Automatically Evolving a General Controller for
Robot Swarms

John Ericksen
University of New Mexico
Department of Computer Science
johncarl@cs.unm.edu

Abstract—Controller design is an important problem for
swarm robotics. Although many successful controllers have been
proposed, most are hand-coded, sometimes using adaptive mech-
anisms to tune parameters of a manually designed algorithm.
These solutions are generally tailored to specific environments,
or problem instances, and often fail to scale well as swarm
size is increased. This paper focuses on the problem of swarm
foraging, proposing an automated method for designing scalable
controllers that can perform effectively in multiple foraging
environments. We use Neuroevolution of Augmented Topologies
(NEAT) to design a neural network controller for a swarm
of homogeneous robots. Our system, called NeatFA (NEAT
Foraging Algorithm), is compared to existing swarm foraging
algorithms, the Central Place Foraging Algorithm (CPFA), and
the Distributed Deterministic Spiral Algorithm (DDSA). We
find that NEAT produces controllers with performance that is
comparable to both the CPFA and the DDSA. This is significant
because the controller design was evolved automatically without
preprogramming high-level behaviors or movements. The evolved
neural network controller responds to sensed inputs and produces
movements and actions that lead to effective collective foraging
by the swarm. We find that the NeatFA controller performs
comparably or outperforms the DDSA and CPFA for large swarm
sizes. Finally, we show that a NeatFA general controller, when
evolved for multiple environments but smaller swarm sizes, scales
successfully to larger swarm sizes.

I. INTRODUCTION

In swarm robotics, multiple autonomous individual robots
work collectively to achieve a common goal. The use of
inexpensive and redundant hardware in swarm robotics has
clear advantages over the traditional single-robot approach
for many problems[1][2]. A robot swarm can distribute work
across many individuals, often distributed through physical
space, allowing the swarm to explore more territory over time.
Since the swarm is comprised of many redundant individuals,
the swarm itself is more error tolerant than a single robot
performing the same task, in the sense that it can lose
individuals (e.g., to hardware failures) without affecting overall
performance. This avoids the single-point-of-failure problem
present in centrally controlled robotic systems.

The foraging problem is an instance of a common task
for swarm robotics, namely, finding resources in potentially
inhospitable or dangerous environments. For example, robots
are expected to be used commonly in outer-space exploration,
where expensive and costly life support is required for hu-
mans to survive[4]. The foraging problem applied to resource

Melanie Moses
University of New Mexico
Santa Fe Institute
melaniem @cs.unm.edu

Stephanie Forrest
Arizona State University
Santa Fe Institute
stephanie.forrest@asu.edu

Fig. 1. Overhead visualization of NeatFA in ARGoS[3]. This image displays
the random distribution swarm controller collecting seeds in the random
environment. The green dots dispersed around the center of the arena represent
pheromone placed by the robots in the swarm.

collection on a new planet may manifest itself as finding and
collecting fuel or materials, often without a predefined map of
the environment.

To solve the foraging problem, a robot swarm must col-
lectively solve several sub-tasks[5][6]. First, the swarm must
leave the base station (nest) and canvas the environment
for resources, e.g., food. Once discovered, the robots in the
swarm must pick up the food and find their way back to the
nest and deposit it. After the individual robot has completed
this foraging cycle, it then resumes the search for additional
resources. Finally, multiple individuals in a swarm lead to
interactions between robots, which can positively or negatively
affect overall performance.

This paper describes how neural network controllers can
be automatically generated for the swarm robotics forag-
ing problem using Neuroevolution of Augmented Topologies
(NEAT)[7]. First, we demonstrate that automatically designed
controllers can perform acceptably on the foraging task. Then,

Location |
; Random site
Tlarelu_)Seach
Site) Search with
Site fidelity (Jnrormed Walk'| Find and
Pheromones Collect Resource

Fig. 2. The CPFA behavior state machine

we ask how well the automatically designed controller per-
forms compared to other human-designed swarm controller
implementations. Finally, we ask whether NeatFA can produce
a swarm controller that generalizes—performing well in multi-
ple different environments—addressing a significant limitation
of today’s swarm controller designs for foraging problems.

To investigate these questions, we compare the perfor-
mance of a robot swarm controlled by a NEAT-designed
neural network to two similar swarm controller algorithms;
the Central Place Foraging Algorithm (CPFA)[8] and the
Distributed Deterministic Spiral Algorithm (DDSA)[9]. The
DDSA is entirely human-designed and implements a regular
search pattern. The CPFA has human-designed behaviors that
are governed by adaptively tuned parameters. Our algorithm,
NeatFA, is automatically produced by NEAT, with the human
only selecting the neural network inputs and outputs.

There are three major contributions of this paper. First,
we demonstrate the ability to automatically evolve both
environment-specific and general controllers using NEAT,
which forage effectively in multiple environments. Second,
for large swarm sizes, we show that our controller matches
or outperforms both biologically inspired (CPFA) and hand
designed (DDSA) controllers. Finally, we show that our gen-
eral controller scales well to larger swarm sizes after being
designed using much smaller swarm sizes.

A. Related Work

GAs are used in robotics for both physical and controller
design, an approach known as evolutionary robotics (ER) [10].
Recent efforts in the physical domain of ER have focused
on genetic algorithms. For example, designing “soft” body
structures comprised of simple voxel blocks[11], rearrangeable
and reconfigurable modular body parts[12][13], and evolu-
tionary algorithmic design of rigid body parts[14][15]. These
efforts center on robot mobility in different and challenging
terrains. For control, GAs have been used to optimize pa-
rameters for configuring a controller[16]. Another approach is
novelty selection [17] where the traditional fitness function is
replaced with a function that rewards novelty—controllers that
exhibit novel behaviors. By focusing on discovering innovative
behaviors, the GA can potentially escape local minima within
a behavior parameter set.

Fig. 3. Overhead visualization of the CPFA in ARGoS[3]. Fixtures in the
environment include the gray nest at the middle, the blue dots as the robots, the
black seeds in a semi-clustered configuration, and the line traces highlighting
the paths of the robots.

GAs have often been used to evolve and train neural
networks for various tasks [18][19][20][21][22][23][24]1[25].
In particular, they have been used to develop controllers
for swarm robot foraging, as described by Timmis et al.
in [26][27]. This work proposed a neural-endocrine system
combined with a feed-forward back-propagation layered per-
ceptron neural network for the swarm controller. The neural
network within the neural-endocrine system is preprogrammed
with specific tasks for the robot to execute. A limitation of
this approach is the necessity of reprogramming or retraining
the neural network whenever a new behavior is required. Our
approach is quite different, using NEAT to design a cyclic
perceptron network and setting the weights of the network
prior to controller execution. This allows the neural network
powering NeatFA to be automatically re-evolved for a given
environment.

The CPFAJ8] is a collection of hand-coded behaviors ar-
ranged in a state machine, as outlined in figure 2. Each state
is governed by a set of parameters that determine movement,
communication and memory. For example, parameters of the
CPFA determine the probability of returning to the nest on
any time step and the rate at which pheromones are deposited.
Each robot in the CPFA has the same controller with identical
parameters. These parameters are evolved before deployment
to tailor behavior to a specific distribution of resources (seeds)
and a particular swarm size.

The DDSA[9] is an algorithm designed to exhaustively
search an arena for seeds following a non-overlapping square
search pattern. The DDSA uses a recurrence relation that
defines a preplanned path for each robot to collectively trace
a spiral to fill the search space. When a robot encounters a
target it returns it to the center and takes a direct path back

Fig. 4. NeatFA running in the three distributions; from right to left: random, semi-clustered, and clustered. In comparison to the CPFA and the DDSA
visualizations, the NeatFA also contains a virtual nest, seeds and robots. Mirroring the functionality of the CPFA and the DDSA, a light is present above the
nest allowing the robots to seek out and find the nest. The green dots in the environment are a visualization of the robot’s pheromone trail.

I v "
. M = .
A
|J4 &
] ®
H oy

Fig. 5. Overhead visualization of the DDSA in ARGoS[3]. Similar to the
CPFA featured in figure 3, the DDSA contains the same nest, seed, robot
and paths. However, the DDSA’s algorithmic difference is apparent in this
visualization shown here as the square exhaustive search pattern.

to that location to resume its spiral search pattern. The DDSA
was found to collect tags faster than the CPFA and it was
surprisingly robust to localization error, but it was not scalable
to large swarm sizes. The DDSA is visualized in figure 5.

Another evolved approach to the foraging problem is de-
scribed by Ferrante et al. in [28]. This approach seeks to
evolve parameters in a heterogeneous swarm to build a co-
operative swarm with task specialization. By task specializa-
tion, it is shown that parameters are successfully evolved to
specialize robots in the swarm into collectors and droppers.
This approach differs from our approach as it allows for a
heterogeneous swarm. For comparison sake, NeatFA uses a
homogeneous controller architecture to match the CPFA and

the DDSA algorithms.

The CPFA has been extended to support multiple nests in
the Multi-Place Foraging Algorithm (MPFA)[29]. The MPFA
follows a similar parameter evolution strategy as the CPFA,
extended to multiple robot swarms that collaboratively forage
in the same arena. This approach presents different collision
avoidance issues related to the multiple drop off locations.
Here we focus on single-swarm algorithms, leaving the MPFA
for future extensions.

Neuroevolution of Augmented Topologies (NEAT)[7] is a
GA that is specialized for neural network design. It searches
for a good design by encoding a minimal network into a
chromosome for the initial population, and then evolving
the network using conservative network growth, feature-based
crossover, and speciation. NEAT-constructed networks are
comprised of a directed graph of connected perceptrons[30].
Each perceptron combines real inputs from both system sen-
sors and other perceptrons to produce control signal outputs.
The network of perceptrons acts as feed-forward universal
approximator[31]. Here we experiment with the traditional
version of NEAT, but other variants may be relevant for future
work. HyperNEAT[32] [33] constructs Compositional Pattern
Producing Networks (CPPN)[34]. The CPPN governs weight
magnitudes on the connection edges in the neural network.
Real-Time NEAT (rtNEAT) [35] evolves neural network con-
trollers during the runtime of an experiment by replacing
a fraction of the population periodically with more evolved
individuals.

II. METHODS

We implemented NeatFA to facilitate direct comparison to
the CPFA and the DDSA. With that objective, NeatFA runs
in ARGoS[3], so we can compare it to ARGoS simulations
of the CPFA and the DDSA. ARGoS is a swarm simulation
environment written in C++. It allows simulations to run either
in high-performance "headless’ mode or in visualization mode.
Headless mode is significantly faster than visualization mode.
Both modes are critical, because GAs require repetitive sim-
ulations to evaluate multiple swarm’s fitnesses over multiple

epochs, but simulation visualization allows direct inspection
of behaviors for analysis and verification, leading to insights
into the implemented behavior.

The simulation environment includes a nest, a variable
number of robot individuals and seeds available for foraging.
The simulated arena is a 10 by 10 meter square grid. The
nest is located in the center of the arena, 5 meters from the
arena edges. Figures 1 and 4 give visualized examples of
the simulation environment. Each simulation’s trial duration
is 30 minutes of simulation time. A trial starts with the
robot individuals randomly distributed near the nest. Robot
individuals in the simulation are moved by manipulating left
and right wheel speeds. Experiments are run with 256 seeds
placed in the arena in one of 3 distributions; random, semi-
clustered and clustered. In the random distribution seeds are
placed uniformly at random. The semi-clustered distribution
places seeds in groups of 1, 4, 16 and 64 seeds, each arranged
in square with each group placed randomly in the arena. The
clustered distribution places 4 groups of 64 seeds, organized
in an 8 by 8 seed grid, with each group located at a random
location in the arena. In earlier work, the CPFA and the DDSA
were analyzed on these exact distributions[8][9].

Our NeatFA implementation is designed to achieve similar
functionality to the CPFA and the DDSA and makes the
following assumptions:

1) As in the CPFA and the DDSA, the evolved controllers
know where the nest is located in the arena. This
aids navigation back to the nest. In NeatFA this is
implemented by a light at the nest that is visible to the
simple light-magnitude sensing eyes evenly distributed
around the body of each individual robot.

2) All controllers can detect if their robot is holding a
seed, and if so, the robot always returns the seed to
the nest before continuing its search. NeatFA includes
the holding-seed state as an input to the network, +1
for holding a seed and -1 for the absence of a seed.
Similarly, an input is included that detects the presence
of a seed at the robot’s current location.

3) Both the CPFA and the DDSA algorithms are pre-
programmed to pick up a seed when detected (if not
already holding one) and to automatically drop a seed
when it arrives at the next. NeatFA incorporates this
preprogrammed behavior. This is the only prespecified
behavior in NeatFA and is used to bootstrap the collec-
tion process.

4) Both the CPFA and the DDSA store state in the envi-
ronment. In the CPFA, robots optionally lay pheromone
trails that are available to itself and other individuals,
mimicking the behavior of ants. The DDSA stores the
spiral track information of each robot, allowing the robot
to return to its previous location after delivering a seed
to the nest. NeatFA allows the neural network to lay
a pheromone drop if a designated output neuron has
value greater than O and there is no pheromone within
radius R=5cm . Further, the robot can detect the presence
of a pheromone drop within radius 2R (a +1 value

at a designated input neuron and -1 for absence of
pheromone).

5) In the CPFA, individuals can detect other individuals to
facilitate collision avoidance. NeatFA implements this
by including a set of range detectors evenly distributed
around each robot’s body. Range detector values are raw
inputs to the NeatFA neural network.

6) Although the CPFA and the DDSA do not explicitly use
the simulated compass heading inputs, the DDSA does
follow vertical and horizontal paths while performing
the spiral search. To mirror this functionality, current
compass heading inputs are given as north, south, east,
and west magnitudes as input to the NeatFA network.

7) The simulation built for the CPFA and the DDSA has
four walls surrounding the arena to prevent robots from
wandering to far away from the nest. The NeatFA
simulation environment also uses walls.

NeatFA calculates fitness by awarding points to positive
behaviors within the simulation: One point for picking up a
seed and two points for returning it to the nest. This fitness
strategy accumulates points for partially completed tasks to
encourage swarms to complete all components seed foraging.
The sum of these points over the run of the simulation across
all robots in the swarm comprises the fitness for the associated
chromosome. Each individual controller in the population is
evaluated, and the fitness scores are reported to JNeat [36].
JNeat is a vanilla implementation of NEAT in Java, based on
the original C++ implementation. Each evolution processing
step produces a new population of robot swarm controllers to
evaluate. Source code and supplemental materials for NeatFA
is available on Github'.

A. Experiment 1

The first experiment compares the performance of NeatFA
to the CPFA and the DDSA in the semi-clustered environment
evolved for specific swarm sizes. This experiment follows
the approach of [9] which compared the performance of
the DDSA to that of the CPFA. Each plotted point is the
mean (error bars indicate the standard deviation) of 10 trial
ARGoS simulation runs collecting seeds distributed in the
semi-clustered distribution with swarm sizes of 2, 4, 6, 8, 10,
15, 20, 25, and 30. The previous result from [9] highlighted
a problem with the DDSA: namely, swarm sizes greater than
15 suffer from congestion at the nest—inhibiting fitness. To
compare against the CPFA and the DDSA algorithms, we
evolved a population of 100 neural network controllers for
each swarm size in the semi-clustered distribution over 300
generations. The swarm with maximum fitness was selected
and then re-evaluated over the 10 trials. The final fitness of
the neural network is divided by 3, which gives the number of
seeds collected, and then divided by 256 to give the percentage
of seeds collected.

Thttps://github.com/AdaptiveComputationLab/neatfa

NeatFA, General NeatFA, CPFA, and DDSA Comparison

==
]
o 80
8
2 7 .
Y e I =
.b J_ -—-_f___:_ _____
u 50 T =
Bl - L
g T
E 40 L .-
v} # __.r—?
a 30 e
v - . .
§ T i
£ 10 f

0

2 4 & g

voe@es NeatFA

- —@=-General NeatFA

g
L ‘__,_3. _______ -
1 i.;'—“"_d

1 ,i"".P'-] T

T w L

F ’,z"/ % J‘ i '[
,__T----- l

10 15 20 25 30
Swarm Size

DDSA CPFA

Fig. 6. Comparison of the CPFA, DDSA, NeatFA and General NeatFA in a simulation semi-clustered environment with a 30-minute simulation. Swarm sizes
for the three algorithms are listed on the x-axis. Fitness is calculated as a percentage of total seeds collected out of the 256 seeds present in the simulation.
Performance of the maximum fitness NeatFA general controller evaluated against the CPFA and the DDSA across the variety of different swarm sizes in the
semi-clustered environment. NeatFA closely tracks the CPFA’s performance and outperforms it for swarm sizes 4, 6, and 8. The general NeatFA outperforms
the DDSA for swarm sizes larger than 15. Additionally, both NeatFA and General NeatFA do not suffer from the crowding issue apparent in the higher DDSA

swarm sizes.

B. Experiment 2

The second experiment follows the approach of [8], in
which the performance of parameter sets evolved for specific
distributions were assessed on other distributions. This experi-
ment evolves three separate NeatFA swarms, one for each dis-
tribution. We evolved a population of 100 individual swarms
of size 6 over 300 generations in the 30-minute trial simulation
against each of the 3 distributions. As before, the maximum
fitness individual swarm selected from each of the 3 evolution
runs is evaluated by finding the mean and standard deviation
fitness by executing 10 trials across the 3 distributions each
(evolved for random against random, clustered, semi-clustered;
evolved for clustered against random, clustered, semi-clustered
and so on).

C. Experiment 3

The third experiment seeks to find a general-purpose swarm
algorithm with NeatFA. This experiment evolves a population
of 100 swarms with swarm size of 6, calculating fitness in all
three distributions. Each swarm controller is evaluated against
10 random, 10 semi-clustered, and 10 clustered environments.
The 30 total distribution environments are configured identi-
cally for each robot swarm to ensure To avoid issues with
lucky or favorable environment configurations, for instance,
clustered distributions with the clusters near the nest, the
same 30 distributions were used from swarm to swarm. In
other words, the same 30 environment distributions are used
for each swarm total fitness calculation through every epoch.
The experiment is run for 300 epochs and the maximum

fitness chromosome is selected from the experiment. The
controller with the highest fitness score is evaluated against
the 3 distributions and the swarm sizes targeted in experiment
1.

ITI. RESULTS
A. Experiment 1

The results of evolving NeatFA for swarm sizes 2, 4, 6, 8
10, 15, 20, 25, and 30 are shown in figure 6 (plotted blue
points). NeatFA performance ranges from 9.7% of the total
seeds collected for a swarm size of 2 to 98.4% of the total
seeds collected for a swarm size of 30.

The grey and orange plots show the performance of CPFA
(grey) and DDSA (orange) in the semi-clustered environment
with different swarm sizes (data reproduced from [9]), which
highlights how DDSA performance falls off at large swarms
sizes. As mentioned earlier this is caused by crowding at the
nest, which interferes with swarm members dropping off seeds.
Overall, the NeatFA performance on experiment 1 is similar
to that of the CPFA, demonstrating that NeatFA avoids the
nest crowding problem seen in DDSA, which we confirmed
through visual inspection of the runs.

These experimental results also support the claim that
the NeatFA performs comparably to CPFA and the DDSA,
slightly outperforming both algorithms at higher swarm sizes.
NeatFA’s worst relative performance was at swarm size 8§,
where it collected 53.7% of the total seeds that DDSA
collected, but at swarms size 30 NeatFA beat DDSA’s per-
formance by 173.6%. Compared to the CPFA, at swarm size

NeatFA Controller Fitness Over Distributions

Random

Percentage of Seeds Collected
" o w -~ o @ ~
& & & © & 3 S

o

Semi-Clustered Clustered

Distribution Tested Against

mRandom M Semi-Clustered Clustered m General

Fig. 7. Comparison of NeatFA evolved for the given distribution listed in the
legend, executed against the distributions listed on the x-axis. Blue represents
the performance of the controller evolved for the random, orange for the
semi-clustered, and grey for the clustered distribution. The performance of
the controller evolved for the random environment is noteworthy as it exceeds
the fitness of the other two evolved strategies, even in their own distribution.
The standard deviation highlighted by the error bars, shows that the random
distribution controller had the lowest variance where as the clustered controller
had the highest amount of variance. For comparison purposes, General NeatFA
(described in Experiment 3) is shown in green. General NeatFA equals or
outperforms the specifically evolved NeatFA in all distributions tested.

8 NeatFA collected only 61.9% as many seeds as CPFA,
but at swarm size 30 it collected 103.2%. Both comparisons
are within a factor of 2, signifying that the algorithms have
comparable performance. More importantly, NeatFA achieved
its results using an automatically designed algorithm.

B. Experiment 2

Experiment 2 results shown in figure 7 outlines the mean
performance of the NeatFA evolved for the three specific
distributions, evaluated against all three distributions with a
swarm size of 6. Most noteworthy is the the swarm evolved
for the random distribution, which outperformed the other
controllers even those evolved specifically for the evaluated
distribution. In contrast, the controllers evolved in clustered
and semi-clustered environments fail to improve foraging in
the environments they were evolved for. While the CPFA
could be evolved in different resource environments to im-
prove foraging in that environment, NeatFA did not evolve
to strategies that improved foraging for clustered resources.
Thus, we used a different approach in experiment 3 to design
a generic controller that is sufficiently flexible to perform well
in all 3 distributions.

The CPFA was shown to leverage pheromones more as
distributions became more clustered. This begged the question,
do pheromones benefit NeatFA? From visual inspection it was
not clear that robots were following pheromones to clusters.
Therefore, we disabled the ability to lay pheromone in each
of the controllers generated in experiment 1. The resulting
performance dramatically decreased to near zero — the robots
were unable to effectively forage without pheromones. We
conclude that the NeatFA controller relies on pheromones;

Generic Controller Statistics
100 *

60

Percentage of Seeds Collected

a0 Q
30
0 A
% -
10 ¥ .
0
1 4 6 8 10 15 20 25 30

Swarm Size

+=+¢++ Random = B =5emi-Clustered Clustered

Fig. 8. Mean and standard deviation performance of the general NeatFA
controller. The controller performs reasonably well in all three distributions
and scales linearly across swarm sizes.

however pheromone use does not improve foraging in clus-
tered distributions as it does in the CPFA.

C. Experiment 3

Seeking a general controller that can perform well if it
doesn’t know the distribution of seeds ahead of time, ex-
periment 3 evolves a controller for the three distributions
simultaneously using a swarm size of 6. Figure 6 shows
how the NeatFA controller performs as it scales up to the
comparison swarm sizes. Its performance is comparable to the
CPFA evolved for the semi-clustered distribution and specific
swarm sizes. In other words, the NeatFA general controller
scales well without requiring redesign for different swarm
sizes. This controller also performs well in the clustered
and random distributions as shown in Figure 8. The general
NeatFA controller performs best in the random distribution
across all tested swarm sizes with the semi-clustered and clus-
tered distributions not lagging far behind. Figure 7 highlights
the general NeatFA controller’s performance across the three
distributions in comparison to the specifically evolved NeatFA.
General NeatFA is able to meet or outperform the specifically
evolved NeatFA across the board.

The general NeatFA’s performance does not decrease as
swarm sizes increase as the DDSA does, indicating it does
not suffer from nest crowding. The general controller is able
to effectively avoid this pitfall without specifically evolving
for the larger swarm sizes where this issue is present.

IV. CONCLUSION

NeatFA, an evolved neural network controller, is competi-
tive with the best human designed foraging algorithms. The
foraging problem is non-trivial and requires a controller to
perform a series of subtasks including searching the envi-
ronment, retrieving and delivering food to a predefined nest,
and interacting with other robots in the swarm. In addition,
foraging robots must avoid collisions with other robots in the
swarm. Through the use of NEAT, NeatFA is able to automat-
ically produce behavior that satisfies these requirements with

a simple reward-based fitness function and basic preceptron
neural network.

We have shown that the NeatFA controller is comparable
to two other popular foraging algorithms, the CPFA and
the DDSA, across several different swarm sizes and seed
distributions. These results hold both for the NeatFA controller
evolved for specific swarm sizes (experiment 1) and for the
general controller evolved in experiment 3. NeatFA performs
comparably to DDSA on small swarm sizes and avoids over-
crowding at the next for swarm sizes 20 and greater. This is
remarkable as the NeatFA controller design is only evolved to
do so, avoiding costly and time consuming work of designing
a controller by hand. The general NeatFA swarm controller
performs well in all target distributions, and its performance
scales linearly with swarm size. This result shows that NeatFA
can discover behaviors that generalize across environments and
scale with swarm size.

The NeatFA controllers were designed using a simple
reward-based fitness function and a simple preceptron-based
neural network. The controller neural network structure is
remarkably simple, attributed to NEAT’s slow network growth.
For instance, the general controller includes only 50 total
nodes (including 16 input and 3 output nodes) connected by
251 edges.

Taken together, these results demonstrate the feasibility of
incorporating fully automatic design of controllers for swarm
robotic foraging problems.

A future goal of this work is to run NeatFA on physical
swarm robot hardware following the methods and experimen-
tal design in [8]. This is a challenge due to the reality gap
between simulation and real world inputs and outputs. For
instance, physical robot hardware may suffer from noise or
faulty inputs in comparison to inputs from a physics engine.
These differences will require analysis and inspection to allow
an evolved controller to interact with the real world. We are
hopeful that the flexible nature of a general algorithm will lend
itself to bridging this reality gap and allowing NeatFA to run
a physical robot swarm.

ACKNOWLEDGEMENT

The authors thank the UNM Adaptive Computation Lab
members Andrew Milligan, Cari Martinez, Cynthia Freeman,
Jessica Jones, Joe Renzullo, and Padraic Cashin for their
support and feedback on this research. Also, we thank the
UNM Biological Computation Lab members Joshua Hecker,
Matthew Fricke, and Wayne Just for their help gathering com-
parison data. We like to recognize Laura Patrizi for her contri-
butions to the early stages of this research effort. SF acknowl-
edges the partial support of NSF (1518878), DARPA (FA8750-
15-C-0118), AFRL (FA8750-15-2-0075), the Sandia National
Laboratories Academic Alliance, and the Santa Fe Institute.
MEM was supported by NASA MUREP #NNX15AM14A and
a James S. McDonnell Foundation Complex Systems Scholar
Award.

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

REFERENCES

A. L. Christensen, R. OGrady, and M. Dorigo, “From fireflies to
fault-tolerant swarms of robots,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 4, pp. 754-766, 2009.

A. F. Winfield and J. Nembrini, “Safety in numbers: fault-tolerance in
robot swarms,” International Journal of Modelling, Identification and
Control, vol. 1, no. 1, pp. 30-37, 2006.

“Argos,” http://www.argos-sim.info/, retrieved 2016-09-06.

W. Fink, J. M. Dohm, M. A. Tarbell, T. M. Hare, and V. R. Baker, “Next-
generation robotic planetary reconnaissance missions: a paradigm shift,”
Planetary and Space Science, vol. 53, no. 14, pp. 1419-1426, 2005.
W. Liu, A. F. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy
optimization: Emergent task allocation in a swarm of foraging robots,”
Adaptive behavior, vol. 15, no. 3, pp. 289-305, 2007.

A. F. Winfield, “Foraging robots,” 2009.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99-127, 2002.

J. P. Hecker and M. E. Moses, “Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm Intel-
ligence, vol. 9, no. 1, pp. 43-70, 2015.

G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, and M. E. Moses,
“A distributed deterministic spiral search algorithm for swarms,” in
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on. 1EEE, 2016, pp. 4430-4436.

J. C. Bongard, “Evolutionary robotics,” Communications of the ACM,
vol. 56, no. 8, pp. 74-83, 2013.

N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: evolving soft robots with multiple materials and a powerful
generative encoding,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation. ACM, 2013, pp. 167-174.

M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43-52, 2007.

M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable
robot system for collective behaviors,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. 1EEE, 2012, pp.
3293-3298.

J. E. Auerbach and J. C. Bongard, “Evolving complete robots with cppn-
neat: the utility of recurrent connections,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation. ACM,
2011, pp. 1475-1482.

S. Luke and L. Spector, “Evolving teamwork and coordination with
genetic programming,” in Proceedings of the 1st annual conference on
genetic programming. MIT Press, 1996, pp. 150-156.

P. J. Fleming and R. C. Purshouse, “Evolutionary algorithms in control
systems engineering: a survey,” Control engineering practice, vol. 10,
no. 11, pp. 1223-1241, 2002.

J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty.” in ALIFE, 2008, pp. 329-336.
H. Kitano, “Designing neural networks using genetic algorithms with
graph generation system,” Complex systems, vol. 4, no. 4, pp. 461-476,
1990.

Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many
could be better than all,” Artificial intelligence, vol. 137, no. 1-2, pp.
239-263, 2002.

F. Gruau et al., “Neural network synthesis using cellular encoding and
the genetic algorithm.” 1994.

D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms.” in IJCAIL, vol. 89, 1989, pp. 762-767.

F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam, “Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,” IEEE Transactions on Neural networks, vol. 14, no. 1, pp.
79-88, 2003.

O. Witkowski and T. Ikegami, “Emergence of swarming behavior:
foraging agents evolve collective motion based on signaling,” PloS one,
vol. 11, no. 4, p. e0152756, 2016.

A. Acerbi, D. Marocco, and S. Nolfi, “Social facilitation on the devel-
opment of foraging behaviors in a population of autonomous robots,”
Advances in artificial life, pp. 625-634, 2007.

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

I. F. Pérez, A. Boumaza, and F. Charpillet, “Learning collaborative
foraging in a swarm of robots using embodied evolution,” in ECAL
2017—-14th European Conference on Artificial Life, 2017.

J. Timmis, L. Murray, and M. Neal, “A neural-endocrine architecture
for foraging in swarm robotic systems,” Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), pp. 319-330, 2010.

P. Vargas, R. Moioli, L. de Castro, J. Timmis, M. Neal, and
F. Von Zuben, “Artificial homeostatic system: a novel approach,” Ad-
vances in Artificial Life, pp. 754-764, 2005.

E. Ferrante, A. E. Turgut, E. Duéfiez-Guzmén, M. Dorigo, and T. Wense-
leers, “Evolution of self-organized task specialization in robot swarms,”
PLoS computational biology, vol. 11, no. 8, p. 1004273, 2015.

Q. Lu, J. P. Hecker, and M. E. Moses, “The mpfa: A multiple-place
foraging algorithm for biologically-inspired robot swarms,” in Intelligent
Robots and Systems (IROS), 2016 IEEE/RSJ International Conference
on. IEEE, 2016, pp. 3815-3821.

F. Rosenbaltt, “The perceptron—a perciving and recognizing automation,”
Report 85-460-1 Cornell Aeronautical Laboratory, Ithaca, Tech. Rep.,
1957.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359-366, 1989.

J. Drchal, J. Koutnik, and M. Snorek, ‘“Hyperneat controlled robots learn
how to drive on roads in simulated environment,” in 2009 IEEE Congress
on Evolutionary Computation. 1EEE, 2009, pp. 1087-1092.

K. O. Stanley, D. B. D’ Ambrosio, and J. Gauci, “A hypercube-based en-
coding for evolving large-scale neural networks,” Artificial life, vol. 15,
no. 2, pp. 185-212, 2009.

K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genetic programming and evolvable ma-
chines, vol. 8, no. 2, pp. 131-162, 2007.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neu-
roevolution in the nero video game,” IEEE transactions on evolutionary
computation, vol. 9, no. 6, pp. 653-668, 2005.

J. HomePahe, “Framework for neuroevolution (neat java),” Available on;
http://nn. cs. utexas. edu/softview. php.

