affect subsets of the

population.

This use of mutational robustness is analogous to software mutation testing, with

the critical differences that (1) neutral mutants are retained rather than manually

Table 3 Mutational robustness of sorting algorithms at the assembly instruction level with 100 % test

suite coverage, for different algorithms and source language

C C?? Haskell OCaml Avg. Std. dev.

bubble 25.7 28.2 27.6 16.7 24.6 5.3

insertion 26.0 42.0 35.6 23.7 31.8 8.5

merge 21.2 46.0 24.9 22.7 28.7 11.6

quick 25.5 42.0 26.3 11.4 26.3 12.5

Avg. 24.6 39.5 28.6 18.6 27.9

Std. dev. 2.3 7.8 4.8 5.7 3.1
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examined; (2) the test suite is not augmented to kill all mutants; and (3) the set of

mutation operators considered is different. The commercial practice of mutation

testing has been limited by the significant effort required to analyze mutants that

pass the test suite. Such mutants must be manually classified, either as fully

equivalent to the original program or non-equivalent, and the latter further classified

as buggy or as superior to the original program (cf. human oracle problem [94]).

Our proposed alternative to the traditional mutation testing practice amortizes

these labor intensive steps by retaining a population of all such neutral variants.

When a bug is encountered in the original program, it will be detected if some

members of the population behave anomalously with respect to the result of the

population, and the non-failing variations need only then be analyzed to suggest a

repair. This approach of deferring analysis until a potentially beneficial variation is

found may be more feasible than traditional mutation testing, because it does not

require exhaustive manual review of large numbers of program variants.

5.1 Repairing bugs

We first demonstrate that it is possible to construct variants in the neutral fitness

landscape that can repair unknown bugs while retaining required functionality. To

do this, we seeded each of the programs in Table 4 with five random defects

following an established defect distribution [25, p. 5] and fault taxonomy [47] (e.g.,

‘‘missing conditional clause,’’ ‘‘extra statement,’’ ‘‘constant should have been

variable,’’ ‘‘wrong parameter’’). The defects were seeded in advance and without

Table 4 Bugs proactively repaired by neutral variants

Program Fraction of bugs fixed Bug fixes

bzip 2/5 63

imagemagick 2/5 8

jansson 2/5 40

leukocyte 1/5 1

lighttpd 1/5 73

nullhttpd 1/5 7

oggenc 0/5 0

potion 2/5 14

redis 0/5 0

tiff 0/5 0

vyquon 1/5 1

Average 1.0/5 18.8

Five unique bugs were seeded in each subject program according to a defect distribution taken from the

Firefox open source project. Five thousand neutral variants were created for each program through AST

level mutation, without regard to the seeded bugs. Each variant passed all visible tests. The ‘‘Unique Bugs

Fixed’’ column counts the number of seeded bugs fixed by at least one variant. The ‘‘Bug Fixes’’ column

counts the number of variants that fixed at least one bug
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regard to the mutation operators. For each defect we produced a held-out test to

verify its presence or absence.

For each program, we generated 5,000 first-order neutral variants using the

mutation operators defined in Sect. 3.2. We then noted which of these passed any of

the five held-out test cases for the seeded bugs. In practice, 5,000 neutral variants

proved sufficient to generate at least one bug-repairing variant for most programs,

and if such a variant was generated at all, it was within the first 5,000 neutral

variants. We tested this by searching up to 20,000 variants, which did not improve

performance. Only variants that passed the original test suite were retained; the

mutation process did not have access to the held-out test cases for the seeded bugs.

Table 4 shows the results. We say that a variant repairs an unknown bug if it

passed all original test cases and the held-out test case associated with that bug. We

found repairs which exactly revert the original bug as well as compensatory

mutations which do not touch the bug itself but repair or avoid the bug by changing

other parts of the program. Specifically, we found that 3 % of the proactive repairs

changed the same line of code in which the original bug was seeded and 12 % of

repairs affect code within 5 lines of the seeded bug. The remaining 88 % of repairs

could be considered compensatory in that they do not affect the bug directly but

rather change other portions of the program so that the bug is not expressed. In

nature compensatory mutations are much more common than mutations which

directly repair a given fault [67].

These proactive repairs can be used to pinpoint the bug, because the diff

between them and the original program locates either the bug itself or relevant

portions of the program code. Previous work demonstrated that software engineers

take less time to address defect reports that are accompanied by such machine-

generated patch-like information [91], which provides evidence that these proactive

repairs would be useful in practice.

We observe some common trends when examining Table 4. The bugs repaired

most easily were those that naturally mirror the mutation strategies employed by our

technique. For example, we found multiple examples of the repairs that deleted

problematic statements or clauses, corrected an incorrect value for a constant, changed

a relational operator (for instance B to\), inserted clauses or statements to test for

extra conditions, changed a parameter value in a function call, etc. However, there was

significant overlap between the types of bugs that were proactively repaired and those

that were not, suggesting that additional tuning might improve results on these

currently unrepaired classes of bugs. One bug that was never repaired in our

experiment involved an ‘‘incorrect function call.’’ To repair this bug using our

technique would require finding the ‘‘correct’’ function elsewhere in the program with

exactly the correct parameters, while avoiding extraneous mutations that change

behavior on regression test cases. In this experiment, we focused on discovering the

proactive repair, and we leave for future work the problem of automatically deciding

how to resolve discrepancies that are discovered among selected variants, either with

an automated repair or by generating additional test cases.

We predict that the more latent bugs there are in a program, the more likely it is

that at least one of them will be repaired through proactive diversity. This is relevant

because most deployed programs have significantly more than five outstanding
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defects (e.g., 18,165 from October 2001 to August 2005 and 2,013 open bug tickets

May 2003 to August 2005 for Eclipse (V3.0) and Firefox (V1.0) respectively [4]).

To test this prediction, we seeded one of our test programs, potion, with ten

additional held-out defects. We then generate 5,000 neutral variants which were

selected to maximize the number the distinct positions in the original program

which they modify. Figure 6 plots the number of distinct bugs repaired by these

5,000 variants as a function of the number of defects seeded, yielding a correlation

of 95 %. If the linear relation shown in Fig. 6 applies to the Eclipse and Firefox

projects, a population of 5,000 program variants could proactively repair as many as

9,000 and 1,000 latent bugs in those systems, respectively.

We leave as future work the application of this technique to higher order neutral

mutants as constructed in Sect. 4.5. While such variants would also greatly increase

diversity they would be less useful in directly pinpointing the source code

implicated in buggy behavior.

Although preliminary, these results show how the mutational robustness

properties of programs might be used to quickly repair programs or as in the

scenario outlined in the next subsection.

5.2 Neutral variants for n-version programming

In their classic work on independence in multiversion programming, Knight and

Leveson [48] found that distinct teams of humans, when given an identical
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programming task, produce solutions that have correlated errors (bugs). That is, two

independent teams are unlikely to produce two independent implementations, which

decreases the potential benefit of N-person programming.

Previous work has shown that GP can serve as a promising tool for N-version

programming [20]. In particular, GP can automate the significant task of developing

N independent software instances. However, the technique had limited applicability

because it relied on de-novo programs evolved in simplified languages specifically

designed for GP.

The diverse populations of program variants described in this section could serve

as the bases for an N-version programming system. Such a system could potentially

address part of the non-independence hurdle because the mutations are generated

randomly rather than by people, producing independent algorithmic changes. For

example, if we seed 15 bugs in potion and then select at random ten neutral

variants which each proactively repair one bug, we see that, on average, 1.7

different defects are fixed by those ten proactive repairs, rather than 1.0, which we

would expect if they were 100 % correlated.

To put this idea into perspective, for the first month after Firefox 4.0 was released

(March 11 through April 10, 2011), the project’s Bugzilla database shows that an

average of 77 new, non-duplicate bugs were reported per day. Given that this rate of

bug reporting is more than ten times the number of bugs seeded in our evaluation,

we conjecture that an N-version programming system populated by our technique

would be at least as effective in similar real-world systems as it is in our

experimental setup.

6 Discussion

The results presented here contradict the prevailing folk wisdom that software is a

precise and intentionally engineered mechanism, which is brittle to small

perturbations. We find software to be inherently robust to random mutations,

malleable within extensive neutral landscapes, and evolvable by combining the

mutation operators described here with crossover and selection [50, 51, 92].

This new view of software suggests a number of exciting areas for future work.

These include further analysis of the extent, origins and mechanics of software

mutational robustness, novel practical applications to software engineering, and new

parallels between software applications and evolved biological organisms. We next

discuss threats to the validity of our findings, and then explore each of these three

areas of future work in turn.

6.1 Threats to validity

The quantitative results that we report depend on the particular choice of mutation

operators, and a competent programmer could likely craft operators capable of

achieving any pre-set desired level of mutational robustness. However, we believe

that the operators used in this paper are sufficiently simple, powerful and general

that they expose software mutational robustness as an inherent property of software.
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A topic left for future investigation is to define and test a wider variety of mutation

operators (including mutation operations taken from the mutation testing commu-

nity such as Mothra [44]), studying their effect on software mutational robustness.

We use test suites to assess program behavior. Insufficient test suites could

artificially inflate our estimates of software mutational robustness. Multiple aspects

of our experimental design addresses this threat explicitly. In Sect. 4.1 we selected

benchmarks programs with a wide variety of test-suite coverage and depth,

including both the Siemens programs, whose test suites have been developed by

multiple independent researchers to achieve an exceptionally high quality, and small

sorting programs, where we can test all corner cases exhaustively. In Sect. 4.3 we

analyze mutational robustness across these three categories of programs, finding

little variation in the average and minimal mutational robustness measured for each

category. As a further step to address concerns about test-suite quality, in Sect. 4.4

we manually categorized neutral variants for a small program, finding that at least

29 of the 35 analyzed variants could not possibly fail any test suite that conforms to

the program specification.

In Sect. 5 we demonstrate applications of software mutational robustness to the

tasks of software development and maintenance. This demonstration does not

address the impact which low-quality test suites may have on the performance of

our demonstrated applications. Such an investigation may be required before such

techniques are applied.

6.2 Further investigation of software mutational robustness

Although we demonstrate the reach of neutral software landscapes in Sect. 4.5 by

evolving neutral variants hundreds of edits removed from an original program,

much about these landscapes remains unknown. How densely do the spaces of

neutral variants fill the space of all possible programs? Are these neutral spaces

connected and traversable, or isolated? Do these spaces extend to all portions of

program space (as the neutral spaces of mappings of RNA sequences to RNA

structures do [74])?

Measuring the ‘‘distance’’ between neutral program variants may illuminate the

effective impact of neutral program mutations. Such distance metrics could be based

on information flow through the program during execution [82], or comparison of

stack traces or system calls [22].

Recent work has shown that Markov Chain Monte Carlo [3] (MCMC) techniques

are capable of traversing neutral program spaces defined by vastly smaller programs

on the order of 10 assembly instructions [76]. It remains unclear if these techniques

are extensible to the spaces defined by full-size programs with loops.

Software mutational robustness measures the density of neutral variants within a

single edit of a program. However, the density of higher-order neutral variants

remains unknown. We could possibly use MCMC to sample the space of more

neutral variants within a given edit radius or the original program as follows:

1. Calculate the mixing time of an edit-radius constrained neutral variant markkov

chain;
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2. Record the neutrality of program encountered after the mixing time;

3. Use mark and recapture techniques from population ecology [69] to estimate

the total volume of neutral variants.

Performing mark and recapture experiments within neutral landscapes found along

the post mixing time walks would allow us to estimate the absolute number of

neutral variants within a given edit radius of the original program.

This work does not address execution time software robustness. Examples

include: short error propagation distances observed in web servers studied in failure

oblivious computing [68], and calculations such as those prevalent in the PARSEC

benchmark suite [11], which iteratively converge on the correct solutions and which

may become more common as future applications leverage multi-core architectures.

6.3 Applications to software engineering

There are an infinite number of possible implementations for any functional

program specification, and Table 1 can be interpreted as illustrating how easy it is to

find such multiple equivalent implementations. These results also suggest that

programs have a significant amount of unidentified and unexploited redundancy.

One practical implication of large traversable neutral landscapes would be to search

the neutral landscapes for regions that optimize non-functional properties such as

program size (as demonstrated in Fig. 5b), memory requirements, runtime, power

consumption, or any other non-functional software features. This may explain the

success of previous work optimizing graphics shader software [78].

The large neutral landscapes revealed by our study may also explain the success

of evolutionary methods, such as GP, on the task of automated program repair [92].

Although this parallel with evolutionary biology is intriguing (Sect. 2.1), we do not

yet have definitive evidence that quantifies the role of mutational robustness in

automated program repair, a topic that we leave for future work. We suspect that

other methods of automated repair (e.g., [16, 36, 66, 92, 93]) may ultimately be

understood in the context of software mutational robustness and evolvability.

In addition to the proactive diversity application described in Sect. 5, it might be

feasible to incorporate other machine learning methods into software development

and maintenance processes; such methods typically work poorly on brittle system

and require some degree of robustness while they search for improved solutions.

Our results constitute a fundamentally different interpretation of software

mutants than that of the mutation testing community. We do not view software

mutants as faulty or neutral mutants as an indicator of an insufficient test suite.

Instead we view software mutants as natural and neutral mutants as alternate

implementations of software specifications which admit many non-equivalent

implementations. The quick-sort example discussed in Sect. 1 demonstrates that

simple mutations can yield different fully correct implementations. Yin et al. [97,

p. 61] provide another example in which a fully-formally verified implementation of

AES encryption is changed based on what was ‘‘purely an implementation decision,

[where] the specification did not impose any restrictions,’’ yielding another formally

verified implementation.
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Such alternate implementations, which may have distinct runtime properties but

still conform to the program specification, are neutral, but are not equivalent in the

sense used by the mutation testing community. The authors have performed a

thorough review of the mutation testing literature to compare our empirical findings

of software mutational robustness to typical frequencies of equivalent mutants in the

mutation testing paradigm. The mutation testing community does identify

equivalent mutants as one of the fundamental problems in mutation testing (cf.

[35, Section II.C]). Although this problem is well known, we were unable to find

formal publications that experimentally identify the fraction of equivalent mutants

(aside from work explicitly targeting Object-Oriented mutation operators which

generate particularly high rates of equivalent mutants [62, 71, 75]).

Through our own review of the mutation testing literature we collected

unreported counts of equivalent mutants from a number of papers [17, 24, 59,

61] that all used the Mothra [44] mutation operators and that found equivalent

mutant rates of 9.92, 6.75, 6.24 and 6.17 % respectively. Although these works used

different mutation operators than those described in Sect. 3.2, the percentages of

equivalent mutants found are smaller than the percentage of neutral mutants which

we report, and are thus consistent with our results because equivalent mutants are a

strict subset of neutral mutants.

Our re-interpretation of software mutants opens the possibility of re-purposing

the many tools developed by the mutation testing community. For example, runtime

optimization techniques such as mutant scheme generation [83] enable the

compilation of ‘‘super mutants’’ capable of executing all first-order mutants of a

program. Such a system could potentially be applied to efficiently deploy and run

populations of diverse software variants as described in Sect. 5 on end user systems.

Techniques for the automatically identifying fully equivalent mutants [59, 60] could

be used to differentiate between those neutral mutants that are identical to the

original program and those that encode a distinct implementation. These are just two

examples of how the extensive toolbox of mutation testing could be re-purposed to

leverage the view of software mutants as neutral.

6.4 Comparison to biological mutational robustness

Beyond the significance for computation, we believe that our results are relevant to

biologists. We considered the effect of repeated neutral mutations in a single

program, showing that robustness can increase systematically through population

exploration of the neutral landscape; a property shared with biological systems [89].

We also showed that it is possible to generate programs that are many mutational

steps removed from the original while retaining functionality (i.e., without leaving

the neutral plateau). These large extended neutral landscapes are thought to be

essential to the ability of biological systems to improve through natural selection

[74, 84] but difficult to measure experimentally. Our software analogs may

eventually provide a useful experimental framework for testing hypotheses about

the role of neutrality in biological evolution.

Currently, it is difficult to draw conclusions from a quantitative comparison of

the 36.8 % mutational robustness found in software to typical levels of mutational
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robustness in biological systems (e.g, 30 % mutational robustness in hominids [19],

or the almost 40 % neutrality of gene knockouts (deletions) in yeast [79]). There are

many drivers of mutational robustness in biological systems; environmental stability

influences levels of robustness [55], the centrality of a gene may influence its

mutational robustness [38], evolution may either select for mutational robustness

[84] or it may be more effective in organisms that are mutationally robust [13].

There are analogs to each of these factors in software systems, which future work

may relate to the levels of mutational robustness found in software.

Mutational robustness has many correlates in biological systems. These include a

correlation between environmental and mutational robustness [45, 52, 84] and a

correlation between mutational robustness and evolvability [89]. The presence of

analogous correlations in software systems is an intriguing possibility that could be

investigated empirically. Such an investigation could indicate whether these

relations are general across complex mutationally robust systems or are specific to

biological systems. If such correlations do exist in software, they could lead to new

applications, such as methods of automated hardening which automatically increase

environmental robustness through increasing mutational robustness (as in Sect. 4.5).

We may use the ratio between genome size and gene number as a proxy for the

relative mutational robustness of biological organisms, although this would

certainly be a lower bound. However this ratio varies widely from 97:47 % in

prokaryotes and viruses, to 87:1 % in eukaryotes. We note that those portions of

software that are executed by the test suite (e.g., where we limit our mutation

operations) could be compared to those portions of the genome that code for genes.

In both cases we can be sure that those portions have a phenotypic effect, and in

both cases we can’t say for sure that the uncovered or non-coding portions have no

effect. Such portions may either regulate expression or affect compilation

respectively. Direct software analogs of non-coding regulatory DNA could include

type annotations or pragmas.

Similarly, some of the causes of large genomes in biological organisms have

immediate analogs in the would of software development. Gene duplication is

thought to be a significant contributor to the growth in genome size. The analogous

practice of copy-paste programming is a wide spread and common software

development technique [37, 39, 41, 49].

Ultimately software may stand with biological organisms as a second example of

an evolved system. Albeit one in which humans engineers are the mechanisms of

both mutation and selection [1].

7 Conclusion

The previous sections described experimental results, using three simple mutation

operators, which show that software is surprisingly robust to random mutations. For

the programs we tested, 37 % of the mutations had no effect on software

functionality, as measured by the programs test suites. Software mutational

robustness, or neutrality, is observed even in programs that are is completely correct

according to their specifications. Just as neutrality is believed to enhance
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evolvability in naturally evolving populations, so may software neutrality enable

and explain the evolvability of software, either through automated means (e.g., [92])

or by humans.

Software robustness is potentially useful for enhancing the resilience of software

systems. We demonstrate this idea by describing a method that increases software

diversity, automatically generating software variants that are immune to as yet

undiscovered bugs. The insights into software described here suggest several

opportunities for the Software Engineering community, including the following:

Creating system diversity, for example, to protect against security exploits;

incorporating machine learning methods into software development and mainte-

nance; improving program performance; or developing error-tolerant computations.

We postulate that the presence of mutational robustness in software is not an

effect of intentional design, but is rather an effect of software’s provenance through

natural selection—even though the agents of selection, mutation and reproduction

are human engineers. In this way, mutational robustness can be viewed as a property

arising through inadvertent selection in both natural and engineered systems.

Further study of software as an evolved system may yield new insights into those

aspects of evolution that are specific to biological systems and those which are

general across other complex evolved, and even engineered, systems. Because

software is fundamentally easier to instrument and observe than naturally occurring

populations, studying software robustness may lead in the future to an increased

understanding of the role of neutrality in natural evolution.
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