
30

DIG: A Dynamic Invariant Generator for Polynomial
and Array Invariants

THANHVU NGUYEN and DEEPAK KAPUR, University of New Mexico
WESTLEY WEIMER, University of Virginia
STEPHANIE FORREST, University of New Mexico

This article describes and evaluates DIG, a dynamic invariant generator that infers invariants from observed
program traces, focusing on numerical and array variables. For numerical invariants, DIG supports both
nonlinear equalities and inequalities of arbitrary degree defined over numerical program variables. For array
invariants, DIG generates nested relations among multidimensional array variables. These properties are
nontrivial and challenging for current static and dynamic invariant analysis methods. The key difference
between DIG and existing dynamic methods is its generative technique, which infers invariants directly
from traces, instead of using traces to filter out predefined templates. To generate accurate invariants, DIG
employs ideas and tools from the mathematical and formal methods domains, including equation solving,
polyhedra construction, and theorem proving; for example, DIG represents and reasons about polynomial
invariants using geometric shapes. Experimental results on 27 mathematical algorithms and an implemen-
tation of AES encryption provide evidence that DIG is effective at generating invariants for these programs.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Vali-
dation; F.3.1 [Logics and Meanings of Programs]: Specifying, Verifying and Reasoning about Programs—
Invariants

General Terms: Algorithms, Experimentation, Verification, Theory

Additional Key Words and Phrases: Program analysis, dynamic analysis, invariant generation, nonlinear
invariants, array invariants, geometric invariant inference, theorem proving

ACM Reference Format:
Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A dynamic invariant
generator for polynomial and array invariants. ACM Trans. Softw. Eng. Methodol. 23, 4, Article 30 (August
2014), 30 pages.
DOI: http://dx.doi.org/10.1145/2556782

1. INTRODUCTION
Program invariants are asserted properties, such as relations among variables, at
certain locations in a program. By encoding program semantics as logical formulas, in-
variants allow for program verification using knowledge from mathematical logic, for
example, to prove that a program meets required specifications or is free of certain types
of errors. Invariants are also useful in other phases of programming, including docu-
mentation, design, coding, testing, debugging, optimization, and maintenance [Ernst
2000]. Thus, the study of invariants is a cornerstone of program analysis [Karr 1976;
Jones et al. 1993; Ernst et al. 2007] and has been a major research area since the

This work was partially supported by the AFOSR (FA9550-07-1-0532, FA9550-10-1-0277), DARPA (P-1070-
113237), DOE (DE-AC02-05CH11231), NSF (SHF-0905236, CCF-0709097, CNS-0905222) and the Santa Fe
Institute.
Authors’ addresses: T. Nguyen (corresponding author), D. Kapur, and S. Forrest, Computer Science De-
partment, University of New Mexico; W. Weimer, Computer Science Department, University of Virginia;
corresponding author’s email: nguyenthanhvuh@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c⃝ 2014 ACM 1049-331X/2014/08-ART30 $15.00

DOI: http://dx.doi.org/10.1145/2556782

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:2 T. Nguyen et al.

1970s [Wegbreit 1974; German and Wegbreit 1975; Katz and Manna 1976; Karr 1976;
Suzuki and Ishihata 1977; Dershowitz and Manna 1978].

Invariants can be identified from programs using static or dynamic analysis. Static
analysis discovers invariants by inspecting program code directly, and thus often has
the advantage of providing sound results that are valid for any program input. The
requirement that invariants be sound leads to expensive computations arising from
the difficulty of analyzing complex program structures. In contrast, dynamic analysis
infers invariants from traces gathered from program executions over a sample of test
cases. The accuracy of the inferred invariant thus depends on the quality and complete-
ness of the test cases. However, dynamic analysis is generally efficient and scales well
to complex programs because it focuses on traces, rather than program structures. For
these reasons, dynamic methods have received considerable attention in practice. Re-
cently, for example, dynamically inferred invariants have been used to prevent security
attacks in Mozilla Firefox [Perkins et al. 2009].

A dynamic invariant detector is typically initialized with a predefined collection of in-
variant templates postulated to be useful and likely to occur in programs. The detector
filters out invalid templates based on observed program traces and returns the remain-
ders as candidate invariants. Such an approach of checking and filtering is efficient,
but it cannot find invariants that are inexpressible under the predefined templates.
This article is concerned with two such examples: relations over general polynomials
of numerical and array variables. Polynomials are fundamental to many scientific and
engineering applications. Nonlinear polynomials, for example, are especially useful
for the analysis of hybrid systems [Roozbehani et al. 2005; Sankaranarayanan et al.
2005]. ASTRÉE [Cousot et al. 2005a; Blanchet et al. 2003], a successful static analyzer
used to verify the absence of runtime errors in Airbus avionic systems, implements a
static analysis involving the ellipsoid abstract domain to represent and reason about
a class of quadratic inequality invariants.1 Arrays are a widely used data structure
that is essential to the success of many programs. Fixed-size arrays are also present in
many systems programs, and proper reasoning is often critical for security (e.g., buffer
overruns) and performance (e.g., for bounds check elimination [Bodı́k et al. 2000]). The
major impediment for finding these invariants dynamically is the prohibitively large
number of possible templates, for example, each relation involving polynomials of dif-
ferent degrees or different numbers of variables would require a separate template.
For example, Daikon [Ernst 2000; Ernst et al. 2007], the pioneer of dynamic invariant
analysis, detects only linear relations over at most three variables and has limited
support for array relations.

This article describes and evaluates DIG, a dynamic invariant generator that finds
polynomial and array relations over program execution traces. DIG uses parameterized
templates and computes the unknown coefficients in the templates directly from traces.
Consequently, the resulting invariants represented by the instantiated templates are
precise over the input traces. DIG also creates terms to represent information about
variables such as nonlinear polynomials over numerical variables. These techniques
allow us to discover invariants that are more expressive than those considered by
current dynamic methods.

DIG takes as input a set of traces consisting of values from numerical (reals and
integers) or array variables captured at any program points, including entrance/exit
points of functions or heads of loops. Depending on the invariants of interest, different
techniques are used to generate invariants over the input traces. We view polynomial

1The ellipsoid domain for this case is expressed by the quadratic form x2 + axy + y2 ≥ k, where 0 < b < 1
and a2 < 4b [Feret 2004].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:3

equations and inequalities over variables as geometric shapes in multidimensional
space: trace data as points, equations as hyperplanes, and conjunctions of inequalities
as convex polyhedra. Thus, we can exploit well-known concepts and efficient algorithms
from algebra and geometry to compute these properties accurately.

DIG also generates flat (non-nested) and nested array relations among multidimen-
sional array variables (and functions that can be viewed as arrays). To find linear
equations among flat arrays, we first find equalities among array elements and then
identify the relations among array indices from the obtained equalities. We also find
nested array relations by performing reachability analysis. Real-world programs often
use large arrays, thus we employ automatic theorem proving technologies to reason
about large arrays more efficiently.

The main contributions of this article are as follows.

—DIG, a dynamic invariant generator that automatically discovers polynomial and
array invariants from program execution traces. We integrate concepts and tools
from mathematical fields such as linear algebra, geometry, and formal methods to
improve dynamic analysis. This is the first work to demonstrate the use of dynamic
analysis to generate nontrivial program invariants such as nonlinear polynomial and
nested array relations.

—A mapping from the task of inferring polynomial invariants to that of generating
geometric shapes over points created from input traces. DIG represents equality and
inequality constraints among multiple variables as hyperplanes and polyhedra. Poly-
hedra in high dimensions are expensive to compute, thus we also consider simpler
geometric shapes, such as octagons, which are more tractable because they encode
less expressive constraints. When additional inputs from the user are available, we
can also deduce new inequalities from previously obtained equality relations.

—The use of equation solving and automatic theorem proving to dynamically infer
relations among array variables of multiple dimensions and functions of multiple
arguments. In particular, we encode the problem of finding nested array relations
as a satisfiability formula that can be efficiently solved by a satisfiability modulo
theories (SMT) solver.

—An empirical evaluation of DIG on a set of 27 programs that have documented invari-
ants2 involving nonlinear polynomials. We also evaluated DIG on an implementation
of AES encryption that contains documented invariants involving array relations.
The tool successfully discovers all documented invariants of the considered polyno-
mial and array forms.

A preliminary version of some of these points was published in Nguyen et al. [2012].
This article extends those results to include the following.

—Geometric Invariant Inference. By interpreting polynomial relations as geometric
shapes, we take advantage of proven concepts and existing algorithms in linear
algebra and geometry to reason about these invariants efficiently. Using geometric
reasoning, we prove an underapproximation property of polynomial invariants that
is guaranteed in DIG, but not in other template-based analyses.

—New Forms of Invariants. We extend our earlier work to include octagonal inequali-
ties, a special form of constraint that is useful in array bound checks. The technique
for flat array relations has been extended to identify relations over certain subsets
of array elements, that is, a form of conditional invariants. A modified version of

2Documented invariants refer to information found in the program documentations or source-code comments
describing the program behaviors.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:4 T. Nguyen et al.

Fig. 1. An extended GCD algorithm and its traces at location L on inputs (a = 9, b = 5) and (a = 182, b =
255). From such traces, DIG generates three nonlinear invariants x = ai + bj, y = ak + bm, 1 = im− jk.

reachability analysis for generating nested array relations with polynomial runtime
complexity is also provided.

—Formal Analysis. We describe the time complexity of all presented algorithms. In
particular, we show that the problem of generating nested array relations belongs to
the polynomial class of complexity by presenting a polynomial-time algorithm for it.

The rest of this article is organized as follow: Section 2 provides a motivating example
and an overview of DIG. Sections 3 and 4 describe our algorithms for generating poly-
nomial and array invariants in detail. Section 5 analyzes the complexity of the given
algorithms and shows interesting properties of the generated invariants. Section 6
reports experimental results. Section 7 surveys related work. Section 8 concludes.

2. MOTIVATING EXAMPLE
We use an example program to highlight the important insights underlying DIG and to
motivate key design decisions. Figure 1 shows an implementation of egcd, an extended
GCD algorithm in number theory that takes as input a pair of integers (a, b) and
returns x = gcd(a, b) and two integers i, j satisfying the Bézout identity x = ai + bj.
The main computation of egcd consists of a while loop on lines 4–12, whose semantics
is captured by its loop invariant at location L. The table in Figure 1 consists of several
sets of trace values from the eight variables {a, b, x, y, i, j, k, m} in scope at L for the
two inputs (a = 9, b = 5) and (a = 182, b = 255).

From such traces, DIG identifies three nonlinear relations x = ai + bj, y = ak + bm,
1 = im − jk at location L. The first two are documented invariants for egcd, which
assert the computation and preservation of the Bézout identity in the loop. The third
relation is a valid but undocumented invariant, revealing a potentially useful detail:
the product im is exactly 1 more than the product jk whenever the program reaches
location L.

At a high level, DIG treats numerical trace data as points in Euclidean space and
computes geometric shapes enclosing these points. For example, the trace values of
the two variables v1, v2 are points in the (v1, v2)-plane. DIG then determines if these
points lie on a line, represented by a linear equation of the form c0 + c1v1 + c2v2 = 0.
If such a line does not exist, DIG builds a bounded convex polygon from these points.
The edges of the polygon are represented by linear inequalities of the form c0 + c1v1 +
c2v2 ≥ 0. This technique generalizes to equations and inequalities among multiple
variables by constructing hyperplanes and polyhedra in a high-dimensional space. To
generate nonlinear constraints, DIG uses terms to represent nonlinear polynomials
over program variables, for example, t1 = v1, t2 = v1v2. This allows DIG to generate

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:5

Fig. 2. An overview of DIG. The generator finds different types of invariants from input traces. The post-
processing step removes redundant and spurious invariants.

equations such as t1 + t2 = 1, which represents a line over t1, t2 and a hyperbola over
v1, v2.

DIG builds geometric shapes in high dimensions that are represented by nonlin-
ear constraints over multiple variables or terms. However, constructing such complex
shapes from many points is expensive. Thus, DIG also supports constraints repre-
senting simpler geometric shapes such as octagons. Octagonal inequalities are less
expressive than general inequalities, but they are useful for detecting bugs such as
array bounds errors and memory leaks. The modular design of DIG allows for easy
extensions to other geometric shapes for other specific forms of invariants.

Returning to the egcd example, terms are generated to represent monomials up to
a certain degree over the variables {a, b, x, y, i, j, k, m}. An equation template of the
form c1t1 + · · · + cntn = 0 is created from the terms ti. We use the traces in Figure 1
to instantiate the template, obtaining a set of equations, which we then solve for the
unknowns ci using a standard equation solver. This allows DIG to identify the three
equations x = ia + jb, y = ka + mb, 1 = im− jk at location L from the execution traces
of egcd. These nonlinear invariants cannot be discovered by current dynamic analysis
tools and are also challenging for methods based on static analysis.

We explore these ideas and describe concrete implementation details in the next
sections.

2.1. Overview of DIG
Figure 2 gives an overview of the DIG framework that generates invariants from input
traces consisting of values from numerical or array variables.3 First, terms are created
to represent variables whose values are captured in the traces. Depending on the type
of the variables from input traces, DIG next generates polynomial relations or array
relations over terms. Finally, the post-processing step removes redundant and spurious
invariants4 and reports the remaining invariants as its output. Optionally, the user can
modify the parameters of DIG for better performance or specify additional information
to aid the invariant generation process, for example, loop conditions as described in
Section 3.2.1.

2.2. Terms
We use terms to represent nonlinear properties over program variables and other
information of interest. From a set V of variables and a degree d, a set T of terms

3Currently we do not support variables from dynamic data structures that may have values in some execu-
tions and may not exist in other executions.
4Spurious invariants refer to candidate relations that hold over the observed traces at a program location,
but they might not hold over all possible traces at that location.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:6 T. Nguyen et al.

is created to represent monomials up to degree d from V. For instance, the set T of
ten terms {1, x, y, i, xy, xi, yi, x2, y2, i2} contains all monomials up to degree 2 over the
variables {x, y, i}. Nonlinear relations over program variables can now be specified as
linear relations over terms, which allows us to generate nonlinear invariants from
existing techniques for linear constraint solving.

In addition to monomials, the user can manually define terms to capture other desir-
able properties, for example, t1 = x

y , t2 = xi, t3 = mod(x, 256). This idea is related to the
concept of derived variables used in Daikon to express additional information [Perkins
and Ernst 2004]. Users can also query DIG for relations among a specific set of terms,
for example, only inequalities among {x, y, i2}. These customizations allow DIG to
identify specific relations among potentially interesting terms and reduce the overall
complexity of the process.

2.3. Post Processing
DIG uses two techniques, pruning and filtering, to help remove redundant and spu-
rious invariants. We note that existing strategies from other approaches could also
be integrated with DIG-generated invariants. For example, if DIG’s algorithms were
incorporated into Daikon, then most of its optimization techniques [Perkins and Ernst
2004] could be applied directly to the resulting invariants. Recently, the work re-
ported in Sharma et al. [2013] has integrated ideas from DIG to infer sound equality
invariants.

Pruning. To reduce the number of candidate invariants, DIG removes any invariants
that are logical implications from other invariants. For instance, we suppress the
invariant x2 = y2 if another invariant x = y is also found, because the latter implies the
former. These redundant invariants arise because we treat each term as an independent
variable for the purpose of finding nonlinear polynomials. For example, if t1 = x, t2 =
y, t3 = x2, t4 = y2, then x = y implies x2 = y2; however, their corresponding term
relations, t1 = t2 and t3 = t4, have no direct relation. To verify an implication, we use
an SMT solver to show that the negation of that implication is unsatisfiable.

Filtering. DIG uses a subset of the input traces for invariant generation and the
remaining traces to check the resulting invariants. Because a program invariant holds
for any set of traces, it is likely that we can find that same invariant using a smaller
subset of the available traces. The candidate invariant, which is obtained using a subset
of traces and might not be true for all observed traces, is then verified against the
remaining traces and removed if it fails for any of these traces. This strategy improves
the runtime of DIG since it is more expensive to generate invariants, especially complex
ones like 1.2xy − 2.3yz + 3.4zw = 0, than to check that they hold over given traces.

Currently DIG randomly chooses traces for invariant generation and training. For
example, DIG selects a set of random traces whose size is 1.5 × the number of terms for
invariant generation and 1,000 random traces for filtering. In future work, we intend
to use machine-learning heuristics for more effective partitioning of traces for training
and learning purposes. We elaborate further the application of filtering for reducing
spurious inequality relations in Section 5.2.

3. POLYNOMIAL INVARIANTS
DIG takes as input the set V of variables that are in scope at location L, the associated
traces X, and a maximum degree d, and returns a set of possible polynomial relations
among the variables in V whose degree is at most d. The post-processing techniques in
Section 2.3 are applied to the obtained relations to suppress redundant relations and
to filter out spurious invariants.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:7

3.1. Equalities
DIG treats polynomial equalities as unbounded geometric shapes, for example, lines
and planes, to obtain equality invariants of the form

c1t1 + · · · + cntn = 0, (1)

where ci are real-valued and ti are terms.
Algorithm 1 outlines the four steps to generate equality invariants. First, genTerms

creates the set T of terms to represent monomials over the input variables V up to
degree d, as covered in Section 2.2. These terms are used by genTemplate to form the
equation template F in Eq. (1). Next, we instantiate each trace containing values of the
program variables by F to form an equation. Repeating this process of instantiating
equations from the traces X with genEqts gives a system of linear equations E =
{e1, . . . , e|X|}. We then solve E for ci using a standard equation solver in linear algebra.
The nontrivial solutions of E, if any, suggest relations among the terms in T .

ALGORITHM 1: Algorithm for Finding Polynomial Equations
input : set V of variables, set X of traces, max degree d
output: set S of polynomial relations of the form given in Eq. (1)
S ← ∅
T ← genTerms(V ,d)
F ← genTemplate(T)
E ← genEqts(F,X)
S ← solve(E)
return S

The nontrivial solutions of E for the unknowns ci are of the form ci = vi. The values
vi are free variables that range over the reals. The terms in the template F that have
zero-valued coefficients are not related, because the only way to satisfy equations in
E is by setting the coefficients of these terms to zero. In contrast, terms that have
coefficients sharing some free variable v are related. To find relation among the terms
sharing the variable v, we fix v to a concrete value, for example, v = 1 and other v′ to 0,
and instantiate F with v = 1 and v′ = 0. This step is repeated for each shared variable
v to get relations among terms sharing v.

Example. We demonstrate these steps by deriving the nonlinear equalities x = ai +
bj, y = ak+ bm, 1 = im− jk for egcd. For illustration, we focus on the case where d = 2,
in which the algorithm generates quadratic equations.

For the eight variables {a, b, x, y, i, j, k, m}, together with degree d = 2, the set T =
{1, a, . . . , m2} of monomials of degree ≤ 2 contains 45 terms. We use T to form the
template F : c1 + c2a + · · · + c45m2 = 0 with 45 unknown coefficients ci to be solved for.
F is instantiated with the elements in X to form the set E of equations. For example,
instantiating F with the values (a = 9, . . . , m = 1) from the first trace in Figure 1
gives the equation c1 + 9c2 + · · · + c45 = 0. Solving E for the unknowns ci results in the
nontrivial solution

c5 = v1, c16 = −v1, c24 = −v1,
c4 = v2, c14 = −v2, c22 = −v2,
c1 = v3, c39 = −v3, c41 = v3,
c2 = v4, c30 = −v4, c33 = v4,
c3 = −v5, c29 = −v5, c32 = v5,

and all other ci = 0.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:8 T. Nguyen et al.

Fig. 3. (a) A set of points in 2D and its approximation using the (b) interval, (c) octagonal, and (d) polyhedral
regions.

To find the relation among the terms t5, t16, t24 whose coefficients c5, c16, c24 share
the value v1, we set v1 = 1 and v2 = v3 = v4 = v5 = 0 (since the terms t5, t16, t24
are not related by the values v2,3,4,5). The template F, when being instantiated with
(v1 = 1, v2 = v3 = v4 = v5 = 0), gives the relation t5 − t16 − t24 = 0. The terms t5, t16, t24
represent the monomials y, bm, ak, thus we obtain the relation y − bm− ak = 0.

After repeating this process for all shared variables, the following equations are
achieved:

t5 = y, t16 = bm, t24 = ak → y = bm+ ak,
t4 = x, t14 = ai, t22 = bj → x = ai + bj,
t1 = 1, t39 = im, t41 = jk → 1 = im− jk,
t2 = a, t30 = mx, t33 = jy → a = mx − jy,
t3 = b, t29 = kx, t32 = iy → b = −kx + iy.

The first three equations are program invariants. The last two relations are redundant,
that is, they can be obtained from the first three relations through variable substitu-
tions. The post-processing step in Section 2.3 suppresses these redundant invariants
using theorem proving. The resulting set of equations for egcd after post processing is
{y = bm+ ak, x = ai + bj, 1 = im− jk}.

3.2. Inequalities
We interpret sets of inequalities among terms as geometric shapes over points created
from program traces. Figure 3 depicts several geometrical shapes corresponding
to the types of inequalities currently supported in DIG. For illustration purposes,
two-dimensional shapes are used to represent linear relations between two terms.
Figure 3(a) shows a set of trace points created from input traces. Figures 3(b), 3(c), 3(d)
approximate the area enclosing these points using the interval, octagonal, and poly-
hedral shapes that are represented by systems of constraints of the forms c1 ≤ v ≤ c2,
c1 ≤ ±v1 ± v2 ≤ c2, and c1v1 + · · · + cnvn ≤ 0, respectively. These constraints are sorted
by expressive power: polyhedral constraints can express octagonal constraints, which
can express interval constraints. This order is reversed in complexity: interval shapes
are cheaper to compute than octagons, which are cheaper to compute than polyhedra.

3.2.1. General (Polyhedral) Inequalities. DIG finds inequality invariants of the form

c1t1 + · · · + cntn ≥ 0, (2)

where ci are real-valued and ti are terms. These general inequalities also represent
octagonal inequalities (two terms with specific integral coefficients) and interval in-
equalities (single terms with unit coefficients).

Algorithm 2 outlines two techniques for finding general inequalities. The polyhe-
dral technique consists of three steps: using terms to represent program variables
(genTerms), instantiating points from terms using input traces (genPoints), creating a
convex polyhedron enclosing the points (createPolyhedron), and extracting its facets

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:9

Fig. 4. Cohen’s integer division algorithm and its traces on inputs (x = 15, y = 2) and (x = 4, y = 1).

ALGORITHM 2: Algorithm for Finding Polynomial Inequalities
input : set of variables V , set of traces X, max degree d
input : (optional) set of inequalities ieqs from additional information such as loop

conditions
output: set S of polynomial inequalities
S ← ∅
if ieqs = ∅ then

T ← genTerms(V ,d)
P ← genPoints(T ,X)
H ← createPolyhedron(P)
S ← extractFacets(H)

end
else

// if additional information is given
eqts ← genInvseqts(V ,X,d)
S ← deduceieqs(eqts,ieqs)

end
return S

to represent inequalities among terms (extractFacets). When additional information
is available, the alternative technique combines the discovered equations (genInvseqts)
with the given information to deduce new inequalities (deduceieqs). Both techniques
give sound relations with respect to input traces; however the deduction method, with
the help of additional information, runs much faster.

We demonstrate these methods using the cohen program in Figure 4, which has a
nonlinear inequality invariant and other information that is useful for deduction. cohen
implements the integer division algorithm by Cohen [1990], which takes as input a
pair of integers (x, y) and returns the integer q as the quotient of x and y. We consider
invariants at location L, the head of the inner while loop. There are six variables
{a, b, q, r, x, y} in scope at L. The table in Figure 4 consists of several sets of values
representing traces obtained from the variables at L for inputs (x = 15, y = 2) and
(x = 4, y = 1).

The documented invariants b = ya, x = qy + r, r ≥ 2ya describe precisely the seman-
tics of the inner while loop in Cohen’s algorithm.5 The first two equations are obtained
using the technique described in Section 3.1. This section focuses on the third invariant

5The invariant x = qy + r asserts that the dividend x equals the divisor y times the quotient q plus the
remainder r.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:10 T. Nguyen et al.

that is an inequality of the form given in Eq. (2). For illustration, we again focus on the
case where d = 2, in which the algorithm generates quadratic inequalities.

Using Polyhedra. After the set T of terms is created, the traces X are used to gener-
ate points in |T |-dimensional Euclidean space, and the convex hull of these points is
computed to represent a polyhedron H. The bounded convex polyhedron H can also be
described by a system of linear inequalities of the form given in Eq. (2). This is called
the half-space representation of a polyhedron. The facets of H, corresponding to the
solutions of the system of linear equalities, represent the inequalities among the terms
in T . Figure 3(d) depicts a 2D polyhedron (polygon) that has five facets.

The complexity of building H in |T | dimensions is exponential in |T |, as discussed
in Section 5.1. The set T generated from the six variables in cohen with degree 2 has
28 terms. Building a convex polyhedron in 28 dimensions is not computationally
feasible, so DIG uses several heuristics to identify possible inequality relations.

We first observe that a program invariant often involves just a small subset of
all possible program variables. For example, the invariant b − ay = 0 involves only
{a, b, y} even though all six variables in scope were considered. We experimented with
several heuristics based on this observation, such as iteratively searching for invariants
involving all possible combinations of a small, fixed number of variables. The ability to
determine which variables are important improves performance greatly and is further
discussed in Section 6.3.

Example. DIG first generates possible inequality relations in which at most three
of the six program variables {a, b, q, r, x, y} appear. There are (6

3) = 20 combinations
that contain three variables, one of which is {r, y, a}. To find nonlinear inequalities,
terms of degree d are built on the variables under consideration. With d = 2, DIG
generates the set T = {1, r, y, a, ry, ra, ya, r2, y2, a2} of terms.

The elements of T are instantiated with the traces X to form a set P of points. For
instance, the first trace in Figure 4 gives the point [1, 15, 2, 1, 30, 15, 2, 225, 4, 1] in ten-
dimensional Euclidean space corresponding to the terms in T . The convex polyhedron
H is then constructed to enclose the points in P. One of the facets of H corresponds to
the documented invariant r −2ya ≥ 0. The inequalities represented by other facets are
also valid with respect to the input traces, although they might be spurious invariants.
Section 5.2 provides additional discussion on these spurious invariants.

Deduction From Loop Conditions. As previously shown, the polyhedral method for
general inequalities does not scale to large numbers of terms. Consequently, we devel-
oped an alternative technique using deduction to find inequalities of the form given in
Eq. (2) if some additional information is available. More specifically, if some inequal-
ities are asserted at location L, then DIG can use them together with the discovered
equalities from Section 3.1 to deduce new nontrivial inequalities. For instance, if the
location L is the head of a loop, then L can be reached if and only if the loop conditions
are met. Such loop conditions are an example of additional information, which can
be given as input from the user (or automatically mined from the source code as in
the cohen program) to facilitate the process of generating additional invariants. Deduc-
tion is related to the strategy of adding known facts or proved result as lemmas in
interactive theorem provers such as PVS [Owre et al. 1992].

Example. We demonstrate how deduction is applied to cohen. First, the set of equa-
tions {b − ay = 0, qy + r − x = 0} representing possible invariants at location L is
obtained, as described in Section 3.1. The head of the inner loop at location L is reached
only when the condition of that loop r ≥ 2b is met, thus r − 2b ≥ 0 is also an invariant
at L. New and nontrivial inequalities can be deduced from this additional informa-
tion using deduction, term rewriting, and substitution. In the current implementation,

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:11

we pair inequalities from the loop conditions with the obtained equations to deduce
new inequalities. For the running example, r − 2ay ≥ 0 is deduced from the pair
(r − 2b ≥ 0, b− ay = 0), and x − qy − 2b ≥ 0 is deduced from (r − 2b ≥ 0, qy + r − x = 0).
Hence, deduction finds the inequalities r −2ya ≥ 0, x−qy−2b ≥ 0 among the variables
{a, b, q, r, x, y}, both of which are program invariants at location L in cohen.

Deduction could theoretically produce many results by combining discovered equali-
ties and loop conditions. However, the technique is efficient in our experiments because
the number of loop conditions and generated equality invariants is few (one or two
guards at most loops and less than four equalities at a particular program location).
Moreover, although we could just use the obtained equalities and loop conditions, these
relations might be opaque to the human user, but the deduced ones are easier to un-
derstand (e.g., match the program descriptions). Our experiments in Section 6.2 shows
that deduction allows for effective inequality invariant discovery that otherwise would
require the more expensive polyhedral method or would not be possible in the case of
incomplete traces.

3.2.2. Octagonal Inequalities. DIG builds an octagon—a polygon with eight edges—
depicted in Figure 3(c), to obtain constraints of the form

c1t1 + c2t2 ≥ k, (3)

where t1, t2 are terms, c1, c2 ∈ {−1, 0, 1} are coefficients, and k is real-valued.
To obtain the half-space representation of an octagon enclosing the points

{(x1, y1), . . . , (xn, yn)}, we compute

u1 = max(xi), l1 = min(xi),
u2 = max(yi), l2 = min(yi),

u3 = max(xi − yi), l3 = min(xi − yi),
u4 = max(xi + yi), l4 = min(xi + yi)

and form the system of linear constraints {u1 ≥ x ≥ l1, u2 ≥ y ≥ l2, u3 ≥ x − y ≥ l3, u4 ≥
x + y ≥ l4}. The algorithm to find octagonal invariants from inputs X, V, d is similar
to the one listed in Figure 2, where the createPolyhedron function computes candidate
octagonal invariants for each pair of terms in T . The post-processing techniques from
Section 2.3 also apply to the obtained invariants.

Like polyhedral constraints, octagonal constraints can also represent interval con-
straints, for example, u1 ≥ x ≥ l1, u2 ≥ y ≥ l2, as illustrated in Figure 3(a). However,
octagonal constraints are less expressive than general constraints due to the restric-
tion to two terms with specific integral coefficients. For instance, octagonal constraints
cannot represent the inequality t1 ≤ 2t2, where t1 = r, t2 = ya, in the cohen program
due to the coefficient 2. However, if 2ya is represented by a term, then the inequality
r − 2ay ≥ 0 can be generated with octagonal constraints. Octagons can be computed
efficiently, and their constraints are useful for detecting bugs in flight-control software,
performing array bounds and memory leaks checks [Cousot et al. 2005b; Miné 2004].

Example. Consider the following code fragment flatten often seen in C programs
that puts the contents of a two-dimensional array A[M][N] into a one-dimensional
array B[MN].

for (i = 0; i < M; ++i){
for (j = 0; j < N; ++j){

k = i * n + j;
[L]
B[k] = A[i][j];

}
}

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:12 T. Nguyen et al.

The nonlinear relation 0 ≤ k ≤ MN − 1 at location L is essential for the safety of
flatten and is identified by DIG using octagonal constraints with terms representing
quadratic polynomials over variables. The array relation A[i][j] = B[iN + j], which as-
serts the correctness of flatten, is also generated by DIG using the technique described
in the next section.

4. ARRAY INVARIANTS
DIG takes as input the set V of (possibly multidimensional) array variables that are in
scope at location L and the associated traces X, and returns a set of possible relations
among the elements of arrays in V . Currently, we do not consider nonlinear array
relations (e.g., A[i]2 = B[i]2 + C[i]2) and therefore do not use terms to represent array
variables. The filtering technique given in Section 2.3 also applies to the obtained
relations to help deal with spurious invariants.6

4.1. Flat Array Relations
DIG finds flat (non-nested) relations among array elements of the form

A = b1 B1 + · · · + bnBn + c, (4)

where A, Bi are distinct (possibly multidimensional) arrays whose elements are
real-valued. The array A, called the pivot array, is privileged in our approach because
the indices of arrays Bi and the coefficients bi, c are hypothesized as linear expressions
ranging over the indices of A. The invariant A[i][j] = B[iN + j] (N is a constant) intro-
duced at the end of Section 3.2.2 is an example of flat array relation. DIG also supports
more complex relations of this form (e.g., A[i][j] = 1

2 jB[2i + j] − (j + 1)C[7i][3] + 5).

ALGORITHM 3: Algorithm for Finding Flat Array Relations
input : set V of array variables, set X of traces
output: set S of array relations of the form given in Eq. (4)
S ← ∅
// obtain linear relations among array elements
V ′ ← genNewVars (V)
eqts ← genInvseqts(V ′,X,d = 1)
Rs ← group(eqts)
if Rs ̸= ∅ then

foreach R ∈ Rs do
pivot ← genPivot (R)
exps ← genLinExps (pivot)
s ← solve(exps,R)
S ← S + {s}

end
end
return S

Algorithm 3 for finding flat array relations consists of two steps: (i) identifying groups
of relations among individual array elements such as {A[1] = B[0] + 2, A[4] = 3B[7]−4}
and {C[0] = D[1], C[1] = D[2], C[2] = D[3], . . . } and (ii) analyzing these information
for potential flat array relations like C[i] = D[i + 1] in the second group. To identify
relations among array elements, we create new variables (genNewVars) to represent
array elements, find equality relations among these array elements (genInvsEqts), and

6The pruning technique in Section 2.3 is unnecessary because polynomial terms are not used to find array
relations.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:13

group the obtained relations (group). To analyze the obtained groups for flat array rela-
tions, we represent the relations among the indices of a selected pivot array (genPivot)
and other arrays as a parameterized linear expression (genLinExps), instantiate this
expression with information from the obtained group of equalities, and solve these
equations (solve).

For simplicity, the following explains the algorithm for two one-dimensional arrays,
that is, V = {A, B}, although the method generalizes to multidimensional arrays.

Relations among Array Elements. We first generate a set V ′ of new variables repre-
senting elements of the arrays in V . Next, the technique from Section 3.1 is used to
identify linear equalities of the form given in Eq. (1) over the variables in V ′ from the
input traces X. The obtained equations represent relations among array elements (e.g.,
A4 = 3B7 − 4), where the variables A4, B7, represent the array elements A[4], B[7], re-
spectively. Currently, we do not find relations among similar arrays (e.g., A[i] = A[2i]),
and thus keep only equations that express relations among array elements of different
arrays. These relations are then grouped so that each group contains relations among
elements from a same set of arrays. For example, {A1 = B0 + 2, A4 = 3B7 − 4} and
{C0 = D1, C1 = D2, C2 = D3} are two different groups.

Relations among Array Indices. From each obtained group, we consider only the set
R of relations of the form

Ai0 = b0 Bj0 + c0,

Ai1 = b1 Bj1 + c1,

...

where bx, cx are real-valued and Aix , Bjx are the variables in V ′ representing A[ix], B[jx],
respectively.

In such a set R, we select A as the pivot array and hypothesize that the coefficients
bx, cx and the indices jx of array B are linear expressions ranging over the indices ix of
A. For instance, we represent the relation between jx and ix through the parameterized
linear expression jx = p1ix + q1, where p1 and q1 are unknowns to be solved for. This
expression is then instantiated with the information from R to obtain a system of
equations { j0 = p1i0 + q1, j1 = p1i1 + q1, . . . }. Any solution for p and q of these
equations implies a relation of the form A[ix] = (p0ix + q0)B[p1ix + q1] + (p2ix + q2),
where ix are the indices of A obtained from R.

The resulting relation ix ∈ {. . . } ⇒ r has a conditional form where the relation r
holds only for specific indices ix of A. Such invariants are useful and appear in many
programs, for example, in the following codefragment.

for (i=0; i < M; ++i){
if (i < 6){

A[i] = [B[4*i], B[4*i+1],
B[4*i+2], B[4*i+3]];

}
}
[L]

For this code fragment, DIG generates the invariant A[i][j] = B[4i + j] for i =
{0, . . . , 5} and j = {0, . . . , 3}, indicating a relation among certain elements of the arrays
A and B at location L.

Example. We illustrate the algorithm by finding the relation A[i] = 7B[2i] + 3i
between two arrays A, B, using traces X that exhibit the relation. An example trace in
X contains the values A = [−546,−641, 34] and B = [−78, 3,−92,−34, 4].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:14 T. Nguyen et al.

Eight variables are created to represent the elements of A and B. Based on the
given trace, the set R = {A0 = 7B0, A1 = 7B2 + 3, A2 = 7B4 + 6} of linear equations
is obtained using the technique in Section 3.1. From R, we choose A as the pivot and
extract the information ix = {0, 1, 2}. The relation between jx and ix is expressed as
jx = p1ix + q1. We instantiate jx = p1ix + q1 with the information from R and obtain
the set of equations {0 = 0p1 + q1, 2 = 1p1 + q1, 4 = 2p1 + q1}. The unique solution
{q1 = 0, p1 = 2} of these equations yields jx = 2ix, that is, A[ix] = bx B[2ix] + cx.
Similarly, we instantiate the analogous equations for bx and cx. After solving these, the
array relation ix = {0, 1, 2} ⇒ A[ix] = 7B[2ix] + 3ix is obtained.

Notice that all relations in R have 7 as the coefficient of Bi, thus we can divide
these equations by 7 to obtain R′ = {B0 = 1

7 A0, B2 = 1
7 A1 − 3

7 , B4 = 1
7 A2 − 6

7 }. From
R′, we select B as the pivot array and extract the information ix = {0, 2, 4}. Applying
the preceding process of creating and solving linear equations gives the relation ix =
{0, 2, 4} ⇒ B[ix] = 1

7 A[1
2 ix] − 3

14 ix. DIG can recognize such a scenario and thus is able
to generate both array relations.

4.2. Nested Array Relations
DIG finds nested array relations (relations among nested array structures) of the form

A = B, (5)

where the left-hand side is the pivot array A and the right-hand side is a nested array
expression consisting of an array B whose indices are nested array expressions or linear
expressions ranging over the indices of A. An example of this form is the nested relation
A[i][j] = B[i + 2][C[D[3 j]].

Algorithm 4 outlines the three steps to generate nested array relations. The first step
(genNestings) enumerating nestings representing hypothesized nested array struc-
tures such as A = B[C[. . .]], B = A[C[. . .]], The next step (reachAnalysis) applies
reachability analysis to identify relations among individual array elements according
to the hypothesized nesting such as A[0] = B[C[1]], A[1] = B[C[2]], A[2] = B[C[3]].
The last step analyzes these information for potential nested array relations like
A[i] = B[C[i + 1]] by encoding the problem as a satisfiability formula that can be
solved using an SMT solver (genFormula and SMT). The last two steps for finding rela-
tions among array elements and nested array structures are conceptually similar to

ALGORITHM 4: Algorithm for Finding Nested Array Relations
input : set V of array variables, set X of traces
output: set S of array relations of the form given in Eq. (5)
S ← ∅
nestings ← genNestings (V)
foreach nesting ∈ nestings do

R ← reachAnalysis(nesting,X)
if R ̸= ∅ then

f ← genFormula (R)
s ← SMT (f)
if s ̸= ∅ then

S ← S + {s}
end

end
end
return S

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:15

those of Section 4.1 for flat array relations, but relies on reachability analysis and SMT
solving instead of equation solving.

For simplicity, we illustrate these steps next using three one-dimensional arrays,
that is, V = {A, B, C}, although the algorithm generalizes to multidimensional arrays.

Nestings. We first enumerate nested structures among the arrays in V . A nested
array structure, or nesting, from a set V of arrays is a tuple (P, S), where P is an array
in V designated as the pivot and S is a nonempty and nonrepeating7 sequence of arrays
in V that does not contain the array P. For the input V = {A, B, C}, we generate the
nestings (A, [B]), (A, [C]), . . . , (C, [B, A]).

Reachability Analysis. A nesting (A, [B, C]) implies the relation A[i] = B[C[k]], where
elements of the pivot array Aare related to elements of Busing elements of C as indices
into B. For such a relation to hold, the elements of Amust be in B. Moreover, the indices
of B, where the elements of A appear in, must also be in C. Reachability analysis is our
method to determine how the elements of A are related to the elements of B using C
as indices into B.

The analysis could start by checking if all elements of Aare in B. However, this naı̈ve
approach has an exponential complexity when the elements of A occur multiple times
in B. Instead, reachability analysis can be done in polynomial time (Section 5.1) as
follows.

We arbitrarily choose two distinct elements A[x] ̸= A[y] from the pivot array A (the
reason for using two elements will be justified). For A[x], we find the indices jx in B,
where B[jx] = A[x]. For each of the obtained indices jx in B, we again find the indices kx
in C, where C[kx] = jx. We then form a set of relations of the form A[x] = B[C[kx]] from
these results, which indicate that the element A[x] is related to elements of B using
elements C[kx] as indices into B. Repeating this process for A[y], we obtain a set of
relations of the form A[y] = B[C[ky]]. Each set R from the cross product of the two sets
of relations consists of two equations of the form {A[x] = B[C[kx]], A[y] = B[C[ky]]}.

Note that the relation A[i] = B[C[k]] is determined invalid if any of the preceding
checks fails (e.g., A[x] is not in B or the obtained indices jx of B are in C). We can
further optimize this algorithm by starting with two distinct elements of A that occur
least often in B. However, such a greedy approach does not guarantee the smallest
number of relation sets generated at the end because the indices jx of B can occur
many times in C.

Relations among Array Indices. From a set R = {A[x] = B[C[kx], A[y] = B[C[ky]]} of
relations obtained from reachability analysis, we determine the relation between the
indices of A and C. This step is conceptually similar to that of Section 4.1 in which
the relation between the indices i, k of arrays A, C is represented by the parameterized
linear expression k = ip + q.

Instantiating k = pi + q with the information from R, we get a system of two
equations {kx = xq + q, ky = yp + q}. The solution for p, q of these equations gives a
relation of the form A[i] = B[C[pi + q]], for i = {x, y}. We now verify that this relation
also holds for other indices i of A (instead of just x, y). If it is verified, we return it as
the candidate invariant. Otherwise, we repeat this step on another set R of relations
to find a different nested array relation.

A relation of the form A[i] = B[C[k]] that holds for all indices i of A must also hold
for the two indices (x, y). Thus, we can find such a relation, if it exists, by trying all
possible sets R of relations generated by reachability analysis on the two elements

7The nonrepeating constraint is used to enforce finite depth in the sequence.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:16 T. Nguyen et al.

Fig. 5. Reachability analysis showing A[0] = B[C[1]] (dotted), A[1] = B[C[2]] ∨ B[C[3]] (solid), and A[2] =
B[C[5]] (dashed).

A[x], A[y]. Moreover, it is sufficient to apply the analysis on two distinct8, instead of all,
elements of the one-dimensional A is because only two independent equations of the
form k = ip + q are needed to solve for the two unknowns p, q. In generally, we apply
reachability analysis on a tuple of d+1 elements of a d-dimensional array Abecause the
relation among the indices of A and C is represented by a linear expression consisting
of d + 1 unknowns p1, . . . , pd, q.

Example. We demonstrate the algorithm by finding the relation A[i] = B[C[2i +
1]] from the trace A = [7, 1,−3], B = [1,−3, 5, 1, 0, 7, 1], and C = [8, 5, 6, 6, 2, 1, 4].
Figure 5 illustrates reachability analysis on the three elements of array A over the
nesting (A, [B, C]).

Among the nestings generated from the input V = {A, B, C}, those representing
relations such as B[i] = C[. . .] are ruled out immediately because the element −3 of
B is not in C. Note that the use of traces is essential here, as it allows us to quickly
filter out invalid nestings. For the nesting (A, [B, C]), we apply reachability analysis
on two arbitrarily chosen elements A[1] and A[2] of A. For A[1], the analysis generates
{A[1] = B[C[2]], A[1] = B[C[3]]} because A[1] = B[0], B[3], B[6] and 6 = C[2], C[3] (the
index values 0, 3 of B do not occur in C). For A[2], we obtain the set {A[2] = B[C[5]]}
because A[2] = B[1] and 1 = C[5]. The cross product of these two sets yields the sets
R1 = {A[1] = B[C[2]], A[2] = B[C[5]]} and R2 = {A[1] = B[C[3]], A[2] = B[C[5]]} of
relations.

The information from either set R1 or R2 suggests the possibility of a nested relation
A[i] = B[C[k]] for i = {1, 2} and k is the parameterized linear expression k = pi + q.
Instantiating k = pi + q with the information from R1 gives two equations {2 =
p + q, 5 = 2p + q}. The unique solution {p = 2, q = −1} for these equations yields the
relation A[i] = B[C[3i − 1]], where i = {1, 2}. This relation does not hold for all indices
of A (e.g., (A[0] ̸= B[C[−1]]), and is thus disregarded. Next, we instantiate k = pi + q
with the information from R2 and obtain the equations {3 = p + q, 5 = 2p + q}. The
unique solution {p = 2, q = 1} for these yields the relation A[i] = B[C[2i + 1]], for
i = {1, 2}. This relation holds for all indices of A and therefore is returned as the
candidate invariant.

8If all elements of A are the same (or A has only one element), we apply reachability analysis on A[0] and
obtain a set of equations of the form A[0] = B[C[k]]. Any of these equations is a candidate relation because
any relation that holds for A[0] also holds for other elements of A.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:17

Satisfiability Problem Formulation. In practice, arrays often have large sizes with
multiple duplicate elements, causing reachability analysis to generate many sets R of
relations to be solved for. Hence, we encode the results of reachability analysis as a
satisfiability formula in the theory of linear integer arithmetic, which can be solved
efficiently with modern SMT technologies [Dutertre and De Moura 2006].

Returning to the running example, we create a clause consisting of two atoms (2 =
p + q ∨ 3 = p + q) to represent the result {A[1] = B[C[2], A[1] = B[C[3]]} from
reachability analysis. Similarly, the atom 5 = 2p + q is created for {A[2] = B[C[5]]}.
Since the relation should hold for the two chosen elements of A, that is, A[i] = B[C[pi +
q]] for i = {1, 2}, we combine these formulas into the final CNF formula f = (2 =
p+ q ∨ 3 = p + q) ∧ (5 = 2p + q). Next, we query the SMT solver to return, if possible,
an assignment of integers (since array indices are integers) to the variables p and q
that satisfies f . In this example, the solver might assign p = 3, q = −1 for f , which
implies the relation A[i] = B[C[3i − 1]] for i = {1, 2}. This relation cannot be verified
because it does not hold for all indices of A (e.g., A[0] ̸= B[C[−1]]). We then add the
constraint ¬(p = 3 ∧ q = −1) to f and query the SMT solver for a new assignment for
p, q. The solver now assigns p = 2, q = 1, implying the relation A[i] = B[C[2i + 1]].
This relation is verified to hold for all indices of Aand thus is returned as the candidate
invariant.

We can avoid having to verify each relation by applying the analysis on all elements
of A. Doing so for the running example results in the CNF f = (1 = q) ∧ (2 = p + q∨3 =
p + q) ∧ (5 = 2p + q) (the atom 1 = q represents the relation A[0] = B[C[1]], as
illustrated in Figure 5). The solution {p = 2, q = 1}, returned by the SMT solver on
the formula f , implies the similar relation A[i] = B[C[2i + 1]] as before. Moreover,
this relation is valid for all elements of A because the analysis is applied on all of
those elements. Thus, we only need to invoke the solver once, but over a more complex
formula f (the number of clauses in f is the size of A).

The problem of finding nested array relations has a polynomial-time complexity (by
the algorithm and the analysis given in Section 5.1). However, our implementation in
DIG for nested array relations involves SMT technologies and hence does not guarantee
a polynomial runtime.9 The experimental results on finding nested arrays in Section 6
were obtained when applying reachability analysis on all elements of A.

4.3. Functions
Array invariants involving user-defined functions, for example, A[i] = f (C[i], g(D[i])),
require special treatment. We view a function f with n arguments as an n-
dimensional array F, where the element F[i1] . . . [in] contains the output of f (i1, . . . , in).
Thus, if f is the mult function, then F[4][7] = F[7][4] = 28. For efficiency, F
is represented as a partial array that stores only observed values. For example,
if A = [4, 7] and B = [5] are considered, then F contains just the elements
F[4][4], F[4][5], F[4][7], . . . , F[7][7]. Our approach extends to invariants involving
function composition, such as g(f (A[. . .], B[. . .])). For instance, if g is mod2 which maps
even and odd inputs to 0 and 1 respectively, then the corresponding array G has as its
indices the elements of A, B, F (e.g., G[4] = G[28] = 0, G[5] = G[7] = 1). Just like with
array nesting, we enforce finite depth in nested expressions by disallowing a function
to appear in the scope of one of its arguments, for example, g(f (g(. . .), f (. . .))) is not
allowed.

DIG predefines a set of basic functions such as mult,add,xor,mod,. . . and automatically
generates the corresponding partial arrays based on given traces, as previously. Once

9This depends on the technique implemented in SMT solvers for satisfiability checking over CNFs of the
discussed form.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:18 T. Nguyen et al.

Table I. Time Complexity of Invariant Generation Algorithms
in DIG

Invariant Type Form Complexity
Equality (1) O(|T |3)

Polynomial (general) inequality (2) O(|X|
|T |
2)

Octagonal inequality (3) O(|X||T |2)
Flat array relation (4) O(|E|3)
Nested array relation (5) O(|X||V |!|E|d|V |)

Note: For polynomial invariants, T represents the set of terms
and X the set of traces. For array invariants, V represents the
set of array variables, E the set of array elements, d the highest
array dimension among the arrays in V .

functions are included as arrays, DIG can then generate invariants involving functions,
such as the nested array relation R[i] = T (mod255(add(L(A[i]), L(B[i])))) in the multWord
function in AES.

5. ANALYSIS
We first give the computational complexity of DIG’s algorithms for generating different
forms of invariants. Next we show that the polyhedral method generates precise in-
equality invariants but can also give many spurious results if the program invariants
do not appear in the traces.

5.1. Complexity
Table I summarizes the time complexity of DIG’s algorithms for generating invariants
of different forms. The filtering technique in Section 2.3 takes O(|X||T |) to instantiate
and check a candidate invariant with |T | terms over |X| traces.

5.1.1. Polynomial Invariants. We analyze the complexity of the algorithms for generating
polynomial invariants in the number of traces |X| and terms |T |. Recall that terms are
used to represent polynomials over variables (Section 2.2). Given a set V of variables
and a degree d, the set T of terms representing monomials over V up to degree d
has size

�|V |+d
d

�
. The number of terms thus increases exponentially in the number of

variables and degrees.
For equalities of the form given in Eq. (1), a standard equation solver is used to

find equality invariants in Section 3.1. We use the traces in X to instantiate |T | inde-
pendent equations. The complexity of using Gaussian elimination to solve |T | linear
equations for |T | unknowns is O(|T |3) [Farebrother 1988]. Hence, generating invari-
ants representing equations among |T | terms takes O(|T |3), cubic in the number of
terms.

In practice, the number of traces often exceeds the number of terms, that is, |X| ≫ |T |,
which is desirable because the complexity depends on the smaller parameter |T |. The
current implementation of DIG uses a small random subset of the input traces to
generate equations among terms.

For general inequalities of the form given in Eq. (2), we build polyhedra in
Section 3.2.1 to obtain polyhedral (general) inequalities. Constructing a convex poly-
hedron over |X| points in |T | dimensions has a theoretical exponential upper bound
!(|X|⌊ |T |

2 ⌋) [de Berg et al. 1997]. Thus, the cost of generating polyhedral inequalities
is O(|X| |T |

2), exponential in the number of terms (because a term is essentially a new
variable representing a new dimension).

If one is interested only in inequalities among a fixed number c of terms over program
variables, then the heuristic described in Section 3.2.1 builds polyhedra for all term

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:19

combinations of size |c|. The complexity of such a heuristic is O(
�|T |

c

�
|X||c|), which is

polynomial in |X| and |T | because c is fixed.
For octagonal inequalities of the form given in Eq. (3) representing relations between

two terms, we instantiate each pair of terms with the traces in X to obtain the set of |X|
points in two dimensions and apply the min, max operations on these points as shown
in Section 3.2.2. These two operations run in linear time in |X|, thus identifying the
octagonal constraints for each pair of terms takes O(|X|). There are O(|T |2) such pairs
from the set of terms T , hence generating octagonal constraints for all pairs of terms
takes O(|X||T |2).

5.1.2. Array Invariants. The complexity of the algorithms for generating array invariants
is analyzed in terms of the number of traces |X|, array variables |V |, array elements
|E| consisting of elements from all arrays in A, and the highest dimension d among the
arrays.

The complexity of the algorithm to find flat array relations of the form given in
Eq. (4) is dominated by solving equations. As described in Section 4.1, we create |E|
new variables to represent array elements and use the equation solving technique in
Section 3.1 to find equalities among them. As previously analyzed, generating equali-
ties among these variables (terms) takes O(|E|3), the time of solving |E| equations for
|E| unknowns.

For nested array relations of the form given in Eq. (5), reachability analysis is applied
on the |V |! nestings enumerated among the arrays in V . For a nesting representing
the relation A[i] = B1[. . . [Bl[ip + q]] . . .], we apply the analysis on two arbitrarily
chosen elements A[ix], A[iy] of the one-dimensional array A. In the worst case, A[ix]
could occur O(|B1|) times at B1. Each index value of these O(|B1|) locations could again
occur O(|B2|) times at B2. Thus, the analysis generates O(|B1| · · · |Bl|) relations of the
form A[ix] = B1[. . . [Bl[ix p + q]] . . .] at Bl. This is O(|E||V |), because |Bi| < |E| and
l < |V |. Similarly, we obtain O(|E||V |) relations for A[iy]. The cross product of these
two sets results in O(|E|2|V |) sets of relations, each set has two equations and two
unknowns. More generally, we apply the analysis on d+ 1 elements of a d-dimensional
A and thus obtain O(|E|d|V |) sets of relations. Observe that we obtain O(|A||E||V |) sets
of relations if the analysis is applied on all elements of |A| and thus the algorithm
becomes exponential in the number of array elements (|A| = O(|E|)).

From each set of relations, a system of d + 1 equations is instantiated and solved for
the d+1 unknowns to find relations among array indices. Doing this for O(|E|d|v|) sets of
relations takes O(d3|E|d|v|), which becomes O(|E|d|v|+3) since |E| ≥ d. Finally, assuming
array indexing is O(1), the verification that a nested relation A[i] = B1[. . . [Bl[k]] . . .]
holds for all indices of A takes O(l|A|). To be comprehensive, we check the candidate
relation over the traces in X and hence verification takes O(l|A||X|).

The algorithm given in Section 4.2 is thus O(l|A||X||V |!|E|d|V |+3), which is
O(|X||V |!|E|d|V |+3), because |E| > l|A|. Moreover, we can fix |V | and d because, in
practice, the number of array elements is typically much larger than the number of
arrays or the array dimensions. Hence, the complexity of finding nested array relations
is polynomial in the number of array elements |E|.

5.2. Polyhedra and Inequalities
The polyhedral method described in Section 3.2.1 merits additional discussion because
it generates precise inequalities that guaranteed to underapproximate the desired
invariants10 expressible under the considered inequality forms. However, if the desired

10Desired invariants refer to program invariants, that is, relations that are guaranteed to hold at a program
location for all possible traces observed at that location.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:20 T. Nguyen et al.

invariants do not fall under the considered forms, this method could generate a complex
polyhedron whose facets represent many spurious invariants.

Underapproximation. A dynamically inferred invariant could either be equivalent
to underapproximate (i.e., be a spurious invariant that is too strong and does not
always hold) or overapproximate (i.e., be too weak and possibly not useful) the desired
invariant. For instance, when the template x ≤ y is used to infer the desired invariant
x ≤ y − 10, then this template, an overapproximation of the desired invariant, is
returned as the candidate invariant. This section shows that this overapproximation
situation cannot happen in DIG. More precisely, assuming the desired invariant belongs
to an inequality form supported by DIG, then a candidate inequality generated from
DIG using convex hulls can only be equivalent to or underapproximates the desired
invariant. This property is useful because its falsification, that is, the inferred invariant
(strictly) overapproximates the desired one, indicates that the desired invariant fails
for some observed traces and thus the program has a bug. For example, consider the
flatten code in Section 3.2.2 with an off-by-one error.

for (i = 0; i < M; ++i){
//bug, should be j < N
for (j = 0; j <= N; ++j){

k = i * n + j;
[L]
B[k] = A[i][j];

}
}

Depending on the given traces, DIG may generate at L the octagonal relation 0 ≤
k ≤ MN + 5, which is an overapproximation of the desired invariant 0 ≤ k ≤ MN − 1.
This indicates an error because DIG would never generate such a relation unless the
value k = MN + 5 is in the traces, that is, a counterexample that violates the desired
invariant.

The proof of the underapproximation property is relatively straightforward, using
the facts that a convex hull of a set of points is the smallest convex set containing those
points and that the observed traces are a subset of all possible traces. Formally, let F
be the desired invariant of a shape considered in this article (i.e., a conjunction of in-
equalities representing a bounded convex object in multidimensional Euclidean space),
then our candidate invariant F ′ of that shape is equivalent to or underapproximates
F, that is, F ′ ⇒ F. To see this, observe that the object represented by F encloses all
trace points and the object of the same shape represented by F ′ encloses a subset of
all trace points. Moreover, because F ′ is computed as the convex hull of that subset of
trace points, the object represented by F ′ is enclosed in the object represented by F.
Thus, F ′ ⇒ F.11

Observe that equivalence is achieved when the input traces consist of the extreme
points describing the desired shape. For instance, we can find the exact inequalities
representing an octagon from any set of traces consisting of the eight extreme points
of that octagon.

We note that the underapproximation property also holds for equalities generated
from DIG, as proved in Sharma et al. [2013].

11The underapproximation property F ′ ⇒ F also holds if the shape of F ′ is more precise than the shape
of F. This property is not guaranteed if the shape of F ′ is less precise than the shape of F. In Figure 3,
a desired invariant representing an octagon (Figure 3(c)) is an overapproximation of a candidate invariant
representing a polygon (Figure 3(d)) and is an underapproximation of a candidate invariant representing an
interval (Figure 3(b)).

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:21

Spurious Invariants. The polyhedral method has a high theoretical complexity be-
cause it could produce a complex polyhedron with multiple facets in high dimensions
depending on the given trace points. Importantly, if the traces do not precisely capture
the desired invariant, then the polyhedron consists of many facets representing spuri-
ous inequalities. For instance, if x, y can take any value over the reals, then an n-facet
polygon computed over any set of traces for x, y produces n spurious invariants because
no bounded polygons can capture the unbounded ranges of x, y.

Although filtering (Section 2.3) reduces spurious invariants by removing facets of the
polyhedron (i.e., widening it), the modified polyhedron can still have many remaining
facets representing faux relations because it is rare to have inequalities among all
involved terms. Thus, DIG does not automatically invoke the polyhedral method for
general inequalities. The method is effective when the user has certain expectations
about the desired invariants. The user can ask DIG for octagonal relations if only
inequalities among pairs of terms over program variables are of interest. The user can
also hypothesize a spherical shape c1x2 + c2y2 +c 3z2 and query DIG to search for that
exact sphere (i.e., compute the coefficients ci) from the convex hull built over trace
points for these terms. The availability of source code allows for hybrid approaches
with static analysis such as slicing [Reps et al. 1995] to automatically find variables
that are likely related to one another, reducing the number of term combinations.

In contrast to the convex hull construction, methods using equation solving give few
spurious equalities, because equalities are stricter constraints than inequalities. For
example, we can always compute a convex polygon representing many inequalities over
any set of finite points in 2D, but can only have at most a line representing an equal-
ity over these points. Moreover, assuming traces are obtained from random program
inputs, it is unlikely that a large set of traces would exhibit random false equalities.
The next section shows that DIG does not generate spurious equality relations for both
numerical and array variables in our experiments.

6. EXPERIMENTAL RESULTS
Our prototype, DIG, is implemented in Python using the Sage mathematical environ-
ment [Stein 2012]. The prototype uses built-in Sage functions to solve equations and
construct polyhedra. It also uses Z3 [De Moura and Bjørner 2008] to check the satisfi-
ability of SMT formulas. The experiments reported here were performed on dual-core
2.3GHz Intel Unix-based system with 8GB of RAM.

6.1. Programs
We evaluated DIG on programs taken from a test suite which we call NLA (nonlinear
arithmetic) and an implementation of the Advanced Encryption Standard (AES)
[Rijmen and Daemen 2001]. The details of NLA and AES are given in Tables II and III,
respectively.

The NLA test suite consists of 27 programs from various sources collected by
Rodrı́guez-Carbonell and Kapur [Carbonell and Kapur 2007a, 2007b; Carbonell 2006].
These programs implement classic arithmetic algorithms that are widely used in pro-
gramming, such as mult, div, mod, sqrt, gcd. The programs are relatively small, about
20 lines of C code each. However, they implement nontrivial mathematical algorithms
and are often used to benchmark static analysis methods. Importantly, the complexity
of our method depends on the size of the traces and the invariant forms of interest—
not the size of the program per se. Among the 27 programs from NLA, there are 41
documented nonlinear relations: 39 equations and 2 inequalities.

The second benchmark, AES, is an annotated AES implementation from Yin et al.
[2009]. It exemplifies a real-world security-critical application and contains nontriv-
ial array invariants. To show that the implementation conform to the formal AES

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:22 T. Nguyen et al.

specification, the authors of AES inspected and documented the invariants of each
function in AES and then fully verified the result using SPARK Ada [Barnes 2003]
and PVS [Owre et al. 1992]. The annotated invariants represent the manual effort
required to fully verify the functionality of an AES implementation using axiomatic
semantics. AES contains 868 lines of Ada code organized into 25 functions containing
30 invariants: 8 flat array relations, 7 nested array relations, 2 linear equations, and
13 other relations.

Program Locations and Execution Traces. Our test programs come with documented
invariants at various locations such as loop heads and function exits. For evaluation
purpose, we find invariants at those locations automatically and compare them to the
human-documented invariants. We manually instrumented the program source code to
trace values of all variables in the scope at each program location containing a known
invariant. Specifically, for NLA, invariants are obtained mainly at loop entrances. For
AES, invariants are obtained mainly at function exits. For NLA, it turns out that most
of the loop invariants specify the behaviors of the programs (e.g., the egcd program
in Figure 1 and cohen in Figure 4). In addition, we apply DIG over traces captured at
systematically chosen program locations (e.g., all function entries) and verify its results
at these locations manually.

The instrumented programs were run against a set of randomly selected inputs. The
number of obtained traces is different across programs and program locations. For
example, locations inside loops may be visited many times while function exits may be
visited rarely. DIG automatically selects a set of random traces whose size is 1.5 times
the number of created terms for invariant generation and another set of 1,000 random
traces for filtering.

6.2. Quality of Results
DIG selects the appropriate algorithms for finding invariants depending on the vari-
ables that appear in the trace file. For numerical variables, DIG first generates equali-
ties among terms, and next proceeds to inequalities using the deduction method when
additional information such as loop guards is available. By default, we do not gener-
ate inequalities using the convex hull methods unless specified by the user. For array
variables, DIG first generates flat relations and then nested relations. For invariants
involving user-defined functions, this information must be specified by the user be-
cause it is not available from traces. The post-processing step refines the candidate
invariants when each invariant generation algorithm finishes.

For the experiments reported here, we define a single parameter, α = 200 which
bounds DIG’s running times. For polynomial invariants, DIG automatically adjusts
the maximum degree so that the number of generated terms does not exceed α. For flat
array relations, DIG automatically adjusts the sizes of the considered arrays in such a
way that the total number of array elements does not exceed α. There is no parameter
for nested array relations because reachability analysis enumerates all possible non-
repeating nestings to consider array relations up to any nesting depth.

6.2.1. NLA. Table II reports experimental results on 27 programs from NLA, with run-
ning times averaged over 20 runs. The Invs column reports the number of nonlinear
invariants generated by DIG and their types (equality or inequality). The V, D column
reports the number of distinct variables (a subset of the considered variables) and the
highest polynomial degree in the generated invariants. The Tα column reports the av-
erage time in seconds to discover the invariants using parameter α, including the time
to refine the results. The Td eg column reports the average time in seconds to discover
these invariants if we had restricted the search space to the polynomial degree given
in the V, D column. The Vs Doc column reports the number of documented invariants

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:23

Table II. Experimental Results on 27 Programs from NLA

Program Desc Invs V, D Tα Tdeg Vs Doc
divbin div 1 eq 5, 2 27.0 0.3 1/1
cohendiv div 2 eq, 2 ieq 6, 2 8.5 0.8 3/3
mannadiv int div 1 eq 5, 2 23.1 1.0 1/1
hard int div 2 eq 6, 2 9.2 0.9 2/2
sqrt1 square root 2 eq, 2 ieq 4, 2 39.6 0.9 3/3
dijkstra square root 4 eq 5, 3 31.4 4.0 1/1
freire1 square root 1 eq 3, 2 33.9 0.2 1/1
freire2 cubic root 4 eq 4, 2 45.5 2.9 2/2
cohencube cubic sum 3 eq 5, 3 39.5 8.4 3/3
egcd gcd 3 eq 8, 2 53.9 2.2 2/2
egcd2 gcd 3 eq 10, 2 4.2 4.5 3/3
egcd3 gcd 4 eq 12, 2 8.2 8.8 4/4
lcm1 gcd, lcm 1 eq 6, 2 8.7 0.5 1/1
lcm2 gcd, lcm 1 eq 6, 2 11.5 0.7 1/1
prodbin product 1 eq 5, 2 32.5 0.4 1/1
prod4br product 1 eq 6, 3 8.2 8.5 1/1
fermat1 divisor 1 eq 5, 2 31.6 0.4 1/1
fermat2 divisor 1 eq 5, 2 31.6 0.4 1/1
knuth divisor 4 eq 8, 3 53.8 53.8 1/1
geo1 geo series 1 eq 4, 2 14.8 0.1 1/1
geo2 geo series 1 eq 4, 2 24.4 0.1 1/1
geo3 geo series 1 eq 5, 3 23.4 2.4 1/1
ps2 pow sum 1 eq 3, 2 29.2 0.2 1/1
ps3 pow sum 1 eq 3, 3 27.9 0.3 1/1
ps4 pow sum 1 eq 3, 4 29.7 0.8 1/1
ps5 pow sum 1 eq 3, 5 30.2 2.8 1/1
ps6 pow sum 1 eq 3, 6 28.2 8.5 1/1
27 programs 52 invs 709.2s 114.7s 41/41

matched by our results. For example, DIG generated four quadratic relations (two
equalities and two inequalities) over six variables for cohendiv in 8.5s (or 0.8s if the
maximum degree 2 was specified). The obtained invariants also match with the three
documented invariants.

To evaluate DIG, we compared its results to the documented invariants or verified
them manually against the program source code. Comparing to the documented invari-
ants, DIG found all 41 documented relations from the 27 programs in NLA. In most
cases, the results matched the documented invariants exactly as written. Occasionally
we achieved results that are mathematically equivalent to the documented invariants.
For example, sqrt1 has two documented equalities 2a + 1 = t, (a + 1)2 = s; our results
gave 2a + 1 = t, t2 + 2t + 1 = 4s, which is equivalent to (a + 1)2 = s by substituting t
with 2a+1. In many cases, DIG discovered undocumented invariants, for example, the
relation 1 = im− jk in the example program egcd in Section 2. We also found invariants
that are stronger than the documented ones, for example, the two quadratic relations
discovered in freire2 imply a documented relation of degree 3 (DIG also found this
cubic invariant but automatically pruned it in post processing because it is weaker
than the other two). We obtained no spurious results for NLA using the method based
on equation solving. We believe and intend to formally prove that our method for gen-
erating equality invariants has this desirable property. That is, assuming random and
adequate traces (e.g., ≥ n unique traces for n unknowns), the method will generate only
true equality invariants. Note that this property will not hold for inequalities, because

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:24 T. Nguyen et al.

Table III. Experimental Results on 25 Functions from AES

Function Desc Invs V, D Tα Vs Doc
multWord mult 1 N4 7, 2 11.0 1/1
xor2Word xor 3 N1 4, 2 0.8 1/1
xor3Word xor 4 N1 5, 3 2.0 1/1
subWord subs 2 N1 3, 1 1.3 1/1
rotWord shift 1 F 2, 1 0.5 1/1
block2State convert 1 F 2, 2 4.1 1/1
state2Block convert 1 F 2, 2 4.2 1/1
subBytes subs 2 N1 3, 2 3.2 1/1
invSubByte subs 2 N1 3, 2 3.3 1/1
shiftRows shift 1 F 2, 2 3.7 1/1
invShiftRow shift 1 F 2, 2 3.6 1/1
addKey add 2 N1 4, 2 3.5 1/1
mixCol mult 0 - 1.0 0/1 O3
invMixCol mult 0 - 1.0 0/1 O3
keySetEnc4 driver 1 F 2, 2 76.4 1/2 O2
keySetEnc6 driver 1 F 2, 2 78.8 1/2 O2
keySetEnc8 driver 1 F 2, 2 79.3 1/2 O2
keySetEnc driver 1 F 2, 1 76.3 0/1 O3
keySetDec driver 0 - 73.0 0/1 O3
keySched1 driver 0 - 77.9 0/1 O1
keySched2 driver 1 F 2, 2 79.5 0/1 O1
aesKeyEnc driver 1 F, 1 eq 2, 1 76.2 1/2 O3
aesKeyDec driver 1 eq 2, 1 73.6 1/2 O3
aesEncrypt driver 1 F 2, 2 70.5 0/1 O3
aesDecrypt driver 1 F 2, 2 73.8 0/1 O3

25 functions 30 878.5s 17/30

the convex hull method would likely generate many spurious polyhedral inequalities
as discussed in Section 5.2.

As shown in column Tdeg, the runtime of DIG can be improved significantly by
limiting the search to invariants of a given maximum degree. For instance, DIG took
2.2s to find the three quadratic relations in egcd using maximum degree 2, but it took
53.9s to find the same relations using the parameter α = 200, which queries DIG for
all invariants up to degree 3 this program. The large difference in runtime is because
the number of terms has an exponential dependency on the degree, for example, the
number of terms created over eight variables is 45 for degree 2 and 165 for degree 3.
The approach using a maximum degree follows that of earlier work [Carbonell and
Kapur 2007b; Sharma et al. 2013; Nguyen et al. 2012], which assumes a default upper
bound on degree (e.g., d = 2) to improve performance. The uniform parameter α, used
in this experiment, takes more time, but it allows DIG to generate invariants for all
programs in NLA without a priori knowledge of specific polynomial degrees.

DIG supports nonlinear invariants that are not in other dynamic analysis tools. Con-
versely, Daikon has discovered useful properties not supported by DIG. For instance,
the built-in PowerOfTwo template allows Daikon to find an interesting property in
egcd3, which states that the values of x are always a power of 2. In several occasions
Daikon also identified the relation x % y = 0, that is, y divides x, due to its built-in
templates involving the modulus operator.

6.2.2. AES. Table III reports experimental results on 25 functions from AES and has
similar format as that of Table II. The V, D column reports the number of distinct

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:25

array variables and the highest dimension of the arrays in the candidate invariants.
The types of the generated invariants, reported in the Invs columns, include Flat,
Nested, and linear equality invariants (Nl indicates that the depth of the generated
nested array relation is l). The Vs Doc column also indicates the types of documented
invariant (called Others) that DIG could not identify. The driver functions are composed
from other functions in this table.

DIG discovered 30 candidate invariants for AES, all of which are valid relations,
using the parameter α = 200 as in the NLA experiment. Comparing to the documented
invariants, we found all 17 documented relations that are expressible in the considered
forms. In many cases, DIG also discovered undocumented invariants. In the three
relations r[i] = xor(a[i], b[i]), a[i] = xor(r[i], b[i]), b[i] = xor(r[i], a[i]) obtained from
xor2Word, the first one is a documented invariant but the other two are indeed properties
of the xor operator. In addition to the documented invariant r[i][j] = S[t[i][j]] in
subWord, we found the relation t[i][j] = Si[r[i][j]], which is valid because the array Si
contains the reversed values of the array S. The results generated for the keySetupEnc
functions are conditional invariants, for example, in keySetupEnc8, we got r[i][j] =
k[4i + j] for i = 0, . . . , 7, j = 0, . . . , 3 and r[i][j] = 0 for other indices i, j. In several
cases, the algorithms for both flat and nested array relations discover similar invariants
such as S[i][j] = R[4i + j] in state2Block because these flat array relations are also
nested array relations with nesting depth 0. We did not obtain spurious invariants for
the functions in AES.

Similar to NLA, DIG’s runtime for AES can be significantly improved with some
additional information about the desired invariants. For instance, DIG found the rela-
tion t[i][j] = c[4i + j] in aesDecrypt under 10s using reachability analysis but over 60s
using the algorithm for flat array relations (for solving 200 equations). The last eleven
functions in Table III has similar run times (77s on average) because the considered
arrays in each function were automatically resized to contain α = 200 elements. We
note that a smaller parameter value is also sufficient to obtain similar results for AES
with much shorter runtime, for example, DIG took on average 14.3s for the last eleven
functions when run with α = 50.

The 13 documented invariants that were not discovered fall into categories that
are not supported by DIG and are left for future work. These can be grouped into
three categories: Others1−3. Others1 includes nested array relations such as A[i] =
4B[6C[. . .]]. We do not currently handle nested invariants if the elements of A are not
exactly nested in B. Others2 includes nested array invariants such as A[i] = B[C[. . .]]
and A[j] = B[C[. . .]], where i ̸= j, that is, a conditional form of nested array relations.
We require that generated relations such as A[i] = B[C[. . .]] hold for all i. Others3
includes array invariants involving functions whose inputs are arrays, such as f ([1, 2]).
We only consider functions with scalar inputs such as g(7, 8). We note that existing
dynamic analysis methods cannot find these array relations either.

The manual annotation of AES with sufficient invariants to admit machine-checked
full formal verification was a significant undertaking involving hours of tool-assisted
manual effort [Yin et al. 2009, 2008]. Annotating pre- and post-conditions and loop
invariants has not been solved in general and is known to be a key bottleneck in
approaches based on axiomatic semantics [Flanagan and Leino 2001]. It is not sur-
prising that our approach was unable to discover all relevant invariants; indeed,
we view reducing the manual verification annotation burden by one-half as a strong
result.

6.2.3. Other Program Locations. DIG can be applied over traces captured at arbitrary
locations, including those with invariants that are not currently considered or those
that do not likely have useful invariants. Table III shows that DIG generated ten valid

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:26 T. Nguyen et al.

invariants and no spurious results when applied to locations in AES with invariants
under the unsupported forms Others1−3. When being applied to systematically
chosen locations like all program entry points in NLA, DIG generates no invariants
because these programs take in random input values, for example, −∞ ≤ x ≤ ∞ (an
unsupported form of invariant that cannot be captured by finite traces). Note that
if we had used the convex hull methods to generate inequalities, then we will get
spurious relations such as c1 ≤ x ≤ c2, where c1, c2 correspond to the lower and upper
bounds of x from the input traces. In general, we expect DIG’s candidate invariants at
arbitrary locations from any program to have similar quality as those reported here
(these invariants were obtained without a priori knowledge about their forms).

To summarize, DIG found all of the invariants under consideration: 100% of the
documented nonlinear invariants in NLA and 17 out of 30 documented invariants in
AES. The other 13 invariants were beyond the scope of this article and are left for future
work. To the best of our knowledge, no other dynamic invariant analysis approaches
have analyzed the forms of invariants discussed in this article.

6.3. Limitations
Two of the operations, namely, reachability analysis and polyhedra construction, are
expensive, because the analysis can generate many relation sets over large arrays and
many inequalities representing complex polyhedra in high dimensions. We address
these issues using SMT solvers by deducing new inequalities through loop conditions, or
by generating simpler invariants by building octagons. Nonetheless, these techniques
have trade-offs: having high theoretical complexities, requiring additional information,
or loosing precisions by representing invariants with simpler shapes.

Floating point values are subject to round-off errors that may confound some exact
checks. Given an abundance of available traces, we filter out certain traces containing
rounded float values. DIG also allows comparison within ε instead of exact comparisons
(e.g., 0.33333 ≈ 1

3 and 0.99998 ≈ 1.0). The use of established techniques from numerical
analysis to handle other corner cases in floating point arithmetic is left for future work.

As discussed in Section 5.2, the effectiveness of our method depends on program
traces produced by test inputs. DIG cannot derive properties that are not exhibited by
the traces. For example, if the relation x + y > 10, but not x + y = 10, is implicated
by the traces, then we cannot find the inequality x + y ≥ 10. We note the existence of
many active research projects investigating high-coverage test inputs and efficient test
suites. In particular, we can take advantage of an entire body of work on generating
test suites specifically for dynamic invariant detection [Gupta and Heidepriem 2003;
Harder et al. 2003; Xie and Notkin 2003].

Finally, our work focuses on specialized types of invariants. It is unlikely that DIG
will find invariants of other, unrelated forms, as seen in the AES benchmark. We believe
that our approach strikes a balance between rich expressive power, allowing it to find
many invariants with real-world uses (e.g., documentation in NLA, verification in AES)
and efficiency, allowing it to complete in seconds per program.

7. RELATED WORK
Daikon [Ernst 2000; Ernst et al. 2007; Perkins and Ernst 2004], the paragon of dynamic
invariant analysis, infers candidate invariants from traces and templates. By default,
the system reports invariants at the entry and exit points of a function, although it
is possible to extract invariants at other locations, such as inside loops, by manual
instrumentation. The system comes with a large list of assorted invariant templates
that are considered as useful to programmers and allows user-supplied invariants. For
polynomial relations, the system can find linear relations over at most three variables,

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:27

for example, x + 2y − 3z + 4 = 0, and has fixed nonlinear templates such as x = y2.
Relations among arrays have limited support in Daikon, for example, the relations
A[i] = B[C[i]], A[i] = 2B[i] + C[5] + 7 are not considered.

There is related work on dynamic methods for finding invariants for debugging (e.g.,
the detected properties are used to find certain type of errors). The Diduce [Hangal
and Lam 2002] tool analyzes what happens when an error occurs by looking at the
differences between the previous and current values of variables. Statistical debug-
ging [Liblit et al. 2005], a fault localization technique, looks for relations (e.g., {<,=,>})
between two variables or a variable and a constant. The Spin model checker [Vaziri
and Holzmann 1998] can also find relations over two variables. In general, these ap-
proaches find invariants that are relatively simple compared to those given by Daikon
and DIG.

Abstract Interpretation [Cousot and Cousot 1976, 1977; Cousot and Halbwachs 1978]
is a popular framework in static invariant analysis that approximates program prop-
erties under a given domain, for example, the polyhedra domain expresses general
linear relations over variables. The method starts from an initial approximation and
gradually improves the approximation based on the structure of the program until no
more improvements can be made (a fixed-point). A widening heuristic operator is often
used to ensure termination.

Carbonell and Kapur [2007; Carbonell 2006] provide an abstract interpretation
framework for polynomial equalities of the form given in Eq. (1). They first observe
that a set of polynomial invariants form the algebraic structure of an ideal, then com-
pute the polynomial invariants using Gröbner basis and operations over ideals based
on the structure of the program until a fixed point is reached. Scalability is an issue
because the approach must consider all possible program paths to guarantee sound
results. The method can analyze precisely only programs with assignments and loop
guards expressible as polynomial equalities. To ensure termination when analyzing
programs with nested loop, the method uses a widening operator that depends on a
priori bound on the degrees of the polynomials. Carbonell and Kanpur [2007a] does not
require upperbounds on polynomial degrees but is restricted to non-nested loops. This
work does not support the forms of inequalities and array relations in DIG.

Recently, Sharma et al. [2013] proposed a complete and sound approach that hy-
bridizes dynamic and static analysis to generate equality invariants. They use the al-
gorithm of Section 3.1 to compute equality invariants from traces and use SMT solving
to verify that the candidate invariants are correct with respect to the program source
code. Counterexamples to candidate invariants that fail to prove are subsequently used
to produce more traces to generate better candidate invariants. They formally prove
that the candidate equalities are sound (i.e., always underapproximate the program
invariant), and the approach terminates after a finite number of steps to generate and
verify candidate invariants. It would be interesting if this approach could be extended
to inequality invariants generated by DIG, which are also underapproximations and
can be checked for satisfiability using SMT solvers.

8. CONCLUSION
We present DIG, the first dynamic invariant generator that can discover nonlinear
polynomial and linear array invariants. Our method applies mathematical techniques
not previously employed to aid dynamic invariant detection. By generating invariants
directly based on input traces, our results are very accurate with respect to given
traces. For nonlinear equality relations, we generate terms representing nonlinear
polynomials among variables and use an equation solver to find linear relations among
the terms; this yields nonlinear relations among the original variables. We represent

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:28 T. Nguyen et al.

inequality constraints using geometric shapes and reduce the task for inferring gen-
eral inequalities to generating convex polyhedra. For nonlinear inequality relations,
we generate terms and then build convex polyhedra, obtaining the desired relations
from their facets. Building convex polyhedra in high dimensions is expensive, thus, we
consider less expressive forms of inequalities that represent simpler geometric shapes,
such as octagons. When additional information, such as a loop entry condition, is avail-
able, we can efficiently take advantage of it to deduce new inequalities by combining
discovered equality relations with the provided loop condition. For flat array relations,
we look for relations among individual array elements and extract from those results
the possible relations among the array indices. These flat array relations also express
conditional information, capturing array relations that hold for specific indices. For
nested array relations, we build an SMT query using information obtained from a
reachability analysis; the satisfying assignment provided by the SMT solver yields the
desired invariant.

Our evaluation demonstrates the feasibility and potential of DIG by successfully
identifying 100% of the nonlinear invariants in 27 nontrivial algorithms as well as
60% of the documented array relations necessary for full formal verification of an AES
implementation.

ACKNOWLEDGMENTS

This work is a continuation of a project initiated by Jack Pullikottil with Deepak Kapur in 2003. We thank
Matthias Horbach and Hengjun Zhao for insightful discussions as well as Xiang Yin for providing the AES
implementation.

REFERENCES
J. Barnes. 2003. High Integrity Software: The SPARK Approach to Safety and Security. Addison-Wesley

Longman Publishing Co., Inc.
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jerome Feret, Laurent Mauborgne, Antoine Miné, David

Monniaux, and Xavier Rival. 2003. A static analyzer for large safety-critical Software. In Proceedings of
the Conference on Programming Languages Design and Implementation. 196–207.

Rastislav Bodı́k, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD: Eliminating array bounds checks on demand.
In Proceedings of the Conference on Programming Language Design and Implementation. 321–333.

Enric Rodrı́guez Carbonell. 2006. Automatic generation of polynomial invariants for system verification.
Ph.D. Dissertation, Technical University of Catalonia, Barcelona, Spain.

Enric Rodrı́guez Carbonell and Deepak Kapur. 2007a. Generating all polynomial invariants in simple loops.
Symbol. Computa. 42, 4 (2007), 443–476. DOI: http://dx.doi.org/10.1016/j.jsc.2007.01.002

Enric Rodrı́guez Carbonell and D. Kapur. 2007b. Automatic generation of polynomial invariants of bounded
degree using abstract interpretation. Sci. Comput. Program. 64. (Jan. 2007), 54–75. DOI: http://dx.doi.
org/10.1016/j.scico.2006.03.003

Edward Cohen. 1990. Programming in the 1990s: An Introduction to the Calculation of Programs. Springer-
Verlag.

P. Cousot and R. Cousot. 1976. Static determination of dynamic properties of programs. In Proceedings of
the International Symposium on Programming. 106–130.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the International Synposium
on Principles of Programming Languages. 238–252.

Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. 2005a. The AstrÉe analyzer. In Proceedings of the European Symposium on Programming.
21–30.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. 2005b. The Astrée analyzer.
In Proceedings of the Conference on European Symposium on Programming (ESOP’05). Lecture Notes
in Computer Science, vol. 3444, Springer, 21–30.

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of
a program. In Proceedings of the International Symposium on Principles of Programming Languages.
84–96.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants 30:29

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. 1997. Computational Geometry:
Algorithms and Applications. Springer-Verlag.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, Springer, 337–340. http://research.microsoft.com/en-
us/um/redmond/projects/z3/.

Nachum Dershowitz and Zohar Manna. 1978. Inference rules for program annotation. In Proceedings of the
International Conference on Software Engineering. 158–167.

B. Dutertre and L. De Moura. 2006. A fast linear-arithmetic solver for DPLL(T). In Computer Aided Verifi-
cation. Springer, 81–94.

M. D. Ernst. 2000. Dynamically detecting likely program invariants. Ph.D. Dissertation, University of
Washington.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz,
and Chen Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Sci. Comput.
Program. 1–3. (2007), 35–45.

R. W. Farebrother. 1988. Linear Least Squares Computations. Marcel Dekker, Inc.
Jérôme Feret. 2004. Static analysis of digital filters. In Programming Languages and Systems, Springer,

33–48.
Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an annotation assistant for ESC/Java. In Proceed-

ings of the Intenational Symposium on Formal Methods for Increasing Software Productivity. 500–517.
Steven M. German and Ben Wegbreit. 1975. A synthesizer of inductive assertions. IEEE Trans. Softw. Eng.

1, 1 (1975), 68–75.
N. Gupta and Z. V. Heidepriem. 2003. A new structural coverage criterion for dynamic detection of program

invariants. In Proceedings of the International Conference on Automated Software Engineering. 49–58.
Sudheendra Hangal and Monica S. Lam. 2002. Tracking down software bugs using automatic anomaly

detection. In Proceedings of the International Conference on Software Engineering. 291–301.
M. Harder, J. Mellen, and M. D. Ernst. 2003. Improving test suites via operational abstraction. In Proceedings

of the International Conference on Software Engineering. 60–71.
Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic Program

Generation. Prentice Hall.
Michael Karr. 1976. Affine relationships among variables of a program. Acta Informatica 6 (1976), 133–151.
Shmuel Katz and Zohar Manna. 1976. Logical analysis of programs. Commun. ACM 19, 4 (1976), 188–206.
Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. 2005. Scalable statistical bug

isolation. In Proceedings of the Conference on Programming Language Design and Implementation.
15–26.

Antoine Miné. 2004. Weakly relational numerical abstract domains. Ph.D. Dissertation, École Polytechnique,
Palaiseau, France.

ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis
to discover polynomial and array invariants. In Proceedings of the International Conference on Software
Engineering. IEEE, 683–693.

S. Owre, J. Rushby, and N. Shankar. 1992. PVS: A prototype verification system. In Proceedings of the 11th
International Conference on Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 607,
Springer-Verlag, 748–752.

Jeff H. Perkins and Michael D. Ernst. 2004. Efficient incremental algorithms for dynamic detection of likely
invariants. ACM SIGSOFT Softw. Eng. Notes, 29, 6 (2004), 23–32.

Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael Carbin,
Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. 2009. Automatically patching errors in deployed software. In
Proceedings of the Symposium on Operating Systems Principles. 87–102.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph
reachability. In Proceedings of the symposium on Principles of Programming Languages. 49–61.

V. Rijmen and J. Daemen. 2001. Advanced encryption standard. Federal Information Processing Standards
Publications, National Institute of Standards and Technology (2001), 19–22.

Mardavij Roozbehani, Eric Feron, and Alexandre Megrestki. 2005. Modeling, optimization and computa-
tion for software verification. In Proceedings of the 8th International Workshop on Hybrid Systems:
Computation and Control. 606–622.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2005. Scalable analysis of linear systems
using mathematical programming. In Proceedings of the 6th International Conference on Verification,
Model Checking and Abstract Interpretation. 25–41.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

30:30 T. Nguyen et al.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013.
A data driven approach for algebraic loop invariants. In Proceedings of the European Conference on
Programming Languages and Systems. Springer, 574–592.

W. A. Stein. 2012. Mathematics Software. Sage. http://www.sagemath.org.
Norihisa Suzuki and Kiyoshi Ishihata. 1977. Implementation of an array bound checker. In Proceedings of

the International Symposium on Principles of Programming Languages. 132–143.
M. Vaziri and G. Holzmann. 1998. Automatic detection of invariants in Spin. In Proceedings of the SPIN

Model Checking and Software Verification Workshop.
Ben Wegbreit. 1974. The synthesis of loop predicates. Commun. ACM 17, 2 (1974), 102–113.
T. Xie and D. Notkin. 2003. Tool-assisted unit test selection based on operational violations. In Proceedings

of the International Conference on Automated Software Engineering. 40–48.
Xiang Yin, John C. Knight, Elisabeth A. Nguyen, and Westley Weimer. 2008. Formal verification by reverse

synthesis. In Proceedings of the Conference on Computer Safety, Reliability, and Security. 305–319.
Xiang Yin, John C. Knight, and Westley Weimer. 2009. Exploiting refactoring in formal verification. In

Proceedings of the International Conference on Dependable Systems and Networks. 53–62.

Received December 2012; revised June, September 2013; accepted November 2013

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 4, Article 30, Pub. date: August 2014.

