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Abstract—Multiplicative Weights Update (MWU) algorithms
are a form of online learning that is applied to multi-armed
bandit problems. Such problems involve allocating a fixed num-
ber of trials among multiple options to maximize cumulative
payoff. MWU is a popular and effective method for dynamically
balancing the trade-off between exploring the value of new
options and exploiting the information already gained. However,
no clear strategy exists to help practitioners choose which of
the several algorithmic designs within this family to deploy.
In this paper, three variants of parallel MWU algorithms are
considered: Two parallel variants that rely on global memory,
and one variant that uses distributed memory. The three variants
are first analyzed theoretically, and then their effectiveness is
assessed empirically on the task of estimating distributions in
the context of stochastic search for repairs to bugs in software.
Earlier work on APR suffers from various inefficiencies, and the
paper shows how to decompose the problem into two stages:
one that is embarrassingly parallel and one that is amenable
to MWU. We then model the cost of each MWU variant and
derive the conditions under which it is likely to be preferred
in practice. We find that all three MWU algorithms achieve
accuracy above 90% but that there are significant differences
in runtime and total cost. When 90% accuracy is sufficient and
evaluating options is expensive, such as in our use case, we
find that the algorithm that uses global memory and has high
communication cost outperforms the other two. We analyze the
reasons for this surprising result.

I. INTRODUCTION

Many important problems are challenging because the struc-
ture of the solution space is poorly understood. An example is
Automated Program Repair (APR), where stochastic search of
the space of possible program edits is a popular approach [1],
[2]. Online learning algorithms are often used in such settings
because they can acquire and incorporate information about
the solution space while they run, thus improving their per-
formance over time, although they have not been previously
applied to APR.

APR typically starts with a defective computer program and
a test suite, where the defect is indicated by one or more
tests that the program fails to pass. In search-based APR [1],
random mutations (probes) are applied to the program, which
is then compiled and executed on the test cases to determine
if the mutation constitutes a repair. It is not known in advance
which mutations (if any) will repair the defect, either indi-
vidually or in combination with other mutations. In addition,
testing the functionality of a large-scale software project can

take minutes to hours; this step occurs in the inner loop and
is the dominant cost.

Online learning algorithms must balance exploration of new
information with exploitation of previously-learned informa-
tion. Multi-armed bandit problems [3], [4] capture the essence
of this trade-off, framing the problem as one of allocating
scarce resources (samples or probes) to options of varying but
unknown quality. Sampling to estimate the quality of each
option can be expensive. For example, in APR each trial
requires patching and compiling a program, running it on a test
suite, and assessing the results. In addition, many trials may
be required to estimate an option’s value. Multi-armed bandit
problems emerge in many domains, including economics [5],
web design [6], and optimal search [7]. Multiplicative Weights
Update (MWU) [8] is a meta-algorithm that operates on bandit
problems and is optimal (maximizes cumulative gain) in the
asymptotic case [9], [10]. The theoretical literature outlines
many concrete realizations of MWU. However, there is little
guidance about when each realization is most appropriate.

Some MWU realizations target bandit problems explicitly,
e.g., stock balancing problems [11]. Others have emerged as
models of natural behavior, e.g., social learning [12]. Still
others focus on parallelizing the evaluation of a subset of
options, e.g., in Internet advertising markets [13]. When faced
with large problem instances that have expensive probes, it
is desirable to use many compute devices, but we lack a
careful characterization of the formal or observed trade-offs
that MWU design choices instantiate.

In this paper, we assess three realizations of MWU in terms
of their convergence rate and accuracy at selecting valuable
options. Next, we recast search-based APR as a two-phase
process, where the first phase is embarrassingly parallel and
the second phase is a multi-armed bandit problem. We study
the performance of the different MWU realizations empirically
in the context of this reformulation.

Our approach to APR addresses the inherent inefficiency
and conservatism of existing methods, which apply mutations
one at a time, incurring the high cost of testing for each
mutation. Further, some defects cannot be repaired by a single
mutation, even though most APR algorithms consider very few
mutations in combination [14], [15]. What remains unsolved
is determining how to navigate the super-exponential space of
possible combinations of mutations. In our formulation, the



number of mutations to try in combination are the arms of
the bandit, and we use MWU to choose which arm to sample
at each iteration of the search. Because most mutations lower
fitness (causing the program to fail on more test cases than the
original), there is a trade-off between sampling a small number
of mutations at once (less efficient and may not be sufficient
to repair the bug at all) and sampling a large number (more
efficient but higher chance of one or more mutations breaking
test cases). We know of no method to predict the number of
mutations that optimizes this trade-off for a given program and
defect, so we use MWU to explore the set of feasible options
while the repair algorithm executes.

Because the cost of running APR on large programs is high,
we first introduce the idea of precomputing safe mutations at
the time software is deployed, making it trivial to parallelize
an expensive component of the search and to reuse mutations
for multiple bug repairs. Next, we consider three MWU
realizations to estimate how many safe mutations should be
tested simultaneously on a particular bug scenario, in terms
of both efficiency and likelihood of finding a repair. We
give theoretical results for the three MWU realizations and
report empirical results on representative bug repair scenarios.
Finally, we analyze and model the cost to highlight the trade-
offs among the approaches. We find that the communication
cost and cost of evaluating options determine which MWU
algorithm is recommended.

In summary, the main contributions of the paper are:
• A formal comparison of three MWU algorithms. We

consider memory overheads, communication costs, con-
vergence times, and the minimum number of agents
required.

• A parallel, online learning algorithm for APR. We re-
cast APR as a bandit problem, explicitly accounting for
multiple mutations and precomputation.

• An empirical evaluation of three MWU algorithms. We
compare algorithm performance on a number of program
repair scenarios and two generic distributions.

• Explicit cost models for MWU in a practical application.
Our model incorporates the number of agents, the number
of options, and the learning rate.

II. MULTIPLICATIVE WEIGHTS UPDATE

Multiplicative Weights Update (MWU) [8] is a meta-
algorithm that operates on bandit problems. Candidate options
are assigned initial weights that are used to select a subset of
options to evaluate, and the weights are updated multiplica-
tively over time based on how the selected options performed.
We first describe the standard MWU algorithm, consider two
popular variations, and summarize differences between them.

A. Standard MWU

The standard MWU algorithm [8] (Standard), sometimes
called the weighted majority algorithm, is summarized in
Figure 1. It takes as input a set of options, Opts, that have
an unknown benefit. The algorithm samples the cost, m, of
a set of options: The cost (reward) is 1 if the sample is

Input: option set Opts, function returning the cost m of
an option, iteration limit T , learning rate η ≤ 1/2, and
number of parallel threads n.
Output: per-option weight vector w

1: w
(1)
i ← 1, 1 ≤ i ≤ |Opts| . Initialize

2: for t← 1 to T do
3: for j ← 1 to n do . Sample
4: decisionj ← i ∝ w(t)

i .
5: end for
6: for j ← 1 to n do . Update
7: Observe cost m(t)

j of decisionj
8: w

(t+1)
j = w

(t)
j ∗ (1 + η ∗m(t)

j )
9: end for

10: end for

Fig. 1. Standard: The Multiplicative Weights Update Algorithm

Input: option set Opts, method returning the cost m of an
option, iteration limit T , and parallel threads n.
Output: per-option weights w

1: w
(1)
i ← 1, 1 ≤ i ≤ |Opts| . Initialize

2: γ =
√

(|Opts|/n)·ln(|Opts|/n)
T

3: η =
√

(1−γ)·n·ln(|Opts|/n)
|Opts|·T

4: for t← 1 to T do
5: p(t) = w(t)/

∑
i w

(t)
i . Sample

6: p′(t) = (1− γ) · p(t) + γ
|Opts| · 1|Opts|

7: Decompose s · p′(t) =
∑
S qS · 1S , such that qS > 0,∑

S qS = 1, and S ⊆ |Opts|, |S| = n
8: Select slate S ∝ qS
9: m

′(t)
j = m

(t)
j /(n · p′(t)j ) if j ∈ S else 0 . Update

10: w
(t+1)
j = w

(t)
j ∗ (1 + η ∗m′(t)j ), 1 ≤ j ≤ |Opts|

11: end for

Fig. 2. Slate Multiplicative Weights Update Algorithm. 1S is a vector of
length |Opts|, set to 1 if j ∈ S and 0 otherwise.

correct and 0 otherwise. The algorithm is typically limited
to a maximum number of iterations T . MWU associates a
weight, w, with each individual option, updating the weights
on each iteration, seeking to optimize the cost function. The
rate at which new evidence is incorporated into the weights,
e.g., increasing the weights of options found to be useful, is
controlled by the parameter η. Together with other algorithmic
decisions, η influences how the algorithm balances exploration
and exploitation. In Figure 1, the weights are initialized to
one, and the main loop implements the iterative sampling and
weight updating. Each of the n parallel threads is assigned
an option to evaluate in the Sample step. Then each thread
evaluates its assigned option in parallel in the Update step.
When this evaluation is complete, the shared model weights
are updated, which requires all threads to communicate.

B. Slate and Distributed MWU Variations

Standard assumes full visibility of the quality of each option
on each iteration. That is, it makes a global, centralized



Given option set Opts, a method returning the cost m
of an option, an iteration limit T , a learning rate η ≤
1/2, a number of parallel threads (agents) pop size, and
attention parameters 0 ≤ α ≤ β ≤ 1

1: for i← 1 to |Opts| do
2: for j ← 1 to (pop size/|Opts|) do
3: Ci·j+j = i . Initialize
4: end for
5: end for
6: for t← 1 to T do
7: for j ← 1 to pop size do . Sample
8: if random() < µ then
9: k ← random int(|Opts|)

10: Oj ← Optk . Pick a random option.
11: else
12: k ← random int(pop size)
13: Oj ← Ck . Observe a random neighbor.
14: end if
15: end for
16: for j ← 1 to pop size do . Update
17: if mt

(Oj)
== 1 && random() < β then

18: Cj ← Oj
19: else if mt

(Oj)
== 0 && random() < α then

20: Cj ← Oj
21: end if
22: end for
23: end for

Fig. 3. Distributed Multiplicative Weights Update Algorithm. α is the chance
of adopting a failed option; β is the chance of adopting a successful option; Cj
is the option chosen by individual j; Oj is the option observed by individual
j; and µ is the probability of choosing an option at random.

decision based on all available information. This visibility
requirement is relaxed in the slate selection variation [13]
(Slate), developed for online advertising and shown in Fig-
ure 2. In Slate, a subset of options is selected at each iteration,
and only the weights of the subset are updated. Slate is
specialized for problems that require selecting and evaluating
a fixed-size set of options (like advertisements on a web page).
As with Standard, each of the n parallel threads is assigned
an option to evaluate: this is the slate S selected in Figure 2,
line 8. In the Update step, these options are evaluated in
parallel, and then the model is updated, which requires a
communication block before the next iteration begins.

A distributed, memoryless variant of MWU (Distributed)
was developed to model social learning dynamics [12]. Dis-
tributed is shown in Figure 3. It does not require full commu-
nication. Instead, each agent (thread) samples either a random
option to observe or selects a single neighbor to observe,
as can be seen on lines 7-15. Each thread then evaluates its
selected option in parallel. Then each thread decides whether
to adopt the observed option (lines 16-22). Distributed is
specialized for situations where its memoryless property is
advantageous and requires less intense communication.

TABLE I
ASYMPTOTIC COMPLEXITY OF MWU ALGORITHMS

Standard Distributed Slate

Communication Cost O(n) O(
ln(n)

ln(ln(n))
)∗ O(n)

Memory Overhead O(k) O(1) O(k)

Convergence Time O(
ln(k)

ε2
) O(

ln(k)

δ2
) O(

k
n
·ln(k)
ε2

)

Minimum Agents O(n) O(k
( 1
δ2

)
) O(n)

C. Algorithmic Analysis

The three MWU variations we consider have different com-
plexity properties. It is critical to understand these complexity
properties because focusing only on the asymptotic conver-
gence time does not reflect the trade-offs faced in practice.
First, we establish these properties formally; we return to this
issue in Section IV and evaluate them empirically.

These properties are summarized in Table I. Memory over-
head is the per-node cost, communication cost is the expected
congestion of the heaviest hit node, and convergence time
is the number of update cycles required for the weights to
converge. k is the number of options available, n is the number
of nodes, δ = ln(β/(1 − β)) where β controls the attention
paid to the most recent observation, and ε is the error tolerance.
Starred bounds hold with probability at least 1− 1

n .
Although Table I summarizes the properties of the three

MWU algorithms, it can be challenging to compare them
directly using the existing literature. For example, convergence
of Standard is presented in terms of algorithm iterations [8,
Sec. 3.1], while the convergence of Slate is presented in terms
of regret [13, Sec. 2]. While it is possible to solve for one in
terms of the other, as we have done for clarity in Table I, the
relationships may not be obvious to practitioners, especially if
they are given in terms of parameters that can appear opaque,
such as δ (which depends on β) or ε (which depends on η).

Communication. In this context, communication cost refers
to congestion: the maximum number of agents that any one
agent must communicate with. Congestion is the crux of
communication overhead because it determines how long the
system must spend synchronizing at each iteration. Distributed
has much lower expected congestion than the other two, and
this bound holds with high probability.

To see why, we observe that the worst-case communication
congestion for Distributed is O(n): all agents could select the
same agent to observe, but the probability of this decreases
as the population size increases. Each agent selects uniformly
at random from the entire population to decide which other
agent to treat as its neighbor, so it is possible to derive a
high-probability bound on the worst congested node. This is a
classic instance of the balls into bins capacity problem, where
the number of agents choosing neighbors equals the number
of potential neighbors. So, with high probability, the worst
congested node is no worse than O( ln(n)

ln(ln(n)) ) [16].
By contrast, for Slate a fixed-size slate (subset) of options is

chosen at each iteration. This is achieved naively by projecting
the current weight vector onto each subset of options and



choosing sets according to the value of the projection. This
is prohibitively expensive, even for moderately-sized problem
instances. For example, if we had 1000 options and wanted to
choose what each of 16 threads should evaluate, the number of
combinations is

(
1000
16

)
= 4.2× 1034. However, because each

weight vector used in MWU can be capped and normalized
to fall strictly within the probability simplex whose vertices
correspond to the slates, it is possible to decompose the
weight vector into a convex combination of these vertices.
This requires O(k2) time [17].

Memory. Slate and Standard require O(k) memory, but
Distributed is O(1). This is because the popularity of each
option encodes the weight vector implicitly, and agents ob-
serve random neighbors to access this information.

Convergence. Convergence time is an important property
of any learning algorithm, and in MWU it is the number of
iterations required for the weights to converge to values within
the error tolerance. Slate converges more slowly than Standard
because it selects a subset of options on each iteration.
Distributed converges under similar asymptotics to Standard,
but this requires fixing the value of δ, which exponentially
increases the number of agents.

Agents. In Distributed, the minimum number of agents
is higher than for the other two because the weight vector
is implicitly stored in the popularity of each option in the
population, which must be large enough to avoid premature
decay of diversity.

D. MWU Summary

MWU is used in many application domains to iteratively
learn the quality of various options when measurement is
expensive. MWU is popular because of its convergence guar-
antees and low overhead costs. MWU variations, such as
Distributed and Slate, have attractive properties such as lower
memory overheads or less intense communication congestion,
but the relative costs and benefits of the different approaches
are challenging to assess in the context of particular applica-
tions. In the next section, we consider one such application,
the automated search for repairs to software defects.

III. STOCHASTIC SEARCH FOR PROGRAM REPAIRS

APR tools aim to remedy defects in software without
human involvement [1], [18]. A popular approach is search-
based [19], in which candidate patches are generated through
random mutation and recombination of existing code, and then
validated against regression test suites to determine if they
retain required functionality (pass required tests) and remedy
the bug (pass a bug-inducing test). Most search-based methods
are inspired by evolutionary computation [20]–[26], where
mutations are edit operations to program statements and fitness
is assessed by running test cases. Randomly mutating program
code seems likely to introduce errors, and it is therefore sur-
prising that ≈ 30% of whole-statement mutations to programs
in C [27] and Java [28] preserve required functionality. We
refer to these as safe mutations and note that any mutation
that constitutes a bug repair must also be safe. To be counted

as a repair, it must pass all required tests and the bug-inducing
test. We further note that all mutations, safe or otherwise, are
restricted to lines of code that are executed by the regression
test suite to avoid mutations applied to dead or untested code.
Because ≈ 70% of single mutations fail at least one required
test, search-based APR methods are conservative, and even
those that are capable of applying multiple mutations [20]
typically do so only one at a time [14], [15]. A recent study of
eleven such repair tools on five common Java program repair
benchmarks found that between 53% and 90% of the defects
in each benchmark were not fixed by any repair tool [29] .
Thus, there is a need to improve the effectiveness of APR,
both by expanding the scope of its search and by improving
the efficiency to allow more extensive searches.

A. Recasting APR as an online statistical estimation problem

Current methods search only in a one- or two-edit dis-
tance from the original program [14], [15], [18], focusing
on mutation. This limits the exploration of the search and
its effectiveness at finding repairs (cf. [25]). In this paper,
we focus on increasing the parallelism of the search and on
combining safe mutations in a way that maximizes the chances
of finding a repair. To do this, we (1) step out of the evo-
lutionary computation paradigm by eliminating selection and
recombination, (2) precompute a large sample of individually
safe mutations which can be applied to multiple bug scenarios
for a single program, and (3) use online learning to identify
the best way to combine safe mutations to search for repairs.
The unknown, which must be determined online, is how many
safe mutations to combine to balance the size of the step in
the search space with the failure rate of each attempt.

To implement this approach requires answering these ques-
tions: (1) How does the probability of finding a repair change
with the number of mutations considered? (2) How likely
are mutations to interact negatively? and (3) How do the
answers to (1) and (2) change with different programs and bug
scenarios? The answers to these three questions motivate our
use of online learning and investigation of MWU realizations.

B. Number of Mutations

Any mutation that repairs a defect must pass all avail-
able test cases, i.e., be safe. This defines the search space.
Assuming that mutations are generated randomly, that each
mutation is tested independently, and that we have no prior
information about which mutations are more likely to be
beneficial, we can assume that any individual mutation has an
equally likely chance of repairing a bug. The chance of finding
a repair is thus expected to increase linearly with the number
of independent mutations considered, which implies a linear
relationship between safe mutations and repair probability.

Testing each mutation separately limits efficiency, but com-
binations of individually safe mutations can interact negatively
and break the program. Figure 4a shows the strength of this
effect, when x random safe mutations are applied to the
program gzip [30]. The figure shows how the fraction of
programs that pass the test suite changes as a function of



the number of mutations that have been applied. Each point
depicted is the average of 1,000 independent random trials of
x safe mutations. Although the curve descends quickly as x
increases, indicating negative interactions, many mutations can
be combined safely. Even when 80 safe mutations are applied
together, on average, over 50% of the resulting programs
retain their original functionality with respect to the test suite.
In comparison, only two random, untested mutations (not
guaranteed to be safe) can be applied before more than 50% of
the resulting programs lose functionality. Although we show
data for only one program, this pattern holds for all of the
programs we have tested.

Next, we investigate how many mutations should be com-
bined to maximize the chance of finding a repair. There
are two factors: maximizing how many mutations we can
test simultaneously (to reduce test suite execution costs)
and minimizing the chance that multiple mutations interfere
negatively (Fig. 4a). As we accumulate safe mutations, we
expect the density of repaired programs to increase until
the effect of negative interactions outweighs the benefit of
testing more mutations together. Figure 4b confirms the pre-
diction for gzip, demonstrating a unimodal distribution with
the optimum occurring at 48 combined mutations. We have
confirmed this unimodal pattern in thirteen other programs,
with the optimum found anywhere from 11 to 271 mutations.
Importantly, for each program/bug combination, the optimal
density of repairs occurs at a different place on the x-axis.
We can use MWU to adaptively bias samples of x (how many
mutations to combine) towards regions of the space that are
near the optimum.

In a bug repair scenario, the repair process typically termi-
nates after the first repair is found, so the online search can
not sample repair density directly. Instead, we use the density
of safe mutations, which the search does sample, as a proxy.

C. Precomputing Safe Mutations

All search-based APR methods rely on generating safe
mutations. To date, all such algorithms generate new mutations
on demand, and the process of finding safe mutations is
embedded in the inner loop of the search [1]. We propose
a new approach, which precomputes a large pool of safe
mutations, a one-time cost that is easily run in parallel and
can be amortized over the cost of repairing multiple bugs in
a given program. This technique is useful in general and it
minimizes a fundamental problem which arises in translating
our observations about the search space into an efficient APR
algorithm.

A search process that combines a varying number of safe
mutations and generates them on the fly encounters a perfor-
mance issue. In algorithms that require synchronization blocks
(e.g., for communication), all threads must wait for the slowest
one to complete its work. This problem is exacerbated as
the number of threads increases, because the highest cost
is paid with increasing probability. The probability of the
worst k values in a range of n values being selected in at
least one of m trials is 1 − (n−kn )m. In the example of 64
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Fig. 4. Effect of Mutation Accumulation on Program Behavior

threads choosing between 1 and 100 mutations to evaluate,
the process would need to wait for a thread to identify 91 or
more safe mutations (worst 10% of outcomes) with probability
1 − ( 90

100 )
64 ≈ 99.9%. Thus, almost all iterations incur high

cost, and the naive system operates at about half the efficiency
of threads requiring no synchronization blocks. An additional
cost occurs when identical mutations are generated and eval-
uated repeatedly by different probes, which is common.

Precomputation avoids this bottleneck. If a pool of known
safe mutations is available, then each thread can select and
compose them independently, evaluating the resulting program
with a single call to the test suite. That is, precomputing
safe mutations linearizes this part of the online algorithm
by removing the dependence on the maximum number of
mutations any thread must evaluate.

Most deployed software has an associated regression test
suite. New tests may be added over time as the program’s
source code evolves, and the safe mutation pool can be updated
incrementally whenever this occurs. As defects are repaired,
the failing test(s) that exposed the defect can be added to the
test suite, the precomputed pool can be run on the new test(s),



and any that fail can be replaced with a new safe mutation.
This process is embarrassingly parallel.

D. The MWRepair Algorithm

We combine these two insights (precomputing a pool of
safe mutations and searching for repairs where density in the
search space is highest) into the MWRepair algorithm (Fig. 5),
which recasts APR as an online statistical estimation problem
that is naturally parallel. The increase in efficiency mediated
by effective online learning motivates our use of MWU.

In the precompute phase, MWRepair takes a program and
regression test suite as input and generates a pool (labeled
database in the figure) of safe mutations. Each parallel process
applies a mutation to the original program and evaluates its test
cases. The online phase uses MWU to bias the search towards
the optimum (Fig. 4b) while iteratively testing combinations of
mutations to see if they repair the bug. When a repair is found,
the algorithm terminates. We have implemented MWRepair
and confirmed that it finds bug repairs successfully in both
Java and C (results summarized in Sec. IV-G).

IV. EMPIRICAL EVALUATION

Our empirical evaluation focuses on the performance of
the three MWU algorithms in the context of MWRepair,
reporting the number of iterations for MWU to converge and
its accuracy. Section IV-A describes the datasets used in the
evaluation; Section IV-B outlines the experimental design;
Section IV-C reports performance in terms of number of
iterations to convergence; Section IV-D reports accuracy of
the estimates; Section IV-E develops a cost model for MWU
algorithms based on our results; and Section IV-G summarizes
MWRepair’s ability to repair bugs compared to previous work.

A. Datasets

Each algorithm is evaluated on four distributions: two that
are generic and two that are empirically derived from well-
known APR benchmarks. The two generic distributions are
random and unimodal. We selected random as a proxy for
the class of distributions where the value of each option is not
correlated with surrounding options. We selected unimodal
for generality because we have strong evidence that most bug
repair scenarios are unimodal (Section III-B). The random
and unimodal datasets are composed of synthetic data. Each
scenario in the random dataset contains a variable number
of entries (28 to 214), each of which is independently and
uniformly sampled from the unit interval. The larger the
instance (number of entries), the harder it is for the algorithm
to converge, and it is likelier that multiple options have similar
values. The unimodal dataset is constructed similarly, except
the distribution is defined by the form a ∗ x ∗ e−bx+ c, where
a, b, and c are chosen independently and uniformly at random
from the unit interval.

The remaining datasets are constructed from popular pro-
gram repair benchmarks for C and Java. The C dataset con-
tains four scenarios from the ManyBugs benchmark [30] and

units, a small command-line utility from an older bench-
mark set [20]. We selected examples that range over different
sizes, runtimes, and test suite complexity. The Java benchmark
contains five scenarios from the Defects4J benchmark [32].
Each of the five Java scenarios have the same number of
options, but vary in the distribution of values over them.

B. Experimental design
Each algorithm was executed on each dataset with 100

unique random seeds, and Table II and Table III report
the mean and standard deviation of these experiments. All
experiments share the same input datasets and are limited
to 10,000 iterations. Algorithm parameters were selected to
ensure maximum comparability: the probabilities of selecting
a random choice (µ in Distributed, and γ in Slate) were set
equal, at 0.05. The error threshold in Standard, ε, was also set
to 0.05. This fixes all other parameters (e.g., the size of the
population in Distributed, and the size of the subset in Slate),
since the iteration limit and the option set are fixed inputs.

C. Convergence Time
Table II presents the average and standard deviation of

update cycles until convergence for 6,000 experiments: 100
executions of each algorithm on each of twenty datasets.
Convergence is defined by the probability of the highest weight
option at each time step. For Standard and Slate, this was
defined by a tolerance of 10−5 relative to the maximum
possible. For Distributed, a threshold was set to 30% of the
population choosing the same option. This is a less demanding
threshold, but reflects the maximum achievable given the
inherent noise of the finite-population approximation of the
weight vector and the probability of choosing a random option.

For Standard, the number of iterations until convergence
is closely related to the instance size. Compare, for instance,
the results for random and unimodal. The performance of
Standard is also consistent across all five Java datasets, which
have instance size 100 but vary in their data entries. Distributed
behaves similarly, although the exponential dependence of the
population size on the scenario size led to two intractable com-
putations. It neither dominates nor is dominated by Standard.
For all five random scenarios, Distributed converges most
quickly. Slate does not always converge within the allotted
budget. It is always the most expensive algorithm in terms of
number of iterations until convergence.

D. Accuracy
A key goal of MWU algorithms is convergence to an

accurate estimate of which options minimize cost. Table III
shows the absolute percent error between the best possible
solution in hindsight and the converged solution of each
algorithm. Standard deviation (over 100 replications) is shown
in parentheses. For scenarios in which an algorithm did not
converge within the allotted time (represented as >10000 in
Table II), we show the option with the highest weight when
the time limit is reached.

The mean accuracy of each algorithm is always at least 90%.
In domains where a reasonable estimate is good enough, such



Fig. 5. Algorithm overview for MWRepair. Icons under Creative Commons license [31].

Input: M , a set of precomputed safe single mutations, P ,
a program with a defect, S, a set of test cases, Opts, a
set of options, and a fitness function f(P, S)→ N

1: MWU Init()
2: for t← 1 to T do
3: probes(t) ←MWU Sample(probabilities(t))
4: for j ← 1 to n do . Parallel Evaluation
5: muts← Random Subset(M,probes

(t)
j )

6: P ′ ← Apply Mutations(P,muts)
7: if f(P ′, S) == |S| then
8: Return P ′ . Terminate Early
9: else if f(P ′, S) ≥ f(P, S) then

10: results
(t)
j ← 1

11: else
12: results

(t)
j ← 0

13: end if
14: end for
15: probabilities(t+1) ←MWU Update(results(t))
16: end for
17: Return null . Terminate

Fig. 6. MWRepair samples the number of mutations to apply, applies
them, evaluates the resulting program, observes its cost (fitness), and uses
that information to update the model for the next iteration. MWU Init(),
MWU Sample() and MWU Update() are generic interfaces.

as our use case, any of the three would be acceptable, and the
fastest running should be selected. For problem domains that
require a high degree of accuracy, Standard is worse than the
other two. If the availability of parallel compute resources is
not a limiting factor, Distributed offers the best accuracy with
the fewest update cycles. If resources are constrained, then
there is a trade-off between Standard and Slate. Standard uses
fewer update cycles, but has lower accuracy.

E. Cost Model

The asymptotic analysis discussed in Section II-C is useful
as a general guide, but it abstracts away detail that is often
relevant in practice. For example, the convergence complexity
of Standard and Distributed is comparable, but the required

TABLE II
MEAN ALGORITHM ITERATIONS UNTIL CONVERGENCE. THE “SCENARIO”

COLUMN IDENTIFIES THE INPUT DATASET, “SIZE” IS THE NUMBER OF
OPTIONS IN EACH SCENARIO. THE VALUES IN THE “STANDARD”,
“DISTRIBUTED”, AND “SLATE” COLUMNS ARE THE MEAN (AND

STANDARD DEVIATION) OF 100 REPLICATED RUNS OF EACH ALGORITHM.

Scenario Size Standard Distributed Slate

random 64 20.8 (3.4) 9.9 (2.8) 956.5 (69.0)
random 256 59.5 (7.3) 21.6 (5.8) 1183.5 (108.1)
random 1024 206.8 (20.4) 37.8 (9.2) 1194.0 (98.4)
random 4096 732.7 (63.1) 91.0 (23.2) 1044.1 (69.4)
random 16384 2661.3 (207.8) — 963.9 (49.3)

unimodal 64 20.8 (2.8) 16.4 (6.6) >10000
unimodal 256 60.5 (5.7) 63.8 (22.6) >10000
unimodal 1024 199.5 (18.3) 288.2 (119.4) >10000
unimodal 4096 699.0 (52.8) 836.2 (228.4) >10000
unimodal 16384 2527.7 (181.7) — >10000

units 1000 203.2 (19.6) 253.6 (94.8) >10000
gzip-2009-08-16 500 101.2 (10.2) 81.8 (25.2) >10000
gzip-2009-09-26 200 51.6 (6.3) 66.4 (24.9) >10000
libtiff-2005-12-14 100 30.1 (3.4) 27.0 (9.6) >10000
lighttpd-1806-1807 50 19.0 (2.9) 18.1 (7.3) >10000

Chart26 100 29.1 (3.5) 29.0 (12.5) >10000
Closure13 100 29.5 (3.5) 24.5 (8.9) >10000
Closure22 100 29.7 (3.4) 27.4 (10.5) >10000
Math8 100 28.8 (3.6) 28.5 (10.1) >10000
Math80 100 30.1 (3.6) 36.3 (15.6) >10000

settings to achieve this also imply that the communication
cost and number of CPUs will asymptotically differ. We next
combine the asymptotic analysis from Section II-C with our
empirical observations from Section IV to model the real-
world cost of the three MWU algorithms.

F. CPU Cost

Table II shows how many iterations of the algorithm are
required to converge on each dataset, but it omits information
about the number of required CPUs required for each iteration,
assuming that this is not a constraint. Table IV shows the
cost in CPU-iterations required by each algorithm. The table
highlights that, while Distributed often requires the fewest
iterations to converge, it uses a large number of CPUs. Slate
looked prohibitively expensive when considering only iteration
cycles, but when viewed by CPU-iteration cost, it is some-
times more cost-efficient than Distributed. A similar argument



TABLE III
ACCURACY: PERCENT OF OPTIMAL VALUE ACHIEVED BY THE

HIGHEST-WEIGHT OPTION AT TIME OF CONVERGENCE. THE COLUMNS
LABELED “SCENARIO” AND “SIZE” IDENTIFY EACH BENCHMARK

DATASET. THE VALUES IN THE “STANDARD”, “DISTRIBUTED”, AND
“SLATE” COLUMNS ARE THE MEAN (AND STANDARD DEVIATION) OF 100

REPLICATED RUNS OF EACH ALGORITHM.

Scenario Size Standard Distributed Slate
random 64 93.4 (11.8) 95.7 (10.1) 100.0 (0.0)
random 256 92.2 (7.9) 98.6 (2.5) 99.2 (1.9)
random 1024 90.0 (7.0) 99.4 (0.9) 98.8 (1.8)
random 4096 91.7 (6.1) 99.9 (0.3) 97.8 (2.0)
random 16384 91.7 (5.5) — 97.6 (2.3)

unimodal 64 94.5 (5.6) 96.3 (4.6) 99.0 (1.6)
unimodal 256 94.7 (4.6) 99.1 (0.8) 98.8 (1.2)
unimodal 1024 95.3 (4.4) 99.8 (0.2) 99.1 (1.0)
unimodal 4096 95.1 (4.3) 100.0 (0.1) 99.2 (0.7)
unimodal 16384 95.9 (4.0) — 99.3 (0.7)

units 1000 94.9 (3.6) 99.6 (0.8) 98.1 (1.0)
gzip-2009-08-16 500 93.9 (4.3) 99.4 (0.8) 98.8 (1.2)
gzip-2009-09-26 200 92.6 (5.5) 98.2 (1.7) 98.1 (2.1)
libtiff-2005-12-14 100 92.1 (5.5) 97.1 (2.9) 98.9 (1.8)
lighttpd-1806-1807 50 93.8 (5.5) 97.0 (3.0) 98.8 (1.5)

Chart26 100 95.2 (5.7) 98.0 (1.9) 99.0 (1.3)
Closure13 100 93.7 (6.2) 98.1 (2.1) 98.9 (1.3)
Closure22 100 93.0 (5.8) 97.2 (2.7) 98.8 (1.8)
Math8 100 93.7 (6.5) 98.8 (1.0) 99.0 (0.9)
Math80 100 96.4 (4.9) 98.5 (1.2) 98.9 (0.9)

TABLE IV
COST: TOTAL CPU-ITERATIONS REQUIRED BY EACH ALGORITHM UNTIL

CONVERGENCE. THE COLUMNS LABELED “SCENARIO” AND “SIZE”
IDENTIFY EACH BENCHMARK DATASET. THE VALUES IN THE

“STANDARD”, “DISTRIBUTED”, AND “SLATE” COLUMNS ARE THE MEAN
OF 100 REPLICATED RUNS OF EACH ALGORITHM.

Scenario Size Standard Distributed Slate
random64 64 2080 1783 5701
random256 256 5947 22108 28350
random1024 1024 20679 219019 115431
random4096 4096 73268 2980905 402370
random16384 16384 266131 — 1507483

unimodal64 64 2078 2972 60377
unimodal256 256 6050 65352 241509
unimodal1024 1024 19948 1669375 966038
unimodal4096 4096 69896 27401758 3864151
unimodal16384 16384 252765 — 15456604

units 1000 20316 1426098 943396
gzip-2009-08-16 500 10124 193333 471698
gzip-2009-09-26 200 5156 49911 188679
libtiff-2005-12-14 100 3014 8541 94340
lighttpd-1806-1807 50 1900 2404 47170

Chart26 100 2906 9174 94340
Closure13 100 2947 7738 94340
Closure22 100 2970 8674 94340
Math8 100 2878 9022 94340
Math80 100 3012 11470 94340

reveals that although Slate required ≈ 1000 iterations on each
of the random scenarios (implied by fixed γ setting the k/n
ratio to a constant), the hidden cost of the scaling number of
CPUs required to achieve that iteration bound is significant.

1) Weighted Asymptotic Model: Processes involving a large
number of CPU cores must communicate, and this cost is not

included in convergence asymptotics alone, although it is paid
on each iteration. The size of the option set may be large
enough that memory overhead is relevant. And in extremely
CPU-constrained environments the minimum number of CPUs
is important for determining which algorithm to prefer.

A decision model combining these features assigns
weights to encode the relative importance of each feature.
Then it is straightforward to predict which algorithm
is preferred. As a simple example, consider the trade-
off between communication cost and convergence time:
cost = α · communication cost + β · convergence time.
Comparing Standard to Distributed, we then have:
costStandard = α · O(n) + β · O(ln(k)/ε2),
costDistributed = α · O( ln(n)

ln(ln(n)) ) + β · O(ln(k)/δ2).
Since neither ε nor δ depend asymptotically on the size of
the option set or the number of CPUs, this analysis clearly
favors Distributed. However, a model in which the number of
CPUs used in each iteration is weighted (e.g., when parallel
resources are constrained) will prefer Standard instead.

2) Concrete Recommendations: If the problem is character-
ized by low communication cost, and the computation required
to evaluate an option is high (e.g., α << β above), then
the benefit of Distributed on reducing communication cost is
not enough to compensate for its higher CPU demand, and
either Standard or Slate should be used. APR has exactly
this feature: the information communicated by each process
is a small packet containing the option index and the binary
success or failure of the evaluation; however, evaluating a
single option requires compiling and running a program on
test cases. Conversely, if the application domain is severely
memory-constrained and bandwidth-limited (as often occurs
in embedded devices and sensor networks), then Distributed
will be advantageous.

G. MWRepair and Other Baselines

We have shown how the three parallel MWU algorithms
compare to one another, but one might ask how they compare
to the baseline GenProg algorithm. In particular, it is important
to establish whether the addition of online learning to a
program repair process meaningfully improves effectiveness
and efficiency. Our use of established defect scenarios allows
us to compare MWRepair to earlier repair algorithms. First,
in terms of expressive power, we note that MWRepair repairs
all the C and Java defect scenarios, while previous algorithms
such as GenProg, RSRepair, jGenProg, and AE repair 4/5,
3/5, 3/5 and 4/5 respectively [14], [20], [33], [34]. In single-
threaded scenarios, APR algorithm costs are often measured
in terms of fitness or test suite evaluations required to produce
a repair. Including the overhead of the online learning process,
MWRepair requires about half (52%) of the fitness evaluations
of GenProg and jGenProg total. Because of the parallel nature
of MWRepair, the total latency is ≈ 40× less than those
approaches. MWRepair uses the same mutation operators as
all four of the algorithms mentioned above, so the search
space it explores is the same. But, due to the nature of how
it composes mutations, it explores that search space in a way



that improves both effectiveness (finding more repairs) and
efficiency (paying lower costs to do so).

V. RELATED WORK

A. Multiplicative Weights Update

Multiplicative Weights Update (MWU) is an efficient, ver-
satile meta-algorithm for online learning. It has been discov-
ered independently in multiple fields, for example as “ficti-
tious play” in game theory [35] and as “winnow” [36] or
“hedge” [10] in machine learning. It has also been an active
area of theoretical development for online learning [6], [37],
[38]. Our work applies three MWU algorithms [8], [12], [13]
to generic scenarios and the concrete problem of program
repair, and discusses conditions in which a practitioner should
prefer one MWU algorithm over another.

B. Automated Program Repair

APR [18] is a subfield of software engineering which aims
to repair defects in software without human involvement in the
repair process. Our work augments existing APR approaches
that use stochastic search in two ways.

First, we explicitly consider the value of multiple muta-
tions. Previous work investigated this theoretically but has
not proposed a concrete algorithm [27]. Although search-
based APR was inspired by evolutionary computation, in
practice most multi-edit repairs are redundant and can be
minimized to one or two single-statement edits [20], which
is illustrated by algorithms that focus explicitly on single-
edit repairs [14], [15]. Other impediments to multi-edit repairs
include the combinatorial explosion of the search space as the
number of mutations increases [39] and the risk of breaking
the program with each additional mutation [27], [28]. There
is increasing interest in multi-edit repairs, but few approaches
have been proposed. Hercules [25] mutates only similar or
identical regions of code to reduce the combinatorial search
space. By contrast, our use of MWU allows us to apply a
large number of unrelated mutations, an approach that to our
knowledge is unexplored in the program repair literature [1],
[2].

Second, we consider parallelization directly in a principled
way that leverages the structure of the problem. Previous
algorithms parallelized the evaluation of a set of test cases on
a single program [20], [23] or used naive random search that is
parallel because no information is shared between threads [14],
[33]. One exception is the Schulte-DiLorenzo distributed al-
gorithm [40], which uses a distributed genetic algorithm to
coordinate exploration, but the search space is explicitly par-
titioned among the processors. Finally, many semantics-based
approaches cast the problem as one of constraint solving [14],
[15], [41], but modern constraint solvers, like Z3 [42], are not
well suited to parallel, much less distributed, operation.

VI. DISCUSSION AND THREATS TO VALIDITY

In the evaluation, we selected parameters for each MWU
algorithm to make as fair a comparison as possible. However,

each algorithm has multiple interacting parameters (e.g., learn-
ing rate, iteration limit, and the chance of choosing an option
randomly instead of obeying the weight distribution). There
is also a large space of potential search characteristics: size,
the relationship between the value of an option and the values
of its neighbors, and how much option values vary across the
distribution. Future research could characterize the interaction
between parameters more carefully, facilitating extensions to
other search problems.

Although our examination of MWU was conducted in
the context of a concrete problem, our overall findings are
generally applicable to other MWU settings (Section IV-E),
and our analysis extends easily to other dataset distributions.
Because our problem domain is unimodal, it is less important
to find the exact best option than it is to bias the search towards
high-density regions of the distribution. This is likely not the
case for all problem domains.

An important aspect of APR is the fact that some bugs
are easier to repair than others, and it is not well understood
what determines the difficulty of finding repairs. The early
termination condition of MWRepair, which returns the first
candidate repair identified, means that for easy problems the
overhead of online learning sometimes may not be required.
For harder scenarios, where the cost of identifying a valid
solution is often prohibitive, the choice of algorithm matters
a great deal. We evaluated against 10 APR scenarios, five
each from well-known C and Java benchmarks. In the future,
the efficiency gains achieved with MWU on a larger set of
benchmarks will be informative, especially for bugs that are
currently not repairable by current methods. In preliminary
studies (Sec. IV-G), we have already found examples in which
MWRepair finds repairs for bugs that have not been repaired
with other methods. However, a systematic study on a large
corpus of bugs is required to confirm these results.

VII. SUMMARY

Our formal analysis of MWU algorithms represents their
asymptotic properties uniformly in terms of the same variables,
easing the comparison between them. Our proposed MWRe-
pair algorithm is naturally parallel and based on insights
involving the precomputation of a large pool of safe muta-
tions, the ability to compose multiple mutations to enhance
exploration in a cost-effective manner, and the use of MWU to
learn the optimal number of safe compositions. Our empirical
cost model helps explain why an MWU algorithm that has
global memory and high communication cost outperforms the
other two on our problem domain. For this unimodal problem,
our evaluation found that all three MWU algorithms achieve
accuracy above 90%.
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