
Neutral Networks Enable

Distributed Search in Evolution

Joseph Renzullo1, Stephanie Forrest1, and Melanie Moses1

1Department of Computer Science, University of New Mexico
{renzullo, forrest, melaniem}@cs.unm.edu

May 5, 2017



Introduction

Underlying all biological distributed algorithms is the design process that produced them, which
is itself a distributed process—evolution by natural selection. Evolution has produced many com-
pelling examples of distributed biological computation, including the social insects, brains, immune
systems, quorum sensing among microbes, and flocking and herding behaviors among animals.
Here, we focus on evolution as a distributed search process and how it uses neutral networks to
produce such complexity.

Genetic variants that have the same fitness are referred to as neutral, and a neutral network is
a set of equal-fitness individuals related by single mutations. Neutral networks help a population
of independent individuals manage the exploration vs. exploitation trade-off, a problem faced by
any population-based search. Previous work argues that the topology of neutral networks is key to
a population’s ability to find high-fitness innovations (exploration) [11], while preserving already-
discovered innovations (exploitation), and that neutrality and robustness are key to evolution [3, 4].

Neutral mutations are a form of robustness in the sense that the mutation is a change that
does not affect fitness. The interplay between robustness and evolution has been studied exten-
sively in biology [5, 6, 11], producing many theoretical models, e.g., [1], and an increasing body of
experimental results, e.g., [10].

Neutral networks allow evolution to maintain fit phenotypes (external appearance and behavior)
while exploring a large genetic search space. In this paper we study neutral networks in a compu-
tational context. Specifically, we analyze neutral networks in an example computer program, relate
their structure to neutral networks observed in biology, and conjecture that software is evolvable at
least in part because neutral networks enable programmers to search for useful innovations (e.g.,
bug repairs) without damaging existing functionality.

Software is a compelling and appropriate example for several reasons. First, open-source code
repositories contain the complete evolutionary history of a software artifact, including when, where,
and why modifications were made. The accessibility of all “mutations” (commits) makes it much
easier to conduct large-scale analyses and study the dynamics of search than it is in living systems.
Second, our current software bases are enormous (e.g., [2]), complex, and changing quickly in time,
which provides a particularly rich domain for studying computational forms of ‘evolution.’ In spite
of this complexity, we can easily measure most genetic (informational) or phenotypic (behavioral)
software properties that are relevant.

In biology mutational robustness refers to an organism’s ability to preserve its phenotype (exter-
nal appearance and behavior) in the face of internal genetic mutations [11]. We define mutational
robustness in software to be the percentage of random mutations to a working program that leaves
its behavior unchanged on the program’s test suite.

Earlier work showed that mutational robustness is high (> 30%) [8] in a corpus of open-source
programs, ranging from small, compact sorting programs to large, open-source implementations.
We extend this work to consider the topology of the network formed by these neutral mutations in
an example program (look) and find that repairs for bugs (innovations) are clustered in different
regions of the network corresponding to different ways of repairing the same bug. This suggests that
a population of individuals (whether human programmers or a genetic algorithm) will likely be more
successful in finding a repair than a single searcher. Further, we observe that the software neutral
network resembles the topology predicted be most amenable to finding innovations in biology [1].

1



(a) (b)

Figure 1: (a): Illustration of the trade-off between mutational robustness and evolvability (repro-
duced from Figure 3 in [1]). (b): Example neutral network of the computer program look. Each
node represents a program variant that is exactly two neutral edits away from the original pro-
gram. In (a), individuals that are neutral to one another are colored green, and other phenotypes
are represented by yellow, orange, and red; nodes are connected by an edge if they are a single
mutation apart. A population can span a neutral network like the one in the center panel of (a)
without loss of fitness so that it can discover potentially-beneficial innovations that are adjacent to
different nodes in the neutral network. This is not possible in the left panel of (a). While there are
innovations adjacent to some neutral mutations, there is no network to allow the population to get
from one neutral mutation to another. In the right panel of (a), all single-edit mutations exist only
in the space close to the current genotype and therefore can not explore to find innovations far from
that genotype. A neutral network can create a space in which it is safe to search for innovations
if it is of the type in the center panel of (a). In Figure 1 (b) we visualize the neutral network
of a computer program, noting the striking resemblance to the high robustness/high innovation
illustration in panel (a).

Software Neutrality

When a random mutation is applied to a working program, we say that the mutation is neutral if
the mutation does not change the behavior of the program on its test suite. We refer to positive and
negative tests with respect to the original program—tests that a program passes are positive, and
those that it does not pass are negative. We begin with source-level C programs, translate them
into the corresponding abstract syntax tree (AST) and apply mutations at this level. Each node
in the AST represents a complete C statement, and the mutations therefore manipulate complete
statements, sometimes atomic and sometimes compound. Our experiments use two different kinds
of mutations:

• Delete deletes a randomly selected node (and its subtree if one exists) from the AST.

2



• Copy selects a random node (and its subtree if one exists) in the AST and copies it to another
random location.

We require that mutations be applied only to parts of the AST that are executed by at least one
test case.

In this paper, we consider an example neutral network for the UNIX look utility, a small
dictionary lookup program included in many Linux distributions. We generate variants of look
by applying single mutations (copy or delete), one at a time, to a source program, and iterating
according to Algorithm 1. We allow for the possibility that the program has been improved (i.e.
a previously-failing test case may now pass), but any variants that break functionality from the
original program (fail positive tests) are discarded, and we continue generating candidate variants
until reaching the target number described in Algorithm 1.

Figure 2: A neutral network of 201 variants of the UNIX look utility. Each node in this
graph represents a mutated variant of UNIX look. The original program is shown in black. All of
the variants depicted pass all of the positive test cases (they do not break functionality that was
originally working). Gray nodes are variants which exhibit the exact same behavior on the test
suite as the original program. Some variants additionally pass a negative test case which fails for
the original program (e.g. they repair a defect)—these are represented by colored nodes. Nodes in
the graph which share a color fix the defect in the same way.

3



Algorithm 1 Generate Variants

1: initialize the graph by applying the logic in line 5 to the source program node 5 times
2: for 2 to 10 do
3: select 5 nodes at the edge of the graph
4: for all selected nodes do
5: apply single mutations to generate n children of this node, s.t. ∀i∈[0,4] : p(n = 2i) ∝ 1

log2 2
i+1

and p(mutation = copy) = 2/3, p(mutation = delete) = 1/3
6: end for
7: end for

Because the neutral network of a computer program is in principle infinite, we sample a region
near the original program (UNIX look) to elucidate the most relevant structure. Figure 2 shows
the results of Algorithm 1, which produced a graph of 201 nodes representing 200 mutations (gray
and various colors) and the original program (black). The colored regions of the graph represent
variants that repair the defect in the original program. A unique color is assigned to each mutation
responsible for repairing the defect. By exploring only a small region quite close to the original
program, we find diverse mutations which repair the defect, and observe that repaired programs
are located in clusters in program-space.

Conclusion

The ability of biological organisms to maintain functionality across a wide range of environments
and to adapt to new environments is unmatched by engineered systems, even by those developed
using Evolutionary Computation (EC) methods, which seek to mimic the natural evolutionary
process. By studying the role of robustness in the context of computational artifacts, we hope to
shed light on new methods for enhancing the adaptability of biological distributed algorithms.

We argue that software engineering is at least in part a distributed search (conducted by many
programmers) for high-fitness (correct and useful) programs through the processes of inheritance
(copying code), mutation (small edits), recombination of successful modules, and selection of the
most useful programs. If true, then it should not be surprising that our experiments show that
software has acquired properties (mutational robustness and neutral networks) that resemble those
of biological systems that were produced by Darwinian evolution. We suggest that this distributed
search process confers both robustness and innovation, just as does biological evolution.

Sorting algorithms provide a motivating example of the degeneracy between specification and
programs which mirrors the degeneracy between genotype and phenotype. By this we mean that
there is an infinite number of programs that can implement any given specification. Our study
simply highlights this degeneracy for software and the way it enables effective automated search for
software repairs. Importantly, software that is neutral with respect to one criteria, e.g. function-
ality, is not necessarily neutral with respect to nonfunctional properties such as run-time or power
efficiency [7, 9].

Neutral networks enable the evolutionary search process to both exploit known solutions and
explore for innovations through robustness (the ability to make neutral changes to software that
do not affect functionality against a suite of positive test cases) and the ability to innovate (the
ability to discover variants that pass negative test cases).

4



References

[1] Stefano Ciliberti, Olivier C Martin, and Andreas Wagner. Innovation and robustness
in complex regulatory gene networks. Proceedings of the National Academy of Sciences,
104(34):13591–13596, 2007.

[2] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the
naturalness of software. In Software Engineering (ICSE), 2012 34th International Conference
on, pages 837–847. IEEE, 2012.

[3] Motoo Kimura. The neutral theory of molecular evolution. Cambridge University Press, 1983.

[4] Motoo Kimura et al. Evolutionary rate at the molecular level. Nature, 217(5129):624–626,
1968.

[5] Joanna Masel and Meredith V Trotter. Robustness and evolvability. Trends in Genetics,
26(9):406–414, 2010.

[6] Christian Reidys, Peter F Stadler, and Peter Schuster. Generic properties of combinatory maps:
neutral networks of rna secondary structures. Bulletin of mathematical biology, 59(2):339–397,
1997.

[7] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. Post-
compiler software optimization for reducing energy. In ACM SIGARCH Computer Architecture
News, volume 42, pages 639–652. ACM, 2014.

[8] Eric Schulte, Zachary P Fry, Ethan Fast, Westley Weimer, and Stephanie Forrest. Software
mutational robustness. Genetic Programming and Evolvable Machines, 15(3):281–312, 2014.

[9] Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. Genetic pro-
gramming for shader simplification. ACM Transactions on Graphics (TOG), 30(6):152, 2011.

[10] Nobuhiko Tokuriki and Dan S Tawfik. Chaperonin overexpression promotes genetic variation
and enzyme evolution. Nature, 459(7247):668–673, 2009.

[11] Andreas Wagner. Robustness and evolvability in living systems. Princeton University Press,
2013.


