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ABSTRACT

Services such as garbage collection, road gritting, street sweeping,
and power line inspection can each be formulated as a capacitated
arc routing problem (CARP). The traditional formulation of CARP
has the goal of minimizing the total cost of the routes making
up a solution. Recently, operators of such services require routes
that are balanced and visually attractive in addition to low cost.
Routes that are balanced are about equal in length and provide
fair work assignments. Visually attractive routes are subjective, but
they usually involve non-crossing routes that provide well defined
service areas. These additional features are important because they
address operational complexities that arise from using the routes in
practice. This paper presentsMA-ABC, a memetic algorithm to find
solutions for CARP that maximize route attractiveness and balance,
while minimizing total cost. A novel fitness function combines route
overlap with route contiguity to assess route attractiveness.MA-
ABC is the first to incorporate attractiveness in a three-objective
search for heuristic solutions for CARP. Experimental results on
CARP benchmark instances show that MA-ABC finds a diverse set
of heuristic solutions at the Pareto front, providing a wide choice
for service operators to tradeoff design objectives.
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•Applied computing→Transportation; •Computingmethod-
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1 INTRODUCTION

Routing problems are among the most widely researched topics in
operations research. In arc routing the goal is to cover, i.e., visit,
each edge of the graph representing the problem. Applications of
arc routing include services such as street sweeping, snow plowing,
mail delivery, garbage collection, gritting roads with sand or salt,
and the inspection of power lines. Expenditures on such services
by public and private entities exceed billions of dollars annually in
the U.S., emphasizing their economic importance [10, 11, 13, 16].

The capacitated arc routing problem (CARP) [21] is defined on a
weighted undirected graph G = (V ,E). The streets in a city corre-
spond to the edges E in G , and the vertices V to their intersections.
There is a depot D ∈ V used to store a fleet of k homogeneous ve-
hicles, each with capacityC . Tasks correspond to a service required
on a subset T ⊆ E of the streets. Each task has a traversal cost c(t)
and a demand d(t). Streets not requiring service have zero demand.
All edges can be traversed any number of times. The goal of CARP
is to find a set of closed routes, one for each vehicle, starting and
ending at the depot, of minimum total cost such that: All tasks are
serviced, the sum of the demands of serviced edges of each route
does not exceed the vehicle capacity, and every serviced edge is in
exactly one route. The cost of a route corresponds to the cost of its
serviced edges and the cost of deadheading, i.e., the traversal cost
of any intermediate connecting paths.

CARP is NP-hard [21]. As a result, an optimum solution for
most practical instance sizes is intractable. Therefore a number of
heuristics andmeta-heuristics have been proposed [42]. Many focus
on finding a least cost solution for a service. Recently, operators of
such services require routes that are balanced and visually attractive
in addition to low cost. Routes that are balanced are about equal in
length and contribute to workload equity and employee satisfaction
[34, 35]. The visual attractiveness of routes is subjective, but non-
crossing routes that provide well-defined service areas are clearly
preferred. These additional objectives are important because they
help address operational complexities associatd with using the
routes in practice.

Because it is often impossible to optimize all objectives simul-
taneously, a solution is called Pareto optimal if no objective can
be improved without deteriorating another. Multi-objective evo-
lutionary algorithms (MOEAs) use evolutionary computation (EC)
methods to search for solutions at the Pareto front. These offer
service operators a diverse set of solutions that represent different
tradeoffs among design objectives.

This paper presentsMA-ABC, a memetic algorithm to provide
a heuristic solution for CARP to maximize route attractiveness
and balance, and to minimize total cost. A memetic algorithm is
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a hybrid MOEA that incorporates local search. InMA-ABC local
search controls the scope of the diversification emphasizing total
cost. Non-dominated sorting is used to sort solutions into differ-
ent ranked fronts. Within the same front, solutions are ranked by
crowding distance. We use fitness functions for total cost and for
balance, and introduce route continuity and route overlap to assess
route attractiveness. To the best of our knowledge, MA-ABC is the
first multi-objective optimization approach for CARP that includes
attractiveness as one of the objectives. We conduct a thorough ex-
perimental evaluation of MA-ABC on CARP benchmark instances,
comparing to the path scanning with random task (PSRT) heuris-
tic [3]. MA-ABC provides heuristic solutions at the Pareto front
that have a wide diversity in attractiveness and balance without
deviating in the objective space of total cost.

The rest of the paper is organized as follows. We review related
work in §2. The design of MA-ABC is provided in §3. A description
of the benchmark instances, experimental set-up, and an analysis
of the results are provided in §4, followed by a discussion in §5.
Finally, conclusions and future work are found in §6.

2 RELATEDWORK

Since the introduction of CARP by Golden and Wong [21], many
variants have emerged; see [10] for a comprehensive presentation
of applications, resulting CARP variants, and solution methods.

Poot et al. [41] first reported that operators of services considered
the heuristic solutions generated by the ORTEC vehicle routing
software [40] to be poor, despite ranking highly on the traditional
metric of total cost. The reason given was that the routes were not
visually attractive. Operators desired routes with more subjective
features such as compactness, no crossings, and fewer turns, even at
the expense of cost [8]. Operationally, this assigns a route in which
each driver has one geographically distinct area of responsibility.
Visual preferences may serve as a source for new metrics that can
help quantify the visual appeal of a route; Rossit et al. [46] review
proposed metrics. Such new metrics may be used as alternatives to,
or penalties in, the overall objective function.

A few publications consider visual attractiveness in variants of
arc routing problems. Constantino et al. [8] propose a method to
bound the number of nodes in more than one route. In partitioning
street networks, Lum et al. [32] define a similar route overlapping
index (ROI) and develop a heuristic for an uncapacitated arc routing
problem with compact, balanced, and visually appealing routes.
Corberan et al. [9] provide a heuristic solution to the same problem
also using a multi-objective approach.

Route balance is another important objective [1] because it con-
tributes to workload equity [34, 35]. Measures of balance have in-
cluded range, the difference between the maximum and minimum
route length, and makespan, the maximum length route. Several
works consider the dual objectives of route balance and total cost
in variants of routing problems [15, 25, 26].

Multi-objective evolutionary algorithms (MOEAs) are one of the
most popular approaches for solving multi-objective optimization
problems to obtain near Pareto optimal solutions [6]. Deb et al. [12]
propose NSGA-II, a widely used method of MOEA due to its effi-
ciency. It uses non-dominated sorting to obtain the Pareto fronts

and for selection operations. NSGA-II’s sorting method is more
efficient than other popular MOEA methods such as SPEA [7].

Lacomme et al. [28–30] propose a memetic algorithm based on
the route first, split second method to solve CARP. A single giant
tour covering all required tasks without capacity limits is used to
represent individuals. This helps avoid the need to repair routes
after crossover, due to capacity overruns. Their method is effective
because it replaces the mutation operation with a local search, and
this approach has since been adopted for many variants of arc and
node routing problems [43, 44]. An efficient splitting algorithm that
splits the giant tour is used to evaluate and update the fitness values
and to retrieve the final routing solution from the chromosomes.

Other multi-objective optimization methods have been applied
to CARP. Mei et al. [38] use a decomposition-based framework
for CARP with the dual objectives of minimizing total cost and
makespan. Grandinetti et al. [22] use an ϵ-constraint method for
CARP with the same objectives.

Tang et al. [50] use a giant tour and introduce a new merge-split
operator, in addition to other move operators in the local search.
This operator merges multiple routes back into a single tour and
then splits it again.

Usberti et al. [2] use a memetic algorithm for a CARP variant.
Three types of local search are combined with a stochastic filter
to filter out solutions before applying the local search. Chen et al.
[5] adopt a hybrid approach for CARP, performing only a single
solution update per generation with local refinement. Martinez et
al. [33] propose a genetic algorithm for CARP which incorporates
local search. To solve larger-scale (> 300 tasks) CARP, Mei et al. use
decomposition methods and co-operative co-evolution methods
[36]. Stochastic variants of CARP have used memetic algorithms
[17, 37, 54]. Wang et al. use an estimation of distribution algorithm
and a stochastic local search for a stochastic variant of CARP [53].
Handa et al. use an EC method for dynamic route optimization in
CARP [23, 24]. Liu et al. [31] use a memetic algorithm with a new
splitting scheme to solve dynamic CARP that was improved in [47].
Shang et al. consider a dual objective CARP through a co-operative
co-evolutionary method [48].

As we see next, our proposed memetic heuristic algorithmmakes
use of ideas incorporated in NGSA-II [12] and in the route first,
split second method [28–30], but we believe it is the first to include
attractiveness as an objective in CARP.

3 MULTI-OBJECTIVE MEMETIC ALGORITHM

We propose MA-ABC, a memetic heuristic algorithm for CARP,
which maximizes route attractiveness and balance, while minimiz-
ing total cost.

MA-ABC pseudocode is given in Algorithm 1. An initial popula-
tion of µ individuals is generated. Each individual is a giant tour.
Giant tours can be generated using any heuristic for CARP [19, 42]
by ignoring demands and capacity limits; we use the path scanning
heuristic [20].

In each of NGEN generations, λ offspring are generated. Parents
are chosen using tournament selection in NSGA-II with the ranking
determined by dominance and crowding distance. With probability
CXPB, an order crossover operation is performed. With probability
MUTPB, a giant tour is split into routes for each of the vehicles.
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A local search is then performed using a single insertion move
operator that emphasizes total cost. The routes are then joined to
form a new individual.

After λ offspring have been generated, the fitness metrics of
attractiveness, balance, and cost are updated for each. Elitism is
incorporated through the (µ+λ) strategy [12]. After NGEN genera-
tions, we obtain the Pareto front ranked by non-dominated sorting.
We now describe these steps in a more detail.

Algorithm 1:MA-ABC Algorithm
Input :Graph model G = (V ,E) for CARP
Output :Heuristic routing solutions maximizing balance

and attractiveness, and minimizing total cost

1 set parameters NGEN, CXPB, MUTPB, µ, λ
2 create initial population of size µ
3 for i ← 1 to NGEN do

4 for j ← 1 to λ do

5 P1, P2 = TournamentSelectionDCD ()
6 if prob < CXPB then

7 C1 = OrderCrossover (P1,P2)
8 else

9 C1 = P1

10 if prob < MUTPB then

11 split = SplitGiantTour (C1)
12 split = MutateByLocalSearch (split)
13 C1 = JoinRoutes (split)

14 update three fitness values for each of the λ offspring
15 population =selectNSGA (µ, µ + λ)
16 Pareto_front = NonDominatedSort (population, µ)
17 return Pareto_front

3.1 Selection using NSGA-II

MA-ABC selects individuals for the crossover operation. It first
selects µ of µ + λ individuals from the current generation. It also
selects individuals at the Pareto front to return as routing solutions.
MA-ABC uses NSGA-II specifically its non-dominated sorting and
crowding distance for ranking solutions.

NSGA-II sorts the solutions into different ranked fronts based
on non-dominance [25, 26]. NSGA-II first finds all non-dominated
solutions among the population in the current iteration. These solu-
tions are then removed from the population and the non-dominated
individuals among the remaining population are found. The process
is repeated until all the solutions are ranked.

Within the same front, solutions are ranked based on crowding
distance [12]. A solution with higher crowding distance on the
same front indicates higher population diversity and is ranked
more highly.

3.2 Crossover

Many crossover operators have been studied in EC, and among
these, order crossover (OX) is effective for routing problems [39].
In OX, two sites p and q are randomly selected with 1 ≤ p ≤ q ≤ τ ,

where τ = |T |. For parents P1, P2, child C1 is obtained by copy-
ing tasks P1(p) . . . P1(q) intoC1(p) . . .C1(q).C1(q+ 1) . . .C1(τ ) and
C1(1) . . .C1(p−1) are filled by copying tasks from P2(q+1) . . . P2(τ )
and P2(1) . . . P2(q−1), taking tasks from P2 not already inC1. Child
C2 is created by interchanging the roles of P1 and P2.

3.3 Splitting Procedure

The splitting procedure plays a central role when a giant tour is
used as an individual chromosome. Splitting is based on the route
first, split second algorithm [28, 51]; see §2. The idea is to split the
giant tour into routes based on the vehicle capacity limit C . Each
route starts at the depot D, and deadheads to D from the vertex
where the capacity is reached or prior to it being exceeded. We
use this procedure to split the giant tour when reevaluating fitness
values, before applying local search, and in retrieving the routes.

3.4 Local Search

As in Lacomme et al. [28], MA-ABC uses local search in place of
mutation to improve exploitation of the search space and speed
convergence. Once a giant tour has been split into routes, a single
insertion move operator is applied to each pair (t , t ′) of tasks in the
routing solution. Each task t in a route is moved after task t ′ in
every other route. The move that minimizes the total cost is chosen.

Figure 1: Example of the single insertion move operator.

Figure 1 gives an example of a single insertion move. In this
example, the red square is the depot, solid edges are tasks, dashed
edges are not required, vehicle capacity C = 4, integers in square
brackets are demands, and integers in parentheses are costs.

The three routes before the move are ((a,b, c)(d, e)(f ,д,h, i))
with costs (14, 12, 13) that sum to a total of 39. After moving c after
d the routes are ((a,b)(d, c, e)(f ,д,h, i)) with costs of (10, 14, 13)
that sum to 37, a cost savings of 2.
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3.5 Fitness Functions

Let R = {r1, r2, . . . , rk } be a set of routes for the k vehicles found by
splitting a giant tour. Each route ri is a sequence of streets (tasks)
serviced ti1 = (vi1,vi2), ti2 = (vi2,vi3), . . . , ti j−1 = (vi j−1,vi j ),
that make a closed walk starting and ending at the depot.

The total cost is the sum of the route cost for all routes in R.
The cost of a route is the cost of its serviced tasks including any
deadheading via shortest paths.

total cost =
∑
ri ∈R

(∑
t ∈ri

c(t) +

j−1∑
ℓ=1

DeadHeadinд(viℓ ,viℓ+1)

)
(1)

We use makespan as a proxy for route balance. The makespan is
the maximum route cost among the routes ri ∈ R.

A novel contribution of this paper is our definition of route
attractiveness, a combination of two metrics: The common node
count (CNC), a measure of route overlap, and the discontinuity count
(DC), a measure of route contiguity. That is, the preference is for
routes of different vehicles to have no overlap, and for sequences
of tasks in a route not to be disconnected.

More formally, CNC is a count of vertices v ∈ |V \ D | that exist
in each route ri ∈ R with one endpoint of a task serviced by ri .

CNC =
∑

v ∈ |V \D |

( k∑
i=1

exists(v, ri ) − |V | − 1

)
(2)

This definition differs from the node count used in [8] because we
count the nodes that only belong to the tasks serviced by the route.
Nodes that belong to the tasks that are not serviced by the route or
nodes that belong to non-required edges are not counted. We also
count each endpoint of a serviced task unlike [8].

Given two consecutive tasks tiℓ , tiℓ+1 serviced by route ri it is
possible that the tasks are not contiguous, i.e., the vehicle must
deadhead from the end of tiℓ to the start of tiℓ+1. If any edge along
the deadheading path has at least one task that is serviced by another
route, we consider it a discontinuity in route ri and increment DC.

DC =
∑
ri ∈R

( j−1∑
ℓ=1

discontinuity(tiℓ , tiℓ+1)

)
(3)

Both exists(·) and discontinuity(·) are simple indicator functions.
If the discontinuity count is less than k = |R | then we set the

attractiveness equal to the CNC, otherwise we set it to infinity:

attractiveness =

{
CNC, if DC < k

∞, if DC ≥ k
(4)

This definition of attractiveness forces MA-ABC to reject any
solution that has high discontinuity in the selection of parents for
offspring of a generation, and the selection of the next generation.

3.6 Elitism

Elitism is essential for the convergence of MOEAs [6]. We incorpo-
rated elitism inMA-ABC as implemented in NGSA-II [12].

4 EVALUATION OFMA-ABC

MA-ABC was coded in python; source code is provided [49] for re-
producibility. We use the DEAP [18] EC framework, which includes
an implementation of NSGA-II ranking and selection operations.

We evaluate two classic benchmark CARP instances: val, and
egl. val [4] is a collection of 34 instances based on ten randomly
generated graphs with 24-50 vertices and 34-97 edges, where all
edges are required. Instances of the same graph differ by vehicle
capacity. egl [14] is a collection of 24 instances generated based
on a winter gritting application in Lancashire county in the U.K.
It contains two graphs, one with 77 vertices and 98 edges (egl-s)
and the other with 140 vertices and 190 edges (egl-e). Each graph
consists of four sets of three instances each with the sets differing
by number of required edges. The instances within a set (named
with suffix A, B, C) differ by capacity limit of the vehicles.

We report the results of MA-ABC, using the parameter settings
in Table 1, from a single run to show that our algorithm is effi-
cient, i.e., that operators can use MA-ABC in a real-world scenario
where solutions need to be generated in real time such as in a vehi-
cle breakdown scenario [45]. For completeness, we also present a
statistical analysis of 30 runs of our algorithm in §4.3.

Table 1:MA-ABC parameter settings

Parameter Value

Number of generations (NGEN ) 300
Population size (µ) 100
Offspring produced (λ) 100
Crossover rate (CXPB) 1
Mutation rate (MUTPB) 1

4.1 Results

We compare the results of MA-ABC with the solution generated
by 1000 iterations of the path scanning with random task (PSRT)
heuristic. PSRT was chosen because it seeks to optimize total cost.
We present results for the objectives of attractiveness, total cost, and
balance, in turn. Due to space limitations, see [49] for a presentation
of all results, including the data used to generate figures.

4.1.1 Attractiveness. We first provide a qualitative evaluation of
MA-ABC for a few CARP instances. Figure 2 shows a visualization
of the routes generated by PSRT on the left and those produced
by MA-ABC on the right, using a different colour for each route,
for the egl-e4-A and val10C instances, respectively. As the figure
shows, the routes generated byMA-ABC are compact, do not cross,
and have better defined service areas; therefore they considered
more attractive than the routes generated by PSRT.

We also provide a quantitative comparison of the algorithms
using three metrics: The connectivity index (CI), the average task
distance (ATD), and the route overlapping index (ROI) [8]. CI mea-
sures the average number of connected components within a route.
ATD is a measure of average deadheading cost between task pairs
within the same route. ROI measures the node overlap of the cur-
rent solution with the overlapping of an “ideal" solution. For each
metric, smaller is considered more attractive.
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(a) PSRT (b) MA-ABC

Figure 2: Heuristic routing solution produced by PSRT (left)

and MA-ABC (right) on two instances: egl-e4-A (top row)

and val10C (bottom row). The rectangle represents the depot.

Vehicles on some routes need to deadhead on the shortest

path from the depot to the first task on the route.

We compute these three metrics for the most attractive solution
in the Pareto front found by MA-ABC and compare with PSRT.
Table 2 shows the results for the egl instances. For each metric the
smaller value is shown in bold. We see that CI and ROI forMA-ABC
are lower than those of PSRT for all instances. ATD is also lower for
MA-ABC for all but six instances. Hence our routing solutions are
considered attractive by external metrics not used in the algorithm.

4.1.2 Total Cost. The first row of Figure 3 plots the total cost of
egl (a) and val (b) instances, produced by MA-ABC and PSRT; the
optimal or current best known total cost solution is also plotted.

In comparison to PSRT, MA-ABC found a lower total cost solu-
tion for all 24 instances of egl. The percentage of reduction ranges
from 8.81-19.64% with an average reduction of 11.45%. The total
cost found by MA-ABC ranges from 0.36-6.18% higher than the
optimum (or best known solution), with an average of only 3.31%
higher.MA-ABC is able to come quite close to the optimum (or best
known) routing solutions with respect to total cost.

4.1.3 Balance. We use makespan as a proxy for balance; see §3.5.
The second row of Figure 3 plots the makespan of egl (a) and val
(b) instances, produced byMA-ABC and PSRT. Maximizing balance
corresponds to minimizing the makespan. The best makespan solu-
tions of MA-ABC are smaller than those of PSRT for all benchmark
instances. For egl the average reduction is 13.68%, but for val the
average reduction is much larger, namely 28.27%.

Table 2: egl: Attractiveness metrics for PSRT v.MA-ABC

Instance
PSRT PSRT PSRT MA-ABC MA-ABC MA-ABC

CI ROI ATD CI ROI ATD

egl-e1-A 2.60 0.65 61.19 2.17 0.54 43.14

egl-e1-B 2.71 0.38 45.35 2.29 0.38 57.05
egl-e1-C 2.70 0.35 44.28 1.30 0.35 23.40

egl-e2-A 2.71 0.35 58.67 2.00 0.28 58.22

egl-e2-B 2.60 0.21 60.23 1.64 0.20 43.44

egl-e2-C 2.21 0.23 37.97 1.40 0.22 28.91

egl-e3-A 2.88 0.73 67.31 2.30 0.61 71.95
egl-e3-B 2.25 0.53 51.26 1.64 0.47 32.64

egl-e3-C 2.18 0.62 33.40 1.83 0.59 47.48
egl-e4-A 2.22 0.92 63.86 1.92 0.73 67.48

egl-e4-B 2.36 0.75 41.70 1.75 0.68 40.56

egl-e4-C 1.90 0.59 32.51 1.29 0.57 26.79

egl-s1-A 3.29 1.18 83.33 2.57 1.18 96.80
egl-s1-B 2.90 0.77 76.66 2.18 0.71 83.50
egl-s1-C 2.29 0.59 49.09 1.60 0.56 45.60

egl-s2-A 2.79 0.41 60.95 2.18 0.36 44.17

egl-s2-B 2.85 0.41 44.98 1.79 0.36 36.71

egl-s2-C 2.33 0.50 43.87 2.03 0.48 29.16

egl-s3-A 2.67 0.38 46.59 1.94 0.36 35.94

egl-s3-B 2.27 0.54 41.67 1.96 0.51 56.17
egl-s3-C 2.21 0.38 40.51 1.44 0.36 19.95

egl-s4-A 2.47 0.69 49.65 1.43 0.65 39.04

egl-s4-B 2.04 0.62 34.70 1.38 0.59 23.53

egl-s4-C 2.31 0.59 34.26 1.28 0.54 19.97

4.2 Pareto Efficiency, Spread, and Convergence

AnMOEA that produces a diverse set of solutions at the Pareto front
is useful for operators by providing a wide set of heuristic solutions
to meet design objectives. The approximate Pareto front generated
byMA-ABC for the instance egl-e4-A is shown in Figure 4 with
total cost, attractiveness, and balance as axes. The figure shows that
the Pareto front is wide and diverse, providing choice for operators.

To further illustrate the range of choice that MA-ABC offers, in
Figure 5 we use a box-and-whiskers plot for each metric, for each
heuristic solution on the Pareto front. In general, these plots show
that the boxes for balance and attractiveness are larger than those
of total cost. This is not surprising because our algorithm uses only
the total cost for the move operator in the local search; this helps
to achieve total cost values closer to optimum and maintain the
heuristic solutions in the population closer to the optimum total
cost (balance and attractiveness considered secondary objectives).

Early convergence is a concern in EC [27]. Convergence can
be inferred from the change in the population from generation to
generation. A figure that plots of the objective values as a function of
generation is also helpful. For example, Figure 6 plots the total cost
versus generations for the egl-s4-C instance. This figure shows
that, towards the end of the number of generations, the total cost of
the best heuristic solution flattened indicating that it has attained
stability and is near convergence. At the same time, the mean fitness
varies indicating that the method maintains good diversity.

We also computed the number of unique non-dominated solu-
tions, number of unique dominated solutions, and the number of
duplicate solutions in the final iteration of MA-ABC for egl and val.
The number of unique non-dominated solutions ranges from 12-63
for the egl instances. For the val instances the range is from 7-60,
except for val1-val3 which range from 2-17 because the graph is
smaller. The larger the number of unique non-dominated solutions,
the higher the number of choices for an operator; it confirms that
diversity is maintained and the early convergence is avoided.
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(a) egl instances (b) val instances

Figure 3: Comparison of total cost (top); optimum/best known total cost results in green,MA-ABC in orange, and PSRT in blue.

Comparison of makespan (bottom);MA-ABC results in orange, and PSRT in blue. Both objectives are minimized.

Figure 4: Approximate Pareto front (in blue) for egl-e4-A. A visualization of the routing solution, total cost and makespan are

given for three solutions on the front: From left to right, the best heuristic solution with respect to total cost, attractiveness,

and makespan.
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(a) Attractiveness (b) Total cost (c) Balance

Figure 5: Box-and-whiskers plots illustrating spread of the heuristic solutions found byMA-ABC for (a) attractiveness, (b) total

cost, and (c) balance for the egl-e (row 1), egl-s (row 2), and val (row 3) instances. The green diamond next to each instance

of total cost indicates the optimum (or best known) solution.

Figure 6: Total cost v. generations for egl-s4-C.

4.3 Statistical Analysis

All results presented so far are for a single run of MA-ABC. To
measure the repeatability and precision of MA-ABC we use the
coefficient of variation (CV). It is defined as the ratio of the standard
deviation σ over the absolute mean µ. A CV value that is more than
100% is considered highly variant, while a CV less than 100% is
considered to show low variance.

Table 3 presents µ, σ 2, and CV for each of total cost, attractive-
ness, and makespan, computed from 30 runs of MA-ABC. The table
shows that the CV is greater than 100% for only one instance in
egl-e and none in egl-s. All val instances (see [49]), have CV less
than 100%; 10 had more than 33% and only four were more than
50%. This suggests that MA-ABC gives consistent results.
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Table 3: Mean, variance, and CV for egl instances

Instance
Total cost Atttractiveness Makespan

µ σ 2 σ
|µ | µ σ 2 σ

|µ | µ σ 2 σ
|µ |

egl-e1-A 3589.73 3988.20 1.76 -19.00 0.69 4.37 819.77 1.63 0.16
egl-e1-B 4566.00 618.90 0.54 -16.63 0.52 4.32 815.77 115.77 1.32
egl-e1-C 5725.57 2497.84 0.87 -14.20 0.51 5.03 799.03 425.90 2.58
egl-e2-A 5122.97 1943.76 0.86 -0.30 2.15 488.57 837.63 124.65 1.33
egl-e2-B 6437.53 1848.53 0.67 3.70 1.11 28.52 826.77 16.94 0.50
egl-e2-C 8529.60 3400.25 0.68 10.27 0.41 6.23 818.40 12.52 0.43
egl-e3-A 6048.33 2804.02 0.88 10.70 1.11 9.86 856.70 87.04 1.09
egl-e3-B 8033.47 5288.26 0.91 17.63 1.14 6.05 826.67 29.26 0.65
egl-e3-C 10422.67 8846.16 0.90 25.37 1.27 4.45 819.73 0.75 0.11
egl-e4-A 6716.30 3202.15 0.84 18.13 0.67 4.52 854.30 150.56 1.44
egl-e4-B 9404.47 6731.50 0.87 28.33 1.61 4.48 822.20 4.65 0.26
egl-e4-C 11775.20 16557.13 1.09 35.33 2.16 4.16 819.80 0.37 0.07
egl-s1-A 5168.37 154.17 0.24 -54.67 0.37 1.11 953.83 260.76 1.69
egl-s1-B 6585.53 1697.57 0.63 -52.00 0.69 1.60 922.70 18.08 0.46
egl-s1-C 8570.50 2717.71 0.61 -47.33 0.37 1.28 914.00 20.69 0.50
egl-s2-A 10454.63 7436.65 0.82 11.07 2.89 15.37 1030.53 187.64 1.33
egl-s2-B 13749.00 15646.07 0.91 21.90 4.58 9.77 992.87 61.64 0.79
egl-s2-C 17058.07 18664.41 0.80 31.17 3.25 5.78 978.70 0.22 0.05
egl-s3-A 10684.20 5807.27 0.71 18.60 3.35 9.84 1031.23 258.74 1.56
egl-s3-B 14368.47 14492.81 0.84 33.20 3.96 5.99 989.40 66.04 0.82
egl-s3-C 17979.63 20183.76 0.79 40.00 3.72 4.82 979.00 4.55 0.22
egl-s4-A 13169.83 13510.83 0.88 52.90 9.33 t 5.78 1031.57 36.19 0.58
egl-s4-B 17076.97 20326.93 0.83 66.77 5.56 3.53 1026.80 0.58 0.07
egl-s4-C 21500.30 41947.25 0.95 80.33 4.71 2.70 1018.50 173.02 1.29

4.4 Run Time Performance

MA-ABC was run on a desktop system with Intel Core i7-4770S
CPU @ 3.10 GHz × 8, with 7.7 GiB of memory, running the Ubuntu
18.04 LTS operating system. Figures 7 shows the running time for
egl instances, plotted as a function of instance size, i.e., the num-
ber of required tasks. The running time for egl instances ranges
from 123.60-1291.12 seconds. As the figure shows, the run time is
approximately linear. This indicates that MA-ABC appears to scale
well and may be appropriate for real-world instances.

Figure 7: Run time v. instance size for egl instances.

5 DISCUSSION

The purpose of the current work is to show that the attractiveness
of a heuristic routing solution may be improved using EC algo-
rithms, without compromising total cost. This provides operators
of services broad and diverse choice among heuristic solutions to
meet their design objectives. Furthermore,MA-ABC produces these
heuristic solutions with only one run which is important in case

of service interruption which requires a real time response, e.g.,
rerouting in the event of a vehicle breakdown.

Our new metric of attractiveness could find other application do-
mains, e.g., in node routing problems such as in air route networks,
among others.

We want to keepMA-ABC simple to enable easy adoption and
reproducibility. Hence no parameter tuning methods are currently
integrated intoMA-ABC. To enableMA-ABC to be more general
so that it can perform well across more types of instances, some
form of automatic tuning can be integrated. Recall that the source
code is provided at [49].

We also did not use pool update or population restart strategies
in order to keep our design simple. The current population size
of 100 and number of generations of 300 can be reduced by using
some form of pool update strategy which may help in reducing the
running time for large-sized instances.

We implemented local search based only on the total cost objec-
tive to keep the solutions close to the optimum total cost; this is
because total cost is generally considered of high importance.

We used only one move operator as the local search is expen-
sive and we want to limit the running time. Multi-objective local
search and sophisticated move operators such as K-opt may help
to improve solution quality in real-world instances in spite of an
increase in computation time. The computation time of local search
may be reduced by using acceleration mechanisms and by using
statistical filters [52].

6 CONCLUSIONS AND FUTUREWORK

In this paper we developed MA-ABC, a multi-objective EC algo-
rithm based on NSGA-II for CARP with three objectives: To seek
to minimize total route cost and balance, and to maximize route
attractiveness. We defined a novel fitness function for attractiveness
combining a measure of route overlap and a measure of route con-
tiguity. We evaluatedMA-ABC on two benchmark CARP instances.
The resulting heuristic solutions are not only visually attractive but
also obtain a Pareto front that is diverse with broad choices for the
attractiveness and makespan objectives without deviating much
from the best total cost objective.

As future work, we plan to evaluate MA-ABC on larger, more
realistic, data sets in order to understand the implications to running
time. Comparison to other heuristics that seek to optimize total
cost and balance, not just total cost as in PSRT, is also planned.
Incorporating either more or different metrics for attractiveness are
worthy of study. In addition, we plan to implement automatic tuning
of parameters for each instance so as to improve the accuracy and
speed.Wewill also include additional objectives, such asminimizing
the number of vehicles, considering the use of a many objective
optimization method such as in NSGA-III.
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