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3Santa Fe Institute, Santa Fe, NM, USA
4Arizona State University, Tempe, AZ, USA

WFV, 0000-0001-7477-2212

Brains are composed of connected neurons that compute by transmitting

signals. The neurons are generally fixed in space, but the communication

patterns that enable information processing change rapidly. By contrast,

other biological systems, such as ant colonies, bacterial colonies, slime

moulds and immune systems, process information using agents that

communicate locally while moving through physical space. We refer to

systems in which agents are strongly connected and immobile as solid,

and to systems in which agents are not hardwired to each other and can

move freely as liquid. We ask how collective computation depends on

agent movement. A liquid cellular automaton (LCA) demonstrates the

effect of movement and communication locality on consensus problems.

A simple mathematical model predicts how these properties of the LCA

affect how quickly information propagates through the system. While

solid brains allow complex network structures to move information over

long distances, mobility provides an alternative way for agents to transport

information when long-range connectivity is expensive or infeasible. Our

results show how simple mobile agents solve global information processing

tasks more effectively than similar systems that are stationary.

This article is part of the theme issue ‘Liquid brains, solid brains: How

distributed cognitive architectures process information’.
1. Introduction
Natural systems process information in a wide variety of ways. For example, in

the vertebrate brain, relatively immobile neurons transmit information over net-

works that enable both long- and short-distance communication. By contrast, ant

colonies collectively process information by individual ants that communicate

with other ants as they move through space. We define a brain to be a collection

of agents that act in concert to process information. A solid brain is one whose

agents have fixed position with respect to one another and mostly fixed network

connections that are unlikely to change during a computation. In addition to the

human brain, other examples include plants and microprocessors, which have

components (i.e. cells or transistors) that are fixed in space but use communi-

cation networks to exchange information with neighbouring and possibly

distant components. By contrast, agents in a liquid brain lack fixed connections

and can move independently with respect to one another, as is the case with

social insects, cells in the immune system, and many other living systems.

The existence of both liquid and solid brains in nature raises questions

regarding the evolutionary pressures that led to these different designs, the

algorithms appropriate to each, and the classes of problems that each is best

at solving. Solid brains, owing to their static nature, can form hierarchies and

other stable network structures that enable multiple levels of abstraction for a

given input, and these physical structures make them suitable for processing

images and symbols. The stability of solid brains may enable higher levels of
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cognition. Consider, for example, the huge advances made in

image processing with deep artificial neural networks [1],

where deep refers to a highly structured, fixed relationship

between individual agents, loosely mimicking the neural

structures found in the animal brains that inspired these

models. On the other hand, the dynamic structure of a

liquid brain allows it to cover large and variably shaped

physical spaces. For instance, ants can defend a large territory

from attack from multiple directions, a swarm of robots can

search a large physical area, and the immune system can

initiate a response in any location in the organism. In a

solid brain, complex connectivity such as small-world struc-

ture [2] provides scalability through the ability to move

information between any two agents using a small number

of hops; in a liquid brain, agent mobility can provide similar

scalability [3,4]. Slavkov et al. demonstrated how the feedback

between computation and movement in a robot swarm pro-

duces in robust and adaptable morphogenesis [5]. Kao and

Couzin [6] describe how animal groups that are spatially dis-

persed but maintain some internal structure can both sense

large amounts of information about the environment and

make more accurate collective decisions. In general, liquid

brains are constrained by how agents can move through phys-

ical space, involve concurrency, and require dynamic

reconfiguration to enforce a policy or compute a feature in a

spatially distributed environment.

We focus on how agent movement and communication

range affect the ability of liquid brains to solve global consen-

sus problems. Because motion is the most striking difference

between these two types of brains, we focus on how agent

mobility affects information processing. We consider simple

agents with limited communication range in simple unstruc-

tured environments, and demonstrate how the presence,

speed and direction of motion affect simple computational

tasks. We argue that movement is an important mechanism

by which agents in a liquid brain share information with

one another, perhaps also collecting information from, and

acting on, the environment. In essence, mobility enables

agents to sample many other spatially dispersed agents in

order to compute global consensus or to redirect resources

to regions that require attention.

In the following sections, we examine mobility as the

mechanism by which agents in a liquid brain communicate

with other agents and propagate information throughout

the system. Using agent-based and mathematical models,

we investigate speed of movement, showing that small

increases in speed can dramatically improve information

processing capabilities. In §2, we review earlier work on con-

sensus problems; §3 describes the liquid cellular automata

(LCA) and shows how movement affects its performance on

the density classification problem. Section 4 presents a math-

ematical model that predicts a key feature of LCAs and

shows how speed and communication range facilitate infor-

mation propagation. Sections 5 and 6 vary initial conditions

and communication fidelity to show how these factors affect

optimal agent speed. The discussion in §7 highlights how

these results unify observations from many disparate fields.

In §8, we conclude by summarizing how tuning parameters

governing physical movement and communication range can

generate effective computation in a variety of circumstances.

We suggest that the myriad forms of liquid brains in nature

is evidence that evolution has discovered many ways to tailor

movement and communication for collective computation.
2. Consensus problems
We consider the role of mobility in multi-agent systems

trying to achieve global consensus, using majority compu-

tations as a canonical example. In this problem, the agents

are initially in one of two possible states, zero or one, and

the goal is that all agents adopt the state that initially was

in the majority. Agents update their state using local rules

taking as input the states of other nearby agents in their

neighbourhood. This problem is inspired by the ‘density

classification’ problem in cellular automata (CA) [7], where

each cell must converge to one of two states depending on

which state was initially in the majority (i.e. the state that

had the highest initial density) in the CA.

Mitchell et al. analysed the density classification problem to

demonstrate how global information processing could occur

using only local communication. Because of the fixed structure

of a CA (analogous to the fixed connections in a solid brain), a

successful solution to the density classification task requires

complex spatially distributed representations of intermediate

state. These intermediate representations travel from cell to

cell via communication in the form of emergent patterns

called ‘particles’ [8] which carry information about partial sol-

utions to distant cells. The fundamental challenge for a CA to

solve the density classification problem is overcoming the

need for distant cells to share information in order to reach

consensus. CA rules that do not produce intermediate repr-

esentations to communicate across the system cannot move

information to reach global consensus. CAs that do produce

intermediate representations are usually fragile, for example in

the game of life, small changes to initial conditions break the pat-

terns required for computation [9]. Subsequent work showed

that more complex connectivity patterns between cells, such

as small-world networks, can replace intermediate represen-

tations by providing links to propagate information quickly to

distant cells [10–12]. Such topologies allow some direct com-

munication between spatially distant cells, removing the need

for intermediate representations. Given such topologies, a

simple rule, the ‘majority rule,’ where a cell takes on the same

state as the majority of its neighbours, is sufficient to solve the

problem. By contrast, the majority rule performs poorly in a

traditional CA that lacks long-range communication.

Majority problems are interesting because they demon-

strate how a global property of a system (the majority state of

all agents) can be communicated and altered by its individual

constituents. The need to achieve global consensus through

local decision-making occurs in many settings, for example,

an ant colony reaching consensus on a new nest site [13] or a

swarm of robots selecting an encryption key [14]. If we inter-

pret the initial state of the agents as representing what each

agent has sensed from its environment, then density classifi-

cation serves as a model for how a global environmental

property can be computed and shared, e.g. indications of

danger or resource availability. In this vein, the CA density

classification problem has been used to model how leaf sto-

mata converge on the binary decision to open or close [15]

based on the light sensed by each cell in the leaf. Many animals

have also been found to use some form of majority voting to

come to consensus [16].

We consider a simple liquid brain where the constituent

agents resemble the cells of a CA in that they apply a simple

rule based on their states and those of their neighbours, but the

agents move with respect to one another. Such a model was



t = 0 t = 150

t = 500 t = 830

Figure 1. An example LCA run beginning with an initial density of ones (hollow circles) r ¼ 0.48, agent speed s ¼ 1, N ¼ 255, L ¼ 80 and r ¼ 5. Each frame shows a
single instant in time. Edges are drawn between agents that are close enough to communicate. Boundaries are closed so that agents neither move nor communicate across
them. There is no wrap around. By t ¼ 150, two white clusters of ones are separated by a single black cluster of zeros. The clusters of ones shrink slowly until
consensus is reached at between t ¼ 820 and t ¼ 830. Movement eventually combines clusters of local consensus into a global consensus.
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referred to by Langton as a ‘colony automaton,’ [17] and a more

complex version resembling a neural network was described by

Miramontes and Solé [18–20]. In this work, the authors found

that movement facilitates synchronization of agents that act

entirely asynchronously [18] and that such a system is capable

of simulating logic gates which make it capable of universal

computation [19]. In this type of system, information can

spread through local communication, and it can be physically

carried through space as agents move. We hypothesize that

physical movement is a mechanism for spreading information

which allows global consensus to be achieved without complex

network connectivity. However, agent movement comes at

a cost: it is difficult, or perhaps impossible, to preserve spatially

distributed intermediate representations when agents

constantly change their locations and their neighbours.

To demonstrate the effect of movement, we present a

simple agent-based model (ABM) and ask it to solve the den-

sity classification problem using mobile agents. We examine

how well the problem is solved if each agent uses only the

simple local ‘majority rule,’ where each agent switches

state to the majority state of its local neighbourhood. To reiter-

ate, this rule fails to solve the density classification problem in

traditional CAs. The density classification problem is most
difficult when the initial state of the system is close to 50%

ones and 50% zeros. Such cases are especially challenging if

agents have only local communication and are stationary.

We show that when agents can move, the majority rule is

highly effective, even for the most difficult initial conditions,

and its performance increases as agents increase speed.
3. Mobile agents solve global consensus
using only local communication in liquid
cellular automata

We implemented LCA1 as an ABM that simulates simple

interactions such as those found in a robotic swarm or

mobile sensor network. LCA consists of N agents moving

in a two-dimensional square arena of size L. Each agent is

analogous to a cell in a CA, containing an internal state vari-

able that is updated synchronously according to a rule table

shared by all agents. Instead of a fixed neighbourhood,

agents have a fixed communication radius r and broadcast

their current state to all other agents within that radius.

Screenshots of an LCA example run are shown in figure 1.
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Figure 2. Performance of the majority rule for the density classification task with varying communication radius and speed (N ¼ 255, L ¼ 80). The proportion
correct is the fraction of initial conditions that are correctly classified out of 100 random initial conditions with the given r. A correct classification requires that all
agents have converged to the correct initial majority state within time T. In ‘shuffled’, agents are randomly rearranged in space at each time-step. (Online version
in colour.)

Table 1. LCA simulation parameters and typical values used in
experiments. (T is set to a sufficiently high value to allow agents with a
small communication radius (r) and speed (s) enough interactions to have a
chance to reach consensus. r ¼ 0.2 indicates the initial fraction of ones
is a binomial random variable with an expected value of 0.2.)

model
parameter description

values
(unitless)

L arena side length 80

N number of agents 255

T max time 5000

r communication radius f2, 8, 16, 32g
s agent speed f0, 1, 4, 8g
r expected initial fraction of

ones

0 – 1
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The simulation proceeds in discrete time steps. At each time

step, each agent moves a fixed distance, determined by its

speed s, in a straight line along its current heading (if an

agent attempts to move beyond the arena boundaries it is

reflected back into the arena). The agents then read the states

of all other agents within their communication range, and

each updates its own state according to the majority rule.

Each agent then selects a new heading uniformly at random

from the interval [0, 2p), and the process repeats so that

agents move in a random walk. All agents move at the same

constant speed for the duration of the simulation. LCA

resembles earlier models that have been used to demonstrate

the benefits of mobility for achieving cooperation in the prison-

er’s dilemma [21,22] and emergence of consensus in a minimal

naming game [14]. LCA provides a simple framework in

which the affect of movement speed and communication

range can each be investigated by adjusting a single parameter.

Each agent uses the majority rule to update its state at

every time step to the majority state of its neighbours and

itself. When there is no majority (a tie) the agent simply

switches to the opposite state deterministically. (By contrast,

Watts [12] and others define models where agents select a

state at random in the event of a tie.) We replicated multiple

simulations using the parameters listed in table 1 in order to

determine the effect of changing speed and communication

on performance.

The results shown in figure 2 confirm that the majority

rule performs poorly with no movement. The system rarely

reaches the correct consensus even when agents have a rela-

tively large communication radius (r). Only when r is large

enough to cover almost the entire arena (r ¼ 32) is a correct

classification made by static agents in more than 50% of

trials for the hardest case (r ¼ 0.5).

Introducing a small amount of movement dramatically

improves classification performance, especially for smaller

communication radii. This is illustrated in figure 2 (s = 1)

that shows a large improvement in performance even with

a slow speed. While performance is still below 50% in the

hardest case when r ¼ 2, for three-quarters of the initial

majorities, agents converge to the correct answer in more
than 75% of trials. As s and r increase, performance improves.

For speed s ¼ 4, the performance for all communication radii

converges to almost the best possible case. This best case is

illustrated in the ‘shuffled’ panel where agents are randomly

rearranged in space at every time step simulating a situation

where the spatial distribution of agents is irrelevant. In this

case, consensus is reached through random sampling rather

than local consensus.

Mobility lets each agent sample a large fraction of the

population over time despite having few, if any, communi-

cation partners at any given moment. Combined with the

majority rule this allows the formation of local consensus

clusters of agents in the same state. Through movement,

these clusters grow or shrink until consensus is reached.

This is illustrated in figure 3 which shows that despite

having very few neighbours at any given time, mobility

enables communication with many new agents that move

into communication range over time. Similar to the ‘effective

range of perception’ discussed by Couzin [23], movement

expands agents’ range of communication. As agents move,
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royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180375

5

they add edges to the cumulative interaction network, acquir-

ing a substantial sample of the other agents very quickly even

with a small communication radius.

These results show how movement enables a liquid

system with mobile agents to solve the global density classi-

fication problem with the simple local ‘majority rule.’ The

majority rule is ineffective when there is no movement

because clusters of local consensus have no mechanism for

combining to form a global consensus. When agents can

move, they sample (and influence) a larger fraction of the

other agents, which resolves conflicts at the boundaries

between clusters. This allows clusters to combine into larger

clusters. As speed increases, clusters in the minority state

persist for less time (figure 3d).

Beyond a certain point, however, increased speed has little

effect on performance, as shown in figure 2. We confirmed this

for speeds as high as s ¼ 300 (data not shown) with similar

results to those described by Baronchelli et al. [14] for the mini-

mal naming game. At low speeds, consensus is reached

through competition between clusters of agents that have

reached consensus locally, but for higher speeds consensus is

reached by a process that is effectively global sampling.

Speed is not the only defining characteristic of movement;

another important consideration is direction. The previous simu-

lations used a simple random walk, which results in very slow

diffusion of agents. To investigate the effect of other movement

patterns, we implemented a correlated random walk. Following

methods in [24], agents select a new heading htþ1 from a normal

distributionN (ht, s) at each time step where ht is the heading at

time t and s is the standard deviation of the turning angle. With

s ¼ 0 agents move with ballistic motion turning only when they

reflect off arena boundaries; s ¼ p approximates the random

walk described above.

Our experiments show that a correlated random walk with

s � p/4 improves performance. Higher correlations produce
faster consensus times. Because a correlated walk results in

greater displacement than the diffusive random walk, agents

quickly sample a larger number of other agents. Electronic sup-

plementary material, figure S3 shows how mobile agents with

relatively low speed can achieve similar performance to faster

agents simply by moving in a straighter walk.
4. Predicting how quickly agents accumulate
novel interactions

To better understand how information flows among agents,

we estimate how the cumulative degree of the average agent

changes over time. This indicates how quickly each agent is

expected to communicate with new agents that it has not

communicated with before.

We begin by counting the number of novel agents (those

not seen in the previous time step) that each agent interacts

with at each time step. We estimate the number of novel

agents as a function of an agent’s communication radius (r),

its speed (s) and its type of movement. We then use this

value to calculate the expected cumulative degree of the inter-

action graph at a particular time step as a function of the

number of agents and the size of the environment. To simplify

this problem, we assume that the arena wraps around at the

boundaries forming a torus. Because of this assumption, the

predictions we develop in this section apply when r is very

small relative to the arena size.

Let M ¼ N/L2 be the density of agents and let Ar¼ pr2 be

the area covered by a single agent’s communication range.

Then the expected number of agents within the communication

range of an arbitrary agent is ArM ¼ pr2N/L2.

We assume that the density of agents is constant and that

agents are uniformly spread across the arena at all times. We

predict the number of novel agents encountered at each time
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step. First, we estimate the number of agents that remain

within Ar of a focal agent after one time step by computing the

expected distance an agent currently in Ar can travel away

from the focal agent at speed s. This distance is r þ ds,

where ds is the expected straight-line distance travelled by

an agent in one time step at speed s. Note that ds depends

on the type of motion agents undertake between each

time step. For the straight line motion used in our LCA

experiments ds ¼ s/2.

Assuming an agent within the area of influence can be

in any location within p(r þ ds)
2 after one time step, the

probability that an agent remains within the area of influence

of another is the ratio of the area of influence of an agent (Ar)

and the area an agent could be in the next time step

pinside
r,s ¼ r2=(rþ ds)

2.

By the assumption of uniform density, the number of

novel agents, mr,s, in an area at a particular time step is

equal to the number of agents that left the area from the pre-

vious time step. As a fraction of the total number of agents

this is fr,s ¼ (Ar=L2)(1� pinside
r,s ). As a first-order approximation

to sampling without replacement, we subtract from the initial

population the number of agents that are initially within the

area of influence, N 2 ArM, and obtain the estimated number

of novel agents:

mr,s ¼ fr,s(N � ArM): (4:1)

Note that if an agent is not moving (s ¼ 0) then it will always

interact with the same agents and mr,s ¼ 0. Conversely, when

an agent moves at extremely high speed (s� L) mr,s ¼ ArM—

the expected number of agents to be found within its area of

influence sampled at random from all other agents.

Given the number of novel agents mr,s, the probability of

any two agents interacting is

pr,s ¼
N

mr,s

� �
� N�1

mr,s

� �
N

mr,s

� � ¼ mr,s

N
:

Then the probability of two agents interacting at least once in

t time steps is approximately 1� e�pr,st.

Finally, we include an extra term to account for the initial

ArM neighbours. This yields the following expression for cr,s,

the probability that two agents have interacted as a function

of time:

cr,s � 1� 1� Ar

L2

� �
e�pr,st

� �
: (4:2)

Figure 4 shows that the predicted cr,s approximates the

normalized cumulative degree in the LCA model, particularly

when r is small and the arena size is relatively large. However,

at slower speeds, as communication range increases, the fit

deteriorates owing to edge effects in the simulated arena.

When agents have large r and low s, some agents have a reduced

area of communication that is cut off by the edge of the arena.

They stay near the edge for long periods of time because speed

is slow. This shows that we can predict cumulative degree

under ideal cases, but we need an ABM to simulate more

complicated circumstances where edge effects might

dominate, which may often be the case in real biological systems.

From equation (4.2), we can derive the estimated number

of time steps needed to get an expected cumulative degree

of Ncr,s:

t ¼ � N
mr,s

ln
1� cr,s

1� Ar=L2

� �
: (4:3)

Consensus is reached as agents gain a larger sample of the

states of other agents. We measured the median cumulative

degree at the time consensus was reached for s [ f2, 4, 8, 16g.
We used a maximum of 100 random initial conditions for

each speed and only those runs which reached consensus are

included. The median normalized cumulative degree over all

speeds was 0.12N in an arena with N ¼ 1023 and L ¼ 160 and

0.21N for the small arena (N ¼ 255, L ¼ 80). These results are

summarized in the electronic supplementary material, figure
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S4. Equation (4.3) should, therefore, correlate with the average

time to reach consensus, as shown in figure 4.
5. Movement overcomes challenging initial
conditions

Some initial conditions are particularly challenging for the

density classification problem. In the previous section, we con-

sidered only initially well-mixed agents, a relatively easy set of

conditions to classify. Here, we assume that the states are

spatially segregated. All agents in state one are on the left

and all agents in state zero are on the right, and the initial

density r is controlled by moving the dividing line left or

right. Figure 5 illustrates that the proportion of correctly classi-

fied problems is lower than when agents are well mixed, but

movement allows agents to overcome difficult initial conditions

and make a reasonably accurate classification much of the time.

Surprisingly, figure 5 illustrates cases where low com-

munication range is beneficial. While the previous results

showed that the LCA performed better as the communication

radius increases, for segregated initial conditions, the lowest r
can outperform the largest r when speed is high. Because of

the low communication radius, agents rarely interact, and

agents in different states become well mixed more rapidly

than they share information. This demonstrates how move-

ment provides a powerful and flexible tool that can be

exploited to facilitate solutions to a variety of problems

under a variety of conditions. In this case, fast movement

allows for the use of a small communication range, making

the system robust to pathologically constructed initial con-

ditions. The following section illustrates another case where

the parameters of movement can be adjusted to solve the

density classification problem under different conditions.
6. Speed balances local versus global
information exchange

We consider a second liquid brain model that simulates more

complex interactions between agents.2 We assume that more
complex interactions may require more time to complete, and

that constrains how fast the agents can move. Examples of

varying interaction times include: ants can quickly sense

each other to determine nest membership but take more

time to perform allogrooming and to form a bridge-like struc-

tures [25]; nectar exchange in honeybees takes only a few

seconds [26] while it takes several minutes for guards to

examine bees joining a nest [27].

We preserve most of the features of LCA to solve the

density classification problem using local majority rule;

agents move at a constant speed on a two-dimensional

grid, and agents exchange information with other agents

within a fixed radius. However, we include a probability

that the state of an agent is miscommunicated. When an

agent polls its neighbours to compute the majority, there is

a fixed probability of error. Each agent has the same indepen-

dent probability p of reporting its real state on each query,

thus if an agent is queried repeatedly on K occasions it is

expected to report its true state pK times; in this way, for an

agent to increase the chance of obtaining the correct state of

its neighbours, it must query each of them repeatedly.

Each agent can poll its neighbours up to 10 times in each

time step. The agents remember the reported states and

identities of their neighbours. In our implementation, each

individual maintains a running estimate of the mode of the

answers for each agent within its radius. The memory is

cleared after computing the local majority at each time step.

We use the number of queries required for an accurate esti-

mate of an agent’s state as a proxy for the complexity

required of agent–agent interactions: the closer p is to 0.5,

the more polling will be required to reach a correct consensus.

However, agents can move instead of polling their neigh-

bours, so the more an agent needs to poll its neighbours

before moving, the lower its speed. We implement this by

giving each agent a fixed movement budget per time step

that is composed of its speed (travel distance per time step)

and the polling cycles allowed for its current neighbours:

movement budget ¼ speed þ polling cycles. In this way, the

number of polling cycles increases as speed decreases. This

implementation forces a trade-off similar to the sampling

versus speed trade-off seen in immune cells [28].
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Figure 6 shows that for any given level of noise there is an

optimum intermediate speed that combines depth (more poll-

ing) with the breadth (more agent interactions) for maximum

performance. Moving too fast prevents agents from accurately

determining the correct states of their neighbours, while

moving too slowly prevents agents from interacting suffi-

ciently to reach global consensus. Even when we run longer

simulations for slow-moving agents, there is still an optimal

intermediate speed that results from the dynamic nature of

the majority rule. Moving slowly creates large spatial clusters

bearing, on occasion, the minority state, which are difficult to

flip and can ultimately dominate the population. Moving

faster prevents these large clusters from forming as in figure

3d. Moving using a correlated random walk that generates

more directed movement with greater displacement improves

performance in this model, similar to the improvement

described in §3.

Although our second model abstracts away details of

agent interactions, it exhibits similar results as those reported

in [21], where moving agents interact by playing the iterated

prisoner’s dilemma. That work showed that there is an ideal

intermediate movement speed that enhances the evolution of

cooperation because it can create complex structure in the

network of interactions between players. This is beneficial

in the prisoner’s dilemma because complex structure facili-

tates both the emergence of cooperation through repeated

interaction and the spread of cooperation by gradually chan-

ging which agents interact. In other words, moderate speed

balances the need for stable network structure and the

spread of information.

The mathematical model presented in §4 can be extended

to incorporate noisy communication. This is accomplished by

making the number of novel agents inversely proportional to

speed so mr,s ¼ fr,s(N 2 ArM)/(as þ 1) where 0 , a � 1. This

gives the same result that intermediate speeds maximize mr,s,

consistent with our observation that intermediate speed

maximizes performance in the presence of noise.
7. Discussion
The abundance of both solid and liquid brains in nature

suggests that evolution has found advantages with both

approaches. Traditionally, brains are thought to be composed
of components such as neurons that are fixed in space with

communication among components through networks. For

other distributed biological systems such as ant colonies,

information exchange occurs locally between agents as they

move through space. We suggest that there is probably a

trade-off: mobile agents have more flexible communication

patterns determined through movement but lack dedicated

communication networks owing to the difficulty of maintain-

ing fixed communication structures as agents move. In the

light of this trade-off, two different solutions have

emerged—agents can move information directly in liquid

brains or through communication channels in solid brains.

Liquid brains may have evolved movement for other reasons

(i.e. the need to sample environments across space), but solid

brains have the advantage of being able to store and use

structures to process more complex information.

Our analysis focuses on how mobility affects the ability to

compute global consensus. We show that for a set of simple

agents able to communicate only within a small local

radius, many instances of the global density classification

problem can be solved by the majority rule if the agents are

mobile, but not if they are immobile. Additionally, more chal-

lenging instances of the problem can be solved by mobile

agents by adjusting the way agents move (figures 5 and 6).

Problems that require longer or more complex communi-

cation among agents are best solved by agents that move at

an intermediate speed, balancing time for communication

with the current neighbourhood against communication

with agents in other locations. Problems that require more

mixing can be solved by moving faster and reducing the com-

munication range. Movement makes it simple to adapt the

LCA to work effectively in a variety of situations.

In systems without movement, information can be trans-

mitted from one part of a spatial domain to another using

long-distance communication channels. These long-distance

connections combined with many local connections are a

key feature of human and animal brains [29]. Rent’s rule

describes both these biological systems and technological

systems such as computer microprocessors with a similar

communication network between transistors—as sharing

similar mathematical properties. In both cases the probability

of connection between two components decays with distance

[30–33]. Furthermore, many systems can be characterized by

more general small-world topologies [2] in which agents are

connected primarily to their local neighbours, but there is

some small amount of long-distance communication. Such

complex topologies allows scalable communication between

the agents in a solid brain.

Even without complex connectivity, simple solid brains,

such as traditional CAs, are able to move information

through space in the form of sophisticated intermediate rep-

resentations, such as patterns of states, that enable global

communication. Take, for example, the gliders in Conway’s

game of life or the rules evolved for density classification

by Crutchfield and Mitchell [8] which facilitate global com-

munication by way of ‘particles’ that move through space

as representations of partial solutions. These rules depend

not just on the regular structure of the network, but also on

the periodicity of the network. A particle must be able to

travel through every cell and back to where it started by

moving only in one direction. Without a periodic topology,

particles reach a dead end preventing the CA from reaching

consensus. Relying on a particular topology can be a
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limitation for solid brains. Liquid brains, however, are robust

to changes in network topology by their very nature.

There are many ways solid brains can support global infor-

mation processing of the type discussed in this paper. Complex

connectivity in the form of small-world networks is a good

example. We investigated the performance of our model with

random rewiring to add long-distance connections. Perform-

ance using these random connections is roughly the same for

r ¼ 0.5, but worse for all other initial majorities (see the

electronic supplementary material, figure S2). Moreira et al.
investigated conditions under which the majority rule can

solve the density classification problem [34]. They found that

the presence of noise in reading a neighbour’s state, combined

with a small amount of randomness in the topology of the CA,

were sufficient to achieve good classification performance. This

is notable because the mechanism by which noise helps the CA

is similar to the mechanism by which mobility helps—it breaks

down the boundaries between clusters of local consensus

enabling a global solution.

Other types of problems, such as the emergence of global

cooperation in the prisoner’s dilemma and its variants, have

been studied in the context of liquid brains [21,22,35,36]. Because

the prisoner’s dilemma presents a fundamentally different pro-

blem from global consensus, the effect of movement is

different. In the prisoner’s dilemma, all information used to pro-

duce cooperative behaviour is found in the local region of an

agent, so slow movement helps to maintain cooperation. By con-

trast, the density classification problem requires the computation

of a global property distributed over all of the agents. Because

information needed for this computation is distributed across

the population of agents, increased sampling through faster

movement is beneficial. Other types of problems such as estimat-

ing the number of agents in the system can be solved by mobile

agents [37] and can serve as building blocks for more complex

tasks such as quorum sensing.

An important feature of some liquid brains, not addressed

by the LCA, is their ability to build and use physical structures

to limit some interactions and facilitate others. For example,

ants concentrate interactions at the nest entrance [38], while

immune cells are concentrated in lymph nodes to facilitate

more frequent interactions, and robot swarms use structure

to determine a shortest path [39]. Even the spatial distribu-

tion of features in the environment can be exploited by liquid

brains to enable optimal decision-making comparable to

decision-making in solid brains [40].

The LCA provides a platform for investigating other impor-

tant characteristics of liquid brains. For example, quorum

sensing has been shown to lead to better decision accuracy

than straight majority voting [41] and can prevent poor

decisions based on copying the behaviour of neighbours [42].

The LCA model could easily be extended to investigate these

types of questions by substituting a quorum-based rule for the

majority rule. Additionally, as discussed in §2, further work is

needed to refine what types of movement are beneficial for

which types of computation. Many other types of movement

have been observed in natural systems, including: the lognormal

walk of T-cells [43]; Lévy walks [44]; and two-phase walks [45],

which are optimal for some search tasks and could be studied

from the perspective of communication and computation in a

liquid brain. Additional open questions include the differences

in learning algorithms employed by liquid or solid brains,

differences in how they achieve robustness and resilience, and

the role of diversity and specialization of the agents.
Computing in distributed systems that are similar

to liquid brains—with frequently changing connections

between components—is increasingly important in computer

science as new technologies such as robotics and the

Internet of Things become prevalent. Recent theoretical

work in this area is summarized in [46,47]. Kuhn et al. [48]

proved that many foundational distributed algorithms can

be implemented on these dynamic networks under certain

connectivity assumptions.

A significant amount of theoretical research in population

protocols [49] studies a model of computation similar to the

LCA, including the specification of protocols for solving the

majority problem [50,51]. LCA differs from population proto-

cols in several ways: LCA communication is always through

bidirectional broadcast in which all agents within communi-

cation range send and receive messages, while population

protocols model pairwise interactions between an identified

initiator and receiver. Population protocols are inherently asyn-

chronous in contrast to the synchronous LCA model presented

here. An asynchronous version of LCA is worthy of future

investigation. The most important distinction is that while

the population protocol model facilitates detailed mathemat-

ical analysis, it is built on an interaction network that does

not capture the constraints on interactions imposed by agents

that can only communicate locally as they move through

space. While spatial interactions among mobile agents are dif-

ficult to capture in a simple mathematical model, LCA shows

that mobile agents can compute global consensus even under

realistic spatial constraints. Furthermore, our analysis of cumu-

lative degree shows that some aspects of how agents interact

are predictable by a simple mathematical model.

Until now, most computational systems have been solid, for

example, microprocessors have static components and fixed

wires, even field-programmable gate arrays have components

fixed in space with flexible communication but no mobility.

Neural networks emulate the idea of immobile components

and flexible communication networks inspired by solid human

brains. However, many forms of unconventional computing

are much closer to the liquid end of the spectrum, for example,

DNA computing, ant-inspired algorithms, swarm robotics,

and mobile ad hoc networks (MANET) are all systems in which

movement through physical space is part of the problem and

an inherent aspect of the computation. A robot swarm, for

example, can exploit movement to achieve a global map of

sensor readings [52] and a MANET can exploit movement to

increase its capacity [53]. We have shown how those systems

which lack the traditional computational infrastructure for stor-

ing and moving information can take advantage of mobility in

order to compute. Understanding how consensus can be reached

by a collection of loosely connected mobile agents highlights dis-

tributed computational approaches in nature and suggests how

these approaches can be implemented in artificial systems.
8. Conclusion
Although many previous models examine communication in

distributed systems, in most prior work the locations of

agents in physical space is decoupled from their probability

of communicating. In this paper, we combined simulations

and mathematical modelling to quantify how movement

through physical space affects the ability of a distributed

system to compute global consensus.
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A complete mathematical treatment of liquid brains is chal-

lenging for several reasons: (i) naturally occurring distributed

systems are rarely well-mixed, (ii) physical environments

have boundaries that create edge effects and complicate math-

ematical predictions, (iii) physical topographies are complex,

and (iv) real systems are often asynchronous. In this paper,

we address the first two of these complexities, leaving the

second two for future work.

A general theory of distributed communication with

spatial constraints may remain elusive, but evolution does

not need a general theory. It has succeeded by discovering

specific solutions tailored to specific environmental situ-

ations. Our models show how tuning a small number of

parameters governing movement and communication can

allow systems to find global consensus given different initial

conditions, movement patterns, communication error rates,

and agent densities. Our approach is a step towards a more

general theory of distributed computing under spatial con-

straints, but more importantly it provides insight into how

evolution leverages different movement and communication

strategies to compute in liquid brains.
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