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Cognitive networks have evolved a broad range of solutions to the problem of

gathering, storing and responding to information. Some of these networks are

describable as static sets of neurons linked in an adaptive web of connections.

These are ‘solid’ networks, with a well-defined and physically persistent

architecture. Other systems are formed by sets of agents that exchange,

store and process information but without persistent connections or move rela-

tive to each other in physical space. We refer to these networks that lack stable

connections and static elements as ‘liquid’ brains, a category that includes ant

and termite colonies, immune systems and some microbiomes and slime

moulds. What are the key differences between solid and liquid brains, particu-

larly in their cognitive potential, ability to solve particular problems and

environments, and information-processing strategies? To answer this question

requires a new, integrative framework.

This article is part of the theme issue ‘Liquid brains, solid brains: How

distributed cognitive architectures process information’.

1. Introduction
As complex living forms emerged around the time of the Cambrian explosion,

cognition and the networks sustaining it became a major enabler of multicellular-

ity. The scale and complexity of multicellular organisms led to specialization of

cell types and function, goal-directed movement, and other coordinated

behaviours, requiring improved perception and memory of the environment.

Although behavioural patterns were already present before the advent of neurons

[1], the appearance and rapid expansion of neural components facilitated new

complex behaviours. These evolutionary achievements would have been imposs-

ible without neurons, their precursors and the circuits that emerged after them;

they transformed the living landscape in profound ways. Information became

an essential part of how complex organisms adapted to new conditions within

their life spans, allowing much faster and more flexible responses than those

allowed by genetic information. One path in the tree of life that emerged from

the Cambrian era included bilaterians—animals with a well-defined lateral sym-

metry. Within this group, nervous systems appeared that spread their neurons in

a symmetric configuration. These networks ultimately evolved into segregated

masses of neurons that are organized in a distinct central control system. The

‘first’ brains were formed [2] and became powerful prediction machines [3].

The moving hypothesis posits that active exploration of an organism’s spatial

environment was a key step in the evolutionary trajectory that produced brains

[4]. From this viewpoint, prediction is both a cause and a consequence of

animal movement, and its implementation required learning networks to

emerge [5]. Predation was likely the most important selective pressure to create

learning networks [6]. This powerful evolutionary innovation was not limited

to neural networks, and we suggest here that the many kinds of networks of inter-

acting agents that evolved to process information have characteristic similarities

and differences.

Information processing networks can be found in microbial communities,

inside cells (as gene regulatory webs), and in immune systems. The diversity of

architectures and information-processing strategies of these networks is stunning.

Fluid webs of information exchanges among thousands or even millions of ants or
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termites unfold in most of the biosphere [7,8]. Simple life forms

known as slime moulds, made of a single macroscopic (multinu-

cleated) cell, can solve complex problems. Plants seem to occupy

a very different region of the space of cognitive networks, lack-

ing neural-like structures and physical movement, yet defining a

tremendously successful and ecologically important group.

Liquid computers and chemical reactions provide a rather

different set of case studies, where computation and informa-

tional processes are not clearly defined. In this context,

developmental programmes and pattern formation are also

considered to be forms of cognition [9].

What is common among all of these disparate examples?

Are there well-defined classes based on organizational struc-

ture, mechanism, or function? Is the physical state associated

with each system a major constraint on the types pf compu-

tations that can be achieved? Are there basic design

principles and constraints that would allow us to predict sys-

tems that have not yet been discovered by evolution? Are

there strategies that have been discovered by natural evolution

that could lead to new forms of computation, perhaps using

synthetic biology? Answering these and other fundamental

questions was the goal of a small workshop held at the Santa

Fe Institute in December 2017. The meeting convened a

group of researchers from diverse fields of science and engin-

eering, including social insect behaviour, microbiology,

synthetic biology, developmental and systems biology, neuro-

science, computer science and statistical physics. Over several

days, the participants took the initial steps towards formulating

a theory of liquid versus solid brains with the long-term goal of

establishing the basis of a general theory of cognitive networks.
2. Liquid or solid, neurons or no neurons
The starting point of this ambitious programmewas a high-level

review of the space of cognitive networks: small and large, dis-

tributed and centralized, modular and hierarchical, alive and

artificial. All of them are composed of multiple components

that exchange and react to both environmental and internal sig-

nals to gather, store and process information. Their nonlinear

character requires (in most cases) an appeal to extended views

of computation beyond standard definitions [10]. In addition,

the collective dynamics exhibited by large populations of

agents interacting nonlinearly depends critically on whether

or not the basic network components are mobile. We identified

two key dimensions to characterize different categories of cogni-

tive networks (figure 1): the physical characteristics of the

system, and the presence or absence of neurons.

The second dimension immediately raises the question of

how to define a ‘brain’, a question rarely addressed (with few

exceptions, see [11]) in neuroscience textbooks. The standard pic-

ture is that a brain is an organ composed of a (usually very large)

number of neurons whose functionality is grounded in changing

connectivity patterns based on environmental interactions,

usually mediated by sensory interfaces. Connectivity patterns

are described by synaptic weights, determined over time by pat-

terns of interactions with the environment. An early discussion

of the nature of brains and how to define them [12] considered

only vertebrate brains. Pagán [13] and Turner [14] extend the

question to consider the wider picture, from the smallest brain

to very different (solid and liquid) cognitive systems.

The study of brains has flourished over the past few

decades, leading to a science of brains where the network
perspective has become central [15]. The concept of the connec-
tome, defined as the different levels of complexity associated

with both anatomical and functional neuronal networks, is

today a dominant view in the neurosciences. The reason is

obvious on multiple scales. Small neural circuits of single

cells connected through their synaptic terminals have been a

key element in most classical approaches to learning and

conditioning.

Even before complex neuronal networks evolved, micro-

organisms discovered collective structures that could respond

to stressful environments, especially those that posed threats

to individual cells. Survival was thus tied to cooperation, and

cooperation required novel forms of communication within

collectives. To quote James Shapiro: ‘bacteria are small but

not stupid’ [16]. A well-known example of this level of collec-

tive behaviour is quorum sensing (QS), a process that

involves populations of cells working cooperatively [17]. QS

allows groups of bacteria to monitor the presence of other bac-

teria at a population-wide scale, leading in some cases to the

emergence of colony-level coordinated responses. This illus-

trates how microbial colonies can make collective decisions.

In another vein, the collective behaviour of biofilms is illus-

trated by recent work on long-range electrical

communication in bacterial communities [18]. Martinez-

Corral et al. [19] investigate how similar chemical signalling

might exist in both cortical brain activity and biofilm dynamics.

Slime moulds Physarum polycephalum are a particularly fas-

cinating example of collective behaviour by aggregates of

single cells. Although the organism is single-celled (but includ-

ing multiple nuclei), in groups it displays highly complex

spatial morphological patterns as it explores its environment.

Physarum moves and spreads in a coherent fashion, coordi-

nated by rhythmic pulses of its cytoplasm. This pulsatile

activity occurs within a complex network of connected plasmo-

dial tubes. A rich dynamic involving both chemical and

bioelectrical components pervades the behavioural responses

and allows the network to arrange and self-modify in the pres-

ence of exogenous signals, both activating and inhibitory [20].

The tubes can experience thinning or thickening under low and

high nutrient availability, and this has been leveraged by scien-

tists to use them as a biological computer capable of solving

optimization tasks, from finding short paths or even solving

a maze to computational geometry problems. In all of these

cases, the ‘output’ is encoded in the morphology of the slime

mould, arising from the spatial arrangement of repellent or

attracting gradients. Physarum can also navigate through com-

plex environments using an external memory [21], and they

have been observed to make optimal decisions associated

with nutritional requirements [22]. As discussed in [23], they

also display habituation, i.e. a common adaptive response (dis-

played by neural organisms) to an unpleasant persistent

stimulus. This finding supports the idea that brainless systems

can under the right conditions learn from experience to

discriminate diverse sources of information.

The boundaries of cognition space can be delineated by

considering the simplest ‘solid’ brains and asking how

they do their jobs compared with similarly simple liquid

examples [24]. Planarians (flatworms) are a candidate for

the first true (i.e. centralized) brains [2,13]. Of particular

interest is the tight integration of developmental and

cognitive phenomena. As pointed out in [25], remarkable

information processing tasks were evolved long before solid

brains emerged. Planarians can regenerate every part of their
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Figure 1. Example cognitive networks. The figure illustrates four classes of cognitive networks, based on whether or not actual neurons are present or absent and on
the physical organization of the network. Standard neuronal networks (a) involve specialized, spatially localized cells connected through synaptic weights. Simpler
organisms, such as planarians (flatworms, b) contain neural structures that differ from the more complex brains in panel (a). Inspired by real neurons, artificial arrays
of in silico units (c) imitate some of the generic features of their biological counterparts by sensing and responding to environmental signals, but these rigid spatial
structures lack neural units. Placozoans (d ) lack neurons altogether and have very simple anatomical complexity, but exhibit active behaviours. Using a different
architecture, plants also lack neurons but some of their modular parts, including roots (e) and stomata in leaves ( f ), belong to the ‘solid’ sub-class. Liquid brains
include those formed by agents equipped with their own neural or neural-like components such as (g) ant or (h) termite societies and their artificial counterparts in
robot swarms (i). In these liquid brains, each component has its own solid brain. A second major class of liquid brains includes mobile components that lack an
internal brain such as ( j) Physarum, (k) immune networks and (l) microbiome communities. Here there are no neural-like elements and yet in many ways these
systems solve complex problems, exhibit learning and memory, and make decisions in response to enivornmental conditions. Finally, there is evidence that both the
immune system and the microbiome interact at some level with the brain of the host organism.
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bodies [26] and experimental studies show that memories

survive decapitation (see Shomrat & Levin [27] and references

therein). These results point to a deep connection between

neural-based phenomena and somatic memory. Importantly,

many developmental responses to perturbations can be

mapped into an attractor diagram that represents morpho-

logical end states as attractors. The dynamics leading to

these attractor-based responses can be implemented in very

different types of non-neural hardware, although we still lack

a common theoretical framework for describing these systems,

as discussed in [9].
The solid, aneural region of cognitive space is shared with

other groups of living organisms with different organiza-

tions, life styles, and life cycles. Plants, in particular, define a

limiting case [28,29]. The cognitive potential of plants was

recognized as early as Darwin in a monograph [30], where

he pointed to the interesting responses displayed by plants to

external signals and environmental cues. Plants exhibit

responses that suggest interesting computational abilities

[28], and the concept of ‘plant intelligence’ [31] has also been

developed (with some degree of controversy) in recent dec-

ades. Communication at multiple scales, in particular, has
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Figure 2. The diversity of computations in liquid and solid networks. Ant colonies (a, courtesy of Guy Theraulaz) can be understood as solving a least-action
problem where the shortest path is discovered through preferential choice of paths with the highest pheromone concentration. The single-celled plasmodium
of Physarum polycephalum (b) also uses least-action dynamics to solve logic, geometrical, and graph theory problems, including finding the shortest path through
a maze. It is less clear how to classify problems solved by planarians (c), a class of flatworms whose nervous system is organized bilaterally with a solid ‘brain’ and
two eyes. Planarians feature distributed (versus brain-centric) memory of past events: their morphology is reprogrammable through bioelectric signals which may
play a central role in both cognition and development. Finally, single cells contain diverse information-processing phenomena, including complex cascades, genetic –
metabolic interactions, and vesicle-associated computations, such as the machinery for storing insulin displayed in (d).
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been of interest, ranging from networks of stomata in leaves to

signals sent through root systems. These examples point to the

need for better understanding of information processing in

plants [28], including genetic switches and analogue compu-

tations that take place within the process of seed dispersal

and germination [32]. Intriguingly, these processes involve

the ‘movable’ part of the plant’s life cycle.
3. Discussion
The examples described above provide a glimpse of the diverse

repertoire of cognitive distributed systems that are naturally

described by some sort of nonlinear network of interacting

agents [33]. Beyond the specific functional roles they play,

such networks will surely share some fundamental properties.

Some of the potential commonalities were suggested nearly

three decades ago [34], including two key properties shared

by most connectionist models: (1) The interactions between

the variables at any given time are explicitly constrained to a

finite list of connections. (2) The connections can change, in

that their strength and/or pattern of connectivity can change

with time. Farmer’s discussion [34] pointed to these commonal-

ities as the ‘Rosetta Stone’ for a unified picture (see also [35]).

Within the context of liquid brains, these ideas are particularly

relevant. Common (perhaps universal) phenomena associated

with attractor-like dynamics suggest a statistical physics

approach to liquid brains [36,37]. Novel models, general

enough to include several case studies (even if in abstract

terms) will be needed. These might not necessarily be based
on living systems, as illustrated by the richness of compu-

tational phenomena associated with chemical computers (see

[38]). Moreover, the liquid–solid term, which we have used

here with no rigorous definition, might become rigorously

incorporated using mathematical approaches to collective

motion that explicitly account for mobile (self-propelled)

entities (see [39], and references therein).

Beyond statistical physics, information and computation

are central concepts as well, and we lack rigorous models

that characterize which computational problems are solved

well by liquid brains and which are not [40]. As summarized

in figure 2, it is often not clear what kind of formal approach

is appropriate. Wood [41] suggests that understanding capa-

bilities of different kinds of brains requires a more formal

distinction between information processing and computation,

terms that are often used interchangeably. Other powerful

computational paradigms, such as Reservoir Computing

might be more appropriate when dealing with biological

information processing, as discussed in [42].

Vining et al. [43] develop liquid cellular automata to

demonstrate how liquid systems compute without sophisti-

cated physical network structures. Mobility is shown to

increase information flow among moving agents, which

encounter and communicate with new agents over time.

Calovi et al. [44] show that liquid systems, in this case termites,

use the physical structure of the surrounding environment as

an essential component of computation. Kao et al. [45] describe

a different sort of hybrid system in which the modular struc-

ture of moving animal populations implies that some

communication is more persistent and local (as in a solid
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brain) even in a larger liquid system, and that this can lead to

better collective decision-making in complex environments.

In both ant colonies and Physarum networks we can find

similar ways of solving problems using the least-action prin-

ciple. The computation performed is a consequence of a

pattern-forming structure. But, it is also important to recog-

nize that there is a human-made set of boundary conditions

that allow the slime mould to actually compute the shortest

path. How much is this prepared set of conditions defining

the richness of computations performed by this unicellular

system? In planarians, as discussed above, memory is far

from completely centralized, suggesting a totally different

form of regeneration-related computation.

At the smaller scale, when dealing with the complex com-

putations performed by a network of molecules within cells,

we find a wide array of possibilities, from Boolean-like

switches, finite-automaton machines and membrane compu-

tations. All of these alternatives operate under highly noisy

conditions. Although computational models at this level are

usually described in terms of gene regulatory networks,

they also take place on different networks [46–48], Silva-

Rocha et al. 2011. A unified picture of all these types of bio-

logical computation would require the proper formulation

of a ‘computational morphospace’ [49].

The contributions to this theme issue collectively provide a

first roadmap for the development of an integrative view of

network cognition. Understanding the relative computational
advantages of liquid versus solid systems is important scienti-

fically, and in the future these understandings are likely to

suggest important new ways of thinking about and configur-

ing traditional computations. As computation continues to

move off the desktop and into the physical world, we expect

that liquid systems characterized by networks of distributed,

mobile, and largely autonomous components will become

even more important than they are today.
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