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ABSTRACT
The subject of t-restrictions has garnered considerable interest
recently as it encompasses many different types of combinatorial
objects, all of which have unique and important applications. One
of the most popular of these is an ingredient in the generation of
covering arrays, which are used for discovering faulty interactions
among software components. We focus on existential t-restrictions,
which have a structure that can be exploited by genetic algorithms.
In particular, recent work on such restrictions considers affine
transformations while maximizing the corresponding “score” of
the formed restriction. We propose to use genetic algorithms for
existential t-restrictions by providing a general framework that can
be applied to all such objects.
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1 INTRODUCTION
Imagine that some input to a software system produces incorrect or
unexpected behavior. Efficient methods are needed to find faults of
this type. Suppose that there are k components of the system, and
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each component i has a set of vi possible inputs to the component.
Overall, there are potentially

∏k
i=1vi possible tests that can be run

on this system; this is called a full factorial design. Such a design
guarantees to test every possible set of inputs to the system; if any
one of them produces an incorrect output, then we have determined
the existence of at least one fault in the system. However, if k or any
of the vi are large, this would be a very prohibitive strategy. If one
makes the assumption that at most a small number of components
can cause a fault, then one can achieve a much better bound in
general; this is known as combinatorial interaction testing (CIT).
Even under this assumption, forming a test suite with few tests is
challenging.

Table 1 gives a real-world example of such a CIT test suite, which
appears in [2]. Suppose we have a system that contains any of
three browsers, three operating systems, three types of connections,
and three types of connections to a printer; therefore, the system
has four components, each of which can take on three values. In
addition, suppose we know that a fault will not arise from at least
three different components interacting, but there may be such a
fault from two components. It is possible then to test this system
using 9 tests, which is optimal.

Here, we consider a family of objects with a specific structure,
with many applications including being ingredients to generate
a desired test suite. The number of tests generated is often very
competitive with existing methods, and the size of the objects in
this family is often much smaller, allowing for much faster genera-
tion. Furthermore, we employ a strategy that is even faster, while
also limiting the additional rows needed for the test suite. The
domain for such a strategy is very large, so we propose using ge-
netic algorithms (GAs) to search the space more effectively than
other approaches. A simple implementation of a GA using stan-
dard operators and representation improved fitness from 59% of the
theoretically optimal fitness to over 78% of this optimum (and the
improvement for the estimated true optimal fitness is over 30%).

2 THE MODEL
For simplicity, we describe the model at a high level; for a formal
treatment, see [5]. A t-restriction is an N × k array, where each
element belongs to some domain. Furthermore, there is a set of
demands provided of the form (X ,Q), where X is a set of t-tuples
of symbols, and Q is either ∃ or ∀. For every choice of t columns
of the array, these columns satisfy all demands that involve them;
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Table 1: A test suite to cover all pairs of interactions of
browser, OS, connection, and printer.

Test Browser OS Connection Printer
1 NetScape Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape macOS PPP Screen
4 IE Windows ISDN Screen
5 IE macOS LAN Networked
6 IE Linux PPP Local
7 Chrome Windows PPP Networked
8 Chrome Linux LAN Screen
9 Chrome macOS ISDN Local

by this, we mean that if (X ,Q) is such a demand, and Q = ∃, then
some element ofX appears in some row restricted to these columns;
otherwise if Q = ∀, then for any element x in X , some row equals
x . A t-restriction is existential if Q = ∃ for all demands, and is
universal if Q = ∀ for all demands. In a GA context, one example
for the fitness of an individual, represented as the array, is the
number of demands it satisfies.

Some notable examples of t-restrictions are covering arrays (CAs)
[2] and perfect hash families (PHFs) [9]. The demand for a CA is
that every choice of t symbols appears in some row, and a PHF
requires some row having all distinct symbols. A CA is an analogue
of the testing strategy described above, and a PHF is a common
ingredient in the construction of CAs. To generate a desired CA
with k components, a PHF with k columns is needed, along with
another CA with fewer columns. Many generalizations of PHFs
exist [7, 11], but we focus here on Sherwood covering perfect hash
families (SCPHFs) [10]. Each entry in a SCPHF is a list of values,
called a permutation vector, that expands into a (partial) column of
a CA directly.

Much effort has been invested to determine the smallest size
of these restrictions; see [2] for a survey on CAs, and [3, 8] for
tables of best-known CA and PHF sizes. We only discuss PHFs and
SCPHFs from here on, but the framework is general enough to allow
application to any existential t-restriction. To obtain a solution with
many columns, one can horizontally replicate the array multiple
times; any t choices of columns that involve an original column at
least twice do not satisfy the demand (along with other constraints
for SCPHFs), so additional rows are needed to satisfy them; some
techniques bound how many additional rows are needed [1, 4].
However, by changing the duplicates in a controlled way, we can
dramatically reduce the number of unsatisfied demands.

3 AFFINE TRANSFORMATIONS
Colbourn and Lanus [6] consider affine transformations on SCPHFs
in an attempt to reduce the number of such sets. An affine trans-
formation (AT) is a multiplier µ and an adder α , such that if c is
an observed value, then the AT maps c to µc + α , with arithmetic
done over the finite field. As an example, if there are 3 symbols,
and if the AT has µ = 2,α = 1, then the value 2 under this AT will
be (2 × 2 + 1)%3, which is 2.

Because the sample space is so large, they only use a greedy algo-
rithm for finding appropriate transformations. Naturally, a different

Table 2: Improvements to k for SCPHFs with t = 7 and 3 sym-
bols.

# rows 2 3 4 5 6 7 8 9 10
kprevious 9 10 12 13 13 15 17 19 21

knew 10 11 13 14 15 17 18 20 22

AT for each row of any existential t-restriction can be applied, be-
cause whether or not a demand is satisfied is only determined on a
per-row basis (since each demand has Q = ∃); the set of demands
for each duplicate will always be satisfied. One benefit of ATs is
that they reduce the number of duplicate columns. What makes
SCPHFs interesting is that ATs may not just be applied to each
row, but independently for each index in the permutation vectors;
so, we can associate each row and each index of the permutation
vectors its own multiplier and adder. This dramatically increases
the number of possible transformations. Unpublished work by the
first author shows that a standard GA representation without use
of affine transformations and a small population (50) can improve
the number of columns for SCPHFs (see Table 2). Additionally,
the same GA model against PHFs, with ATs, has an over 30% im-
provement in fitness with one minute of computation. We believe
that by exploiting ATs, GAs can find more competitive existential
restrictions than other methods can.

4 CONCLUSION
Testing interactions between components in software will always
remain of high importance, and one of the main bottlenecks cur-
rently in generating competitively small test suites is the amount
of computation needed. We expect that a collaboration between
the Genetic Improvement and the interaction testing communities
to investigate how a simple improvement in a small existential
t-restriction can lead to large improvements in the test suites gen-
erated.
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