
Back to the future: N-Versioning of Microservices
Antonio M. Espinoza∗, Riley Wood †, Stephanie Forrest∗, Mohit Tiwari†

∗Biodesign Center for Biocomputing, Security and Society
Arizona State University, Tempe, AZ

†Dep. of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX

Email: {amespi22, steph}@asu.edu, riley.wood@utexas.edu, tiwari@austin.utexas.edu

Abstract—Microservices are the dominant architecture used
to build internet-scale applications today. Being internet-facing,
their most critical attack surfaces are the OWASP top 10 Web
Application Security Risks. Many of the top 10 OWASP attack
types—injection, cross site scripting, broken access control and
security misconfigurations—have persisted for many years de-
spite major investments in code analysis and secure development
patterns. Because microservices decompose monolithic applica-
tions into components using clean APIs, they lend themselves
to practical application of a classic security/resilience principle,
N -versioning. The paper introduces RDDR, a principled ap-
proach for applying N-versioning to microservices to improve
resilience to data leaks. RDDR applies N-versioning to vulnerable
microservices, requiring minimal code changes and with low
performance impact beyond the cost of replicating microservices.
Our evaluation demonstrates RDDR mitigating vulnerabilities of
the top 5 of the top 10 OWASP types by applying diversity and
redundancy to individual microservices.

I. INTRODUCTION

N-versioning is a classic technique for increasing the re-
siliency of programs to various defects by running multiple
versions of a program simultaneously and comparing the
outputs [19]. Unlike popular diversity methods such as Ad-
dress Space Layout Randomization (ASLR), N-versioning can
protect against logic errors because different versions may
use different program logic. However, N-versioning incurs the
memory and computation overhead of running N instances,
which can be prohibitive for modern, large-scale software.
Moreover, N-versioning has historically been applied only to
monolithic architectures [12], [22], [24] or at the binary level
with limited practical adoption [17]. For large-scale systems,
these monolithic architectures have largely been supplanted by
microservice architectures that use containerization.

Microservice architectures are the backbone of today’s
most popular websites/applications. For example, Lyft, Netflix,
Facebook, and Spotify all use microservice architectures, each
comprised of hundreds to thousands of microservices. Each
microservice runs in a container [29] and performs a simple
task (or service) provided through an API that is available
to the system, referred to as a deployment. This distributed
architecture supports large applications by making software
modular and scalable (horizontally and vertically). In this
paper, we leverage the API, modularity, and scalability of mi-
croservices to strengthen their security through N-versioning
in a system called RDDR. The API provides tractable insertion

points for deploying RDDR as a proxy for particular microser-
vices, while the modularity and scalability allow the seamless
integration of RDDR with the deployment.

RDDR is a system that: Replicates a request to N instances
of a microservice, De-noises non-deterministic behavior, iden-
tifies Differences in the instances’ responses, and Responds
appropriately. We evaluate RDDR on ten indicative Common
Weakness Enumerations (CWEs), finding that RDDR miti-
gates each of them successfully. These CWEs collectively
cover vulnerabilities from the top five of the most important
Open Web Application Security Project (OWASP) vulnerabil-
ity classes [54]—the OWASP Top Ten list is comprised of
the most common and important vulnerabilities faced by web
applications.

Although we cannot eliminate the overhead incurred by
N-versioning an individual microservice, we can reduce the
overall overhead by N-versioning only a subset of the mi-
croservices in a deployment. Many exploits and bugs manifest
as manipulated data, visible when exiting a microservice. By
targeting the microservices that handle unmodified user data
(e.g., API servers, parsers, and input sanitizers), the number
of N-versioned microservices can be minimized.

To the best of our knowledge, RDDR is the first practical
implementation of an N-versioning defense for distributed
cloud applications. The orchestration layer provided by mi-
croservices creates the opportunity to bring classic security
concepts like automated detection-response and information
flow tracking into production environments. RDDR provides a
straightforward implementation path for N-versioned systems
for platforms that use container orchestration frameworks,
such as Kubernetes [52].

The paper’s main contributions are:
• RDDR, a novel N-versioning architecture for microser-

vices, and techniques addressing design/implementation
challenges: orchestrating diversity in the microservice-
architecture, maintaining consistency, coping with non-
determinism and ephemeral state, managing variance
such as version numbers, and handling communication
protocols. (§IV)

• An open-source implementation of RDDR for Kuber-
netes, a popular container orchestration platform, which
is available for broader adoption [63], [64] (§V).

• An evaluation of RDDR on the most relevant Top 10
OWASP Web Application Security Risks using ten real-

Fig. 1: A small-scale social network deployment by Gan et al.
[31]. Part of the DeathstarBench open-source benchmark suite.

world CWEs. We find that RDDR mitigates each tested
CWE with performance overhead that is near-linear in
the number of redundant microservices. (§V-G)

II. MOTIVATION

To motivate RDDR, we consider two examples of web
application scenarios that would benefit from N-versioning.

In the first scenario, suppose that a security bug is discov-
ered in a production web application. The development team
quickly releases a patch to mitigate the bug. Unfortunately, the
patch introduces a new bug, an event commonly observed in
practice. For example, Crameri et al. investigated impediments
to deploying updates in real systems [25], and found that bugs
in updates are one of the most common reasons that software
updates fail. Similarly, Yin et al. [67] estimate that between
14.8% and 24.4% of OS updates are implemented incorrectly.
Using RDDR, these update-based vulnerabilities could be
mitigated by running the old and new versions in parallel while
checking for consistency to verify correct behavior. Correct in
this context means that both versions produce the same output
for a given input. This strategy reduces the attack surface to
just those vulnerabilities shared by both instances.

In the second scenario, developers proactively minimize
the attack surface by deploying multiple implementations
of the same function. For example, if a deployment uses
both HAProxy and nginx as a reverse proxy, it can avoid
threats such as CVE-2019-18277 which allows request smug-
gling [36] in HAProxy. Many other application components
have diverse, compatible implementations that are available,
e.g., Dropbear and OpenSSH for SSH; PostgresSQL, Cock-
roachDB, and EnterpriseDB for SQL; and Apache and nginx
for HTTP servers. Similarly, equivalent libraries could be used
as components to derive diversity in applications, such as pairs
of Python libraries: rsa and Crytpo, or markdown and
markdown2. RDDR can easily accommodate such cases by
running the implementations in parallel to detect divergent/-
malicious behaviour.

These scenarios illustrate how microservice architectures
can benefit from N-versioning. However, the classical ap-
proach of N-versioning the entire system is prohibitive. Even
if diversity were applied to a single microservice, one would
need to create N instances of the entire deployment. RDDR
provides a solution by supporting N-versioned deployments for
only the subset of microservices most likely to suffer failures

or attacks. Consider the microservice application depicted in
Figure 1. If all microservice containers in Figure 1 were
equally costly, then N-versioning the ”Search” and ”Compose
Post” services (using the techniques described in scenarios one
and two respectively) with RDDR would incur an overhead of
∼ 20% instead of 300% (assuming a 3-versioned system).

Although Knight et al. [43] showed long ago that this
form of implementation diversity does not always generate
completely independent failure modes, it can significantly
mitigate many bugs and vulnerabilities. Our tests of RDDR
using different libraries and database implementations confirm
that, in many cases, independent implementations do diverge
during exploitation (e.g., Table I, rows 1 and 4-8).

III. RELATED WORK

Several areas of related work are relevant to RDDR: Service
Oriented Architectures, N-versioning, Moving Target Defense
(MTD), and deployment strategies. The Service-Oriented Ar-
chitecture (SOA) community typically focuses on improving
quality of service (e.g., [10], [27], [35]), while N-versioning
aims to improve software robustness (e.g., [33], [49], [68])
and MTD focuses on reducing attack surfaces [14], [39], [56].
We share MTD’s goal of improving security through diversity,
but our approach borrows from N-versioning, and we use the
distributed architecture developed in the SOA community to
create a novel N-versioned system that runs in real time in a
containerized environment via Docker.

A. Service Oriented Architecture (SOA)

Distributed applications composed of microservices are the
most relevant subset of SOAs. Theoretical models have been
proposed that leverage containerization for redundancy and
diversity. Gorbenko et al. describe “reliable concurrent execu-
tion” [35], which is similar to RDDR’s front-end proxy. As a
theoretical model, however, this work avoids many significant
implementation challenges (§ IV-B).

Diffy, a regression testing tool developed by Twitter, also
resembles RDDR as it runs two versions of a single mi-
croservice (old and new) in parallel [58]. Although RDDR
adopted ideas from Diffy to support seamless integration
into distributed application architectures, there are important
differences because Diffy was developed for finding bugs and
is not intended for production use. Although Diffy replicates
traffic to the microservice replicas, it does not merge requests
to downstream microservices. RDDR addresses this issue
with an outgoing proxy to merge traffic streams. Similarly,
RDDR’s non-deterministic noise filter was inspired by Diffy
but extends it to handle ephemeral state such as Cross-Site
Request Forgery (CSRF) tokens. This extension allows RDDR
to handle the many real-world applications that rely on CSRF
tokens for security by automatically identifying, saving, and
later restoring ephemeral state output by a microservice.

B. N-versioning

The central idea of N-versioning entails executing multiple
copies of a program/system (usually diverse) in parallel and

checking outputs for consistency. Early examples include
systems that run redundant components in hardware to produce
reliable computation in computers [46] and aviation [62], [65].
When divergence is detected N-versioned systems typically
vote to decide which output to accept. Software implementa-
tions of N-versioning—also known as Multi-Variant and N-
Variant Execution— typically halt execution when divergence
is detected, either restarting the system from scratch or from a
”refresh state” before continued computation [22], [24], [60],
[61].

Gholami et al. used N-versioning to reduce server load and
improve performance of distributed applications [33]. They
varied service instances by changing the number of available
features, with light-weight instances handling requests that do
not require the full feature set. Their defense is similar to a
MTD (not redundant) and because their architecture focuses
on efficiency, their diversity methods are unlikely to provide
a security benefit.

Otterstad et al. describe a theoretical system for deploying
diverse microservices behind a controller [49]. Their proposal
resembles RDDR’s use of N-versioned microservices with
divergence triggering blocked responses. Because this system
is a theoretical model, it does not address the challenges faced
by real-world implementations discussed in Section I.

Österlund et al. propose N-versioning (called multi-variant
execution) to improve robustness of the Linux kernel [68].
Similar to RDDR, this work aims to protect against infor-
mation leaks by deploying two diverse kernels in parallel.
They use a variant generator to manually create variations
among the kernels, which may diverge in the presence of
information leaks. Our approach relies on diversity that is
derived organically, by multiple teams implementing the same
software specification in isolation [13], [41], [42], from dif-
ferent versions of software, and automatically from the OS.

RDDR’s two version approach is similar to that of Hosek
et al. [37] who studied a similar deployment strategy in non-
microservice environments. Their method compares system
call traces of the two programs, which is both computationally
expensive, and can lead to false positives, e.g., when refactored
code is labeled as “divergent” even if the output of the
programs is identical on all inputs. RDDR does not attempt
to determine which version is correct, treating all divergence
as problematic, since divergence could indicate a bug or
vulnerability in either version.

C. Moving Target Defense (MTD)

MTD systems diversify applications over time rather than
running multiple variants concurrently. Some MTD systems
consider distributed server applications [14], [39], [56], and
Torkura et al. use MTD to randomize the attack surface of
cloud applications [56]. Their approach is data-driven and
prioritizes high-risk vulnerabilities by aggregating known mi-
croservice vulnerabilities and comparing their CVSS scores [7]
and OWASP ratings [2]. By paying the price of N-versioning
we are able to leverage the protection provided by all versions
simultaneously, unlike an MTD system which only reaps the

benefits of the version it is currently running (i.e., an attacker
can persist until the MTD system is running a version it can
exploit).

Some MTD diversity strategies can be adopted in the RDDR
framework, such as that proposed by Taguinod et al [55],
which uses two different methods to create diversity. The
first, translates PHP applications to Python automatically.
The second takes advantage of the translation layer between
MySQL and PostgreSQL databases, allowing them to switch
the backend database periodically to prevent attacks. The
translated application could be run (in parallel with the orig-
inal) by RDDR and the database translation layer could be
imported using RDDR’s protocol support module described
in Section IV-B1. Diversity created in this way is powerful,
but requires the developer to expend resources creating trans-
lations from one application to another. We elected to use
readily available diversity (§ IV-C) to alleviate the burden on
developers.

Although some strategies for generating MTD application
diversity can be adopted by RDDR, MTD network shifting
defenses cannot. These defenses include port hopping and
network address shifting [50]. Network-based defenses are
not applicable to RDDR’s threat model because they defend
against the reconnaissance phase of network attacks by peri-
odically shifting network configurations. RDDR assumes an
adversary that is exploiting an application through a front-
facing interface that is always available, even in the face
of shifting network configurations. Further, the Kubernetes
environment typically has a single publicly accessible IP
address, with inner containers using unrouteable IP addresses
that are inaccessible from outside the deployment.

D. Other Deployment Strategies

Proxies such as Envoy [20] and nginx [48] offer a feature
called “traffic shadowing.” In traffic shadowing, traffic to a
microservice in a production deployment is replicated and
forwarded to a “shadow” copy, enabling developers to perform
regression tests on real-world traffic. However, the proxy
ignores all traffic returned by the shadowed instance and does
not actively protect the microservice. By contrast, RDDR sits
on the critical path of traffic and monitors communication to
and from the protected microservices. Unlike a shadow proxy,
RDDR also copes with applications that exhibit random noise
or instance-specific state.

IV. RDDR DESIGN AND IMPLEMENTATION

This section describes our threat model, presents our design,
and recounts implementation details.

A. Threat Model

We assume that the attacker’s goal is to leak data from a
distributed application by exploiting one or more vulnerabili-
ties in the application’s constituent microservices, e.g., using
cross-site scripting in components with known vulnerabilities.
We assume that the attacker extracts data through one of
the microservice endpoints, rather than a side channel. A

Incoming Request

RDDR Incoming Request Proxy

PM Instance 1 PM Instance 2 PM Instance 3

RDDR Outgoing Request Proxy

Backend Microservice

Fig. 2: RDDR schematic: PM denotes Protected Microservice.
Colors represent: external traffic (gray), RDDR (blue), and the
replicated protected service (green).

vulnerability is considered mitigated if the information leak
is detected and blocked. Lastly, the attacker is assumed to be
unprivileged in the context of host system administration and
in the context of the web application. Although we exclude
side channel leakage, prior work addresses such leakage[s]
(e.g., [11], [15], [47]).

RDDR intercepts attacks that cause insecure data to be
returned or passed between microservices in the deployment,
which allows RDDR to detect relevant attacks from five of
the Top Ten OWASP Application Security Risks [54]: broken
access control, cryptographic failures, injection, insecure de-
sign, and security misconfiguration (A1-A5). The majority of
attacks in OWASP A6-A10 do not explicitly cause data leaks
and thus are not within our threat model.

B. RDDR

There are four main phases of a RDDR proxy for a protected
microservice: Replicate, De-noise, Diff, and Respond. Traffic
is first replicated by the incoming request proxy and sent to
each instance. The response from the instances are de-noised
to eliminate known variance, before RDDR diffs the responses
to detect divergent behavior. Finally, RDDR responds to the
client. The response is either the unanimously response from
the N versions or, in the event of divergence, a web page
indicating that RDDR intervened. If the protected microser-
vice requires communication with a microservice inside the
deployment, all outgoing requests are verified for consistency
by an outgoing request proxy.

RDDR enhances application robustness with low overhead
by exploiting the distributed nature of cloud applications.
By creating multiple instances of only critical microservices,
RDDR avoids the cost of diversifying the entire application,
which can be significant [21]. Modern container orchestration
tools such as Kubernetes [52] and Docker Swarm [9] simplify
the process of replicating microservices from a base image.
This pre-existing infrastructure, and the fact that RDDR was
designed to be run as a container using a Docker image, make
RDDR straightforward to deploy.

RDDR is written in Python 3.8 with source code freely
available online under the MIT License. Architecturally,
RDDR can be visualized as a set of proxies which sit on
either side of the N instances of the protected microservice
(Figure 2). Both proxies operate at the transport/socket layer,
bind to an IP and one or more ports to await incoming
connections.

The RDDR Incoming Request Proxy handles request
traffic sent to the protected microservices. Both the incom-
ing requests and their responses pass through the Incoming
Request Proxy which maintains the state required to handle
SSL/TLS connections. The proxy replicates the request, makes
any necessary modifications (§ IV-B3), then forwards it to all
instances. The Incoming Request Proxy compares the response
from each instance for consistency. Traffic is tokenized and
compared for divergence according to the application layer
protocol (e.g., HTTP, SQL, etc.). If divergence is detected,
excluding non-deterministic noise (§ IV-B2), the proxy closes
the connection to the client and halts communication. This
approach avoids information leaks or other problems but
disrupts only the diverging instances.

Deployed “behind” the application instances are zero or
more RDDR Outgoing Request Proxies, depending on the
number of microservices the protected microservice commu-
nicates with. This proxy monitors traffic flowing between
the instances and another microservice in the deployment,
with one proxy assigned for each distinct microservice. The
proxy detects information leaks on connections initiated by the
protected service. The Outgoing Request Proxy is a dual of
the Incoming Request Proxy, monitoring messages produced
by the N instances for consistency.

1) Protocol Support: RDDR supports multiple transport
and application layer protocols. It currently supports un-
encrypted TCP and encrypted SSL/TLS (via Python’s SSL
library) at the transport layer. It also supports some application
layer protocols, including PostgreSQL, HTTP, and JSON. Sup-
port for application layer protocols is implemented by Python
modules that comply with a standard interface, allowing de-
velopers to extend RDDR to support other protocols. These
modules handle all protocol-specific tasks such as tokenizing,
differencing traffic, and traffic modification.

The application protocol modules tokenize responses from
the instances and monitor for divergence according to the
semantics of the protocol. For example, the HTTP module
tokenizes at the newline boundary and compares lines. If
necessary, it also interprets the HTTP header and decom-
presses the message before differencing, and it saves CSRF
tokens (§IV-B3). The PostgreSQL module tokenizes traffic
into separate messages according to the PostgreSQL message
format [1] and differences messages of known critical types.

2) Handling Nondeterminism: A crucial feature missing
from earlier theoretical models is a method for distinguishing
random noise from relevant divergent behavior. This occurs
any time the N microservice instances send a random string
to the client, e.g., when the instances send PHP session IDs
that web applications use to uniquely identify users. Because

each of the N instances generates a different random string,
traffic will diverge even in the absence of a bug. RDDR ad-
dresses this similarly to Diffy [58] by deploying two identical
instances, the filter pair, of the microservice (no diversity
applied) and using them to determine which divergences are
problematic and which arise from nondeterminism. RDDR’s
filtering assumes any divergences in the filter pair are benign.
With filtering enabled, RDDR identifies a divergence if any
instances except the “filter pair” produce non-identical output.
The filter pair must detect any non-deterministic behavior
to avoid false-positive divergences. Therefore, we assume
a cryptographically-secure source of randomness to avoid
duplicate values.

3) Handling Ephemeral State: Client-server handshakes
that use ephemeral microservice state complicate RDDR N-
versioning. For example, CSRF tokens are strings randomly
generated by the server and embedded in HTML forms
requested by clients to prevent CSRF attacks. Such tokens
protect against a user who is tricked into submitting POST data
to the server via a malicious link. Without special handling,
such tokens would appear to the N-version monitor as non-
deterministic noise, triggering a divergence. RDDR addresses
this by modifying the message sent to each instance to ensure
that each instance receives the correct token.

Specifically, RDDR’s HTTP handler plugin stores the values
that it identifies as CSRF tokens and reinserts them when
needed. The plugin scans the traffic sent to the client, noting
lines that differ across all instances. Within those lines, it
looks for the character ranges that differ, and if they are
alphanumeric and at least ten characters long, the plugin
saves them. The criteria for saving—alphanumeric and at
least ten characters—was determined empirically and correctly
identified all CSRF tokens in our evaluation. The plugin
maintains a mapping between tokens and microservices. It then
substitutes the correct token for each microservice before for-
warding. Because they are ephemeral, tokens are deleted after
forwarding. In our current system, only the HTTP extension
implements this feature.

4) Handling Known Variance: Although RDDR anticipates
many sources of benign divergence and handles them auto-
matically, some are out of scope for RDDR. For example, if
different versions of the same application are deployed behind
RDDR, and a user requests the software version, RDDR will
identify deterministic divergence. To mitigate this and similar
issues, we support manual configuration of RDDR to ig-
nore application-specific benign divergence (through RDDR’s
configuration file). This is currently implemented for the
PostgreSQL plugin.

C. Acquiring Program Variants

Because RDDR requires unanimous agreement among the
N microservice variants, the attack surface of the system
is the intersection of the attack surfaces of all instances.
The success of this strategy depends on the diversity and
independence of the constituent microservice instances, which
must also preserve desired behavior. There are several sources

of effective diversity in this setting, including: independent im-
plementations, different versions of the same implementation,
and system/process level diversity. The RDDR architecture
supports each of these.

All of our diversity methods assume the threat model
described in Section IV-A, except version diversity which
also assumes that there are no feature changes between ver-
sions, i.e., the only code edits are those that affect patch
vulnerabilities. Consequently, if the protected microservice
is undergoing rapid functionality changes (e.g., adding API
calls), we suggest that developers adopt another source, such as
library diversity. We tested a wide variety of diversity sources
in our experiments to illustrate RDDR’s flexibility, but we
do not assign them a hierarchical ordering of importance.
For general applications such as proxies and databases, we
recommend adopting diverse implementations (§ V-C); and for
highly specialized containers, we recommend diverse libraries
(§ V-A). As mentioned above, if the only updates to the
mircroservice are those that address vulnerabilities, then we
recommend version diversity (§ V-D).

Diverse implementations of a particular microservice func-
tion may be available from different vendors. By ‘func-
tion,’ we mean a logical component of a system such as a
database or proxy that performs a specific task. Databases
like PostgreSQL, e.g., implement a well-specified query lan-
guage and network protocol, as do CockroachDB [23] and
EnterpriseDB [28]. Because these three applications use the
same network protocol and have the same functionality, it is
straightforward to deploy them as diverse instances of the same
logical database.

A related approach uses different versions of an applica-
tion from a shared codebase. This technique can help close
vulnerabilities in an older version of the microservice while
simultaneously preventing exploitation of new bugs that might
be introduced by a software update. We assume that each
version shares at least the set of features required by the
larger application. This technique was explored by Hosek et al.
in [37], who found that new vulnerabilities introduced by
software updates could be successfully mitigated by deploying
them in parallel with older versions. Malicious inputs may
trigger divergence in the patched code causing RDDR to
intervene, however, the desired effect of stopping information
leakage is obtained.

There are also automated ways of generating diversity that
do not incur software development overhead (e.g., Forrest
et al. [16] and Cox et al. [24]). The OS can diversify software
at the process level by randomizing the address space, inserting
randomized stack guards, and using disjoint code layouts. Prior
works such as [32], [44], [59] have explored N-versioning im-
plementations relying on these techniques. Developers can also
leverage compilers to introduce diversity. Larsen et al. [45]
provide a useful overview of state-of-the-art techniques for
automating software diversity, including mutating and reorder-
ing basic blocks, randomizing the stack layout, and inserting
garbage code, among many other techniques. Rebaudengo
et al. [51] use compiler-based diversification to increase soft-

ware robustness to transient hardware errors. AVATARs, a
project from NEC Laboratories, uses a combination of diverse
compilers and source-to-source translators to yield diverse
executables from a single codebase [53]. These methods can
be readily accommodated by RDDR. We illustrate this in
Section V-E with ASLR derived diversity.

D. Limitations

RDDR is vulnerable to Denial-of-Service (DoS) attacks.
Consider the case where three different versions of an ap-
plication are deployed and one has a bug that causes runaway
CPU utilization creating a DoS. The N-versioned system will
be vulnerable to this DoS unless it causes a divergence. While
out of scope for this paper, this DoS issue could be mitigated
with a timeout counter. Other DoS attacks can be mitigated by
using automated signature generation (e.g., [40]) to defeat an
attacker who repetitively triggers divergence by entering the
diverging input repeatedly.

RDDR potentially broadens the timing attack surface. Con-
sider application A deployed alongside application B. A con-
tains no timing bugs, whereas B contains one timing bug
that can leak sensitive information: Suppose B takes longer
to respond to a login request with a valid username than one
with an invalid username. If A and B are deployed together
and RDDR waits for them both to respond, the timing channel
in B remains exploitable. Prior work from Yin et al. explores
how to deter attackers from exploiting the weakest instance
in an N-versioned deployment to learn information via a side
channel [66].

N-versioning is not applicable to services that generate
instance-specific secrets that expect a unique user response,
such as multi-factor authentication. If a microservice protected
with RDDR does generate secrets (i.e., unique values) that flow
directly or indirectly to the client, then the de-noising step
would cause RDDR to deny all traffic. For example, if one
were to 2-version a multi-factor authentication microservice,
each version would expect a different responses from the user.
Because the user would only be supplying the correct response
to one of the microservices, the other would fail to authenticate
causing RDDR to intervene in the connection.

Microservices containing time-varying information in their
outputs could generate a false positive in RDDR. Consider
a microservice that reports a coarse-grained timestamp. If a
request is made on a time boundary to a two-version deploy-
ment with non-deterministic filtering, it is possible that the
filter pair both receive timestamp t whereas the third instance
receives time t + 1 generating a false alarm. This issue is
easily addressed using the method discussed in Section IV-B4
for handling known variance, although we have not found it
to be an issue in testing.

V. EVALUATION

We evaluate RDDR’s performance using several different
deployments, diversity generation methods, and vulnerabil-
ity types, summarized in (Table I). Each deployment was
hosted on real hardware, and the relevant Kubernetes files

are available [63], [64]. Our evaluation covers five OWASP
categories and three kinds of diversity: independent imple-
mentations, multiple software versions, and automatically-
generated diversity (address space randomization). Subsec-
tions V-A through V-E describe our setups, the vulnerabil-
ities, and results. We also consider a large-scale distributed
application, GitLab (§ V-F), which incorporates many industry
best practices for security. Finally, we conduct a detailed
performance evaluation to study the overhead incurred by N-
versioning with RDDR (§ V-G).

A. Library diversity in RESTful APIs

We use the term ‘RESTful’ to refer to APIs that call
functions on stateless servers with deterministic output. We
evaluated four different CVEs involving RESTful architec-
tures: 2020-13757, 2020-11888, 2020-10799, and 2014-3146
(Table I). We generated diversity using two implementations
of otherwise identical libraries, and RDDR mitigated each of
the four CVEs. In each test case we compared two instances:
the vulnerable library corresponding to the CVE and a library
with similar functionality but a different code base.

CVE-2020-13757 was mitigated using the rsa and
crypto Python libraries as variants to decrypt RSA encrypted
data. CVE-2020-11888 was mitigated using the markdown2
and markdown Python libraries as variants to sanitize user
input markdown. CVE-2020-10799 was mitigated using the
svglib and cairosvg Python libraries as variants to trans-
form svg files into .png files. Finally, CVE-2014-3146 was
mitigated using the lxml Python and the sanitize-html
Node.js libraries to sanitize user input XML. To create REST-
ful servers with access to Python libraries, the function calls
were accessed using flask servers, and for the Node.js sever
we used the http library.

These examples demonstrate that RDDR is compatible
with RESTful architectures, that diversity can be created by
running servers with identical APIs but different libraries, and
that generating diversity using libraries written in different
languages is effective against this class of CVEs.

B. SQL Injection

The Damn Vulnerable Web App (DVWA) is a website that
illustrates many common web vulnerabilities [26]. It is an
educational tool that can be configured for different security
levels. DVWA contains an SQL injection in which an attacker
modifies a benign query to inject malicious queries. A com-
mon defense is query sanitization, which detects characters of
the user’s input, such as apostrophes and quotation marks, and
prevents them from being interpreted as SQL syntax. Different
DVWA security levels sanitize user input to varying degrees.

We used RDDR to harden DVWA against SQL injections,
which tested the outgoing request proxy and its ability to
handle ephemeral state. We modified DVWA slightly to use an
external database and deployed three instances of the DVWA
frontend, which communicated with a single backend database
through RDDR’s outgoing proxy (e.g., Figure 2 illustrates
this, with the DVWA protected microservices labeled 1-3 and

CVE Microservice/program Exploit CWE Mitigated OWASP # Diversity

2017-7484 PostgreSQL Exposure of sensitive informa-
tion to an unauthorized actor

200,285 X 1 Identical API, different program.

2017-7529 Nginx Integer overflow 190 X N/A Version number.
2019-10130 PostgreSQL Improper access control 284 X 1 Version number.
2019-18277 HAProxy HTTP Request Smuggling 444 X 4 Multi-program.
2014-3146 lxml lib/RESTful Cross site scripting Other X 3* Library in different language.
2020-10799 svglib lib/RESTful Improper restriction of XML

external entity reference
611 X 5 Compatible libraries.

2020-13757 rsa lib/RESTful Use of risky crypto 327 X 2 Compatible libraries.
2020-11888 markdown2 lib/RESTful Cross site scripting 79 X 3 Compatible libraries.
N/A DVWA SQL injection 89* X 3 Multi-programming.
N/A ASLR POC Heap overflow 122* X N/A Random memory layout.

TABLE I: RDDR vulnerability mitigations. Items marked with an asterisk are unofficial i.e., assigned by the authors and not
a governing body such as NIST. CVE-2017-7484 has two CWEs, one assigned by NIST the other by Redhat. For CVE-2014-
3146, the CWE assignment of ”Other” was designated by NIST. Common Weakness Enumerations (CWEs) were assigned to
OWASP numbers using the official mapping [38].

the database labeled ‘backend microservice’). The DVWA
instances were configured with different levels of security
and sanitized user input differently. One instance was config-
ured for high input sanitization, and the other two instances,
forming the filter pair, performed no input sanitization. As
expected, RDDR diverged when the SQL attack was launched.
Although slightly contrived, this example emphasizes the role
of the outgoing proxy, which enabled the N instances to com-
municate with a single backend database and was instrumental
in detecting the divergence. It also highlights the way RDDR
handles known ephemeral state of web applications.

RDDR prevents the SQL injection, while processing benign
traffic normally. When the user requests the SQL Injection
demo page, the request is forwarded by RDDR’s incoming
proxy to every instance of DVWA’s frontend. Each instance
returns the web page containing an input form and CSRF
token. As described in Section IV-B3, RDDR automatically
identifies the CSRF tokens and saves them, forwarding the
page sent by the first instance.

C. Diverse microservice implementations

In some cases, multiple vendors offer products that comply
with the same interface but have different implementations.
To be applicable, each implementation must implement the
same application layer protocol (e.g., HTTP), or a translation
layer must be available so all benign traffic looks identical
across all instances. Here we examine two CVEs and diverse
microservice implementations as the source of diversity.

1) Reverse Proxies: In the first example, RDDR protects
a reverse proxy, and we document the work required to
add RDDR to an existing deployment. RDDR successfully
mitigates CVE-2019-18277 [8], a vulnerability in HAProxy
(version 1.5.3) that allows HTTP request smuggling [36], by
using nginx as a diverse implementation of a reverse proxy. To
test the CVE we created a simple service (S1) which contains
an API call that should not be invoked directly from outside the
deployment. To enforce this requirement both HAProxy and
nginx were configured to deny the API call when proxying,
When the client sends a malicious request string, the request is
not filtered by HAProxy and passed on to S1. Nginx however,

is not susceptible to request smuggling and does not pass
the request to S1. This causes a divergence in the values
returned by the proxy’s calls to S1, and RDDR prevents the
response from reaching the client. This exploit causes two
divergences—in the information returned to the client and in
data sent from the protected microservice. Thus, the exploit
could also have been mitigated by monitoring microservice
output via the outgoing request proxy.

The addition of nginx to the deployment was straightfor-
ward, requiring a total of 174 lines of configuration split
between six configuration files, many of which were slight
modifications of easily available default configuration files.
The total time to add RDDR to the deployment was approxi-
mately one hour.

2) Databases: CockroachDB and PostgreSQL are two
examples of databases that can be deployed together behind
RDDR without a translation layer. We used two Postgres
instances and one CockroachDB instance to mitigate CVE-
2017-7484, an information leak in Postgres versions up to
9.2.20 [4].

1 CREATE FUNCTION leak2(integer,integer) RETURNS
boolean

2 AS $$BEGIN RAISE NOTICE ’leak % %’, $1, $2;
3 RETURN $1 > $2; END$$
4 LANGUAGE plpgsql immutable;
5 CREATE OPERATOR >>> (procedure=leak2, leftarg=integer

, rightarg=integer, restrict=scalargtsel);
6 SET client_min_messages TO ’notice’;
7 EXPLAIN (COSTS OFF) SELECT * FROM some_table WHERE

col_to_leak >>> 0;

Listing 1: Exploit for CVE-2017-7484

The vulnerability is a bug in how Postgres enforces access
control during query planning. An attacker can leverage a
custom-defined function and operator to leak information with
a SELECT query. Although protected data is not leaked in
the query results themselves, it is leaked when the database
creates the query plan, which passes sensitive information to
the attacker’s custom operator. We assume that a protected
table exists within the database. An unprivileged user can use
the exploit shown in Listing 1 to create a custom operator that
leaks this table during query planning.

Because the vulnerability affects Postgres but not Cock-
roachDB (CockroachDB does not support user-defined func-
tions and operators), RDDR mitigates it successfully. If these
features were required by the application, this particular di-
versification would not be appropriate. That is, all instances
of the N-versioned deployment must share the minimum set
of required features to implement the target application. In
addition, the diverse implementations must be configured to
behave identically under normal operation. For example, in our
deployment we configured Postgres’ transaction isolation level
to match CockroachDB, which forces serializable isolation
(the strictest setting). In our evaluation, RDDR was configured
to anticipate the different software version strings. There may
be other application complexities which that developer has
to specify for RDDR. For example, the PostgreSQL query
language does not require any particular row order unless spec-
ified by the ORDER BY keyword, and each implementation is
allowed to order rows arbitrarily. If they differ, then RDDR
will block the benign traffic.

Once the N instances were configured, CVE-2017-7484 was
mitigated. The exploit shown in Listing 1 fails at the first
step. The Postgres instance indicates successful creation of
the custom function, whereas CockroachDB raises an error
indicating that the feature is not supported. RDDR identi-
fies the divergence and breaks the connection before either
response can reach the client. If the attacker tries to reconnect
and proceed with subsequent steps of the attack, the final
EXPLAIN query which causes the leak is always blocked.
This example demonstrates that RDDR successfully protects
the system even when an attacker is aware of RDDR and the
N-version deployment. One might object that the user should
always choose the more secure implementation, but in many
cases, this is not known at deployment time. The example
also demonstrates the feasibility of deploying very diverse
implementations of the same logical function behind RDDR,
and it illustrates some of the challenges we encountered, such
as unspecified row order behavior.

As with any diversity method, this example is susceptible
to common mode failures. However, the Project on Diverse
Software found that common mode failures in diverse software
implementations are rare, and the few that do appear generally
arise from a flaw in the specification itself rather than a
recurrent bug present in every codebase [18].

D. Varying microservice versions

Next, we consider different versions of the same microser-
vice as a source of diversity. Nginx is a widely used proxy for
web applications, and CVE-2017-7529 [5] exploits versions
up to 1.13.2 with an integer overflow that can leak sensitive
server information. The vulnerability arises from a bug in how
nginx processes a content range request. The attacker sends a
specially crafted Range header in a HTTP request, nginx fails
to check its bounds which leads to an integer overflow when
calculating the size of the payload to return, causing it to return
data past the end of the requested document to the client.

To mitigate this vulnerability, we deployed a three-version
configuration of nginx, with the two instances comprising
the filter pair running version 1.13.2, and the third instance
running 1.13.4 which is not vulnerable. This example models
a hypothetical deployment strategy where developers deploy
old and new versions of the same application in parallel behind
RDDR to patch bugs in the old version while protecting
against any new bugs accidentally introduced by the patch.
We ran the exploit against the N-versioned nginx and RDDR
successfully aborted the connection. RDDR observes that one
instance’s response is much longer than the other’s and treats
this as divergent behavior.

N-versioned deployments of multiple versions are straight-
forward to deploy because of the way that containerized
platforms like Docker handle versioning. These platforms have
built in support for specifying image versions by tag. Thus,
the deployed version can be changed by simply changing the
specified version tag.

E. Generating Diversity with ASLR

RDDR can prevent pointer leaks in the presence of ASLR
which, e.g., were used in the heartbleed [3] exploit. We demon-
strate this capability with a proof-of-concept C program— a
simple echo server that stores the requester’s message in a
buffer and returns it without checking for overflow. If the
requester overwrites the null terminator at the end of the
buffer, the program leaks a pointer adjacent to the buffer
in the stack. When the program is deployed with ASLR,
this helps the attacker learn the location of an exploitable
gadget. The attacker’s exploit proceeds as follows: (1) send
a large payload to cause the program to leak a pointer; (2)
calculate the address of the gadget as an offset from the leaked
pointer; (3) send an even larger payload to overwrite the return
address with the calculated address of the gadget. RDDR
defeats this exploit at step (1) by detecting and preventing
the pointer leak. When two instances of the same binary
with ASLR are N-versioned, each has a unique address space.
When the attacker tries to leak a pointer, each instance reports
a different address, triggering a divergence and termination
of the connection to the attacker. This deployment does not
require non-deterministic filtering, since RDDR’s filter ignores
addresses that differ in the filter pair.

This case study demonstrates how RDDR can leverage OS-
generated diversity like ASLR. Although other N-versioning
systems have similar capabilities (§ III) in this space, RDDR
brings this capability to the microservice setting.

F. N-versioning components of GitLab

Here we apply RDDR to GitLab [34], a popular web-
based platform for hosting and collaborating on source code
repositories. Because some components of the deployment
are more important than others, N-versioning with RDDR is
applied only to the most relevant subset of the containers.

1) GitLab Architecture: The GitLab application is con-
structed from a number of smaller microservices, some of
which were developed in-house by the GitLab team and others

that are independent open-source projects (e.g., Postgres and
nginx).

Figure 3 presents a simplified view of the GitLab architec-
ture (with RDDR guarding the Postgres module). At the top
of the diagram are client interfaces for SSH and HTTP(S).
This traffic is routed to the GitLab shell and nginx ingress
proxy respectively. From there, a request may be passed to
a number of services depending on its type. For this study,
we considered vulnerabilities in a particular microservice that
could affect GitLab, e.g., the attacks discussed in sections V-C
and V-F.

2) N-versioning Postgres within GitLab: We consider the
information leak described in CVE-2019-10130, and use
RDDR to diversify the Postgres database microservice in a
three-instance configuration.

1 -- Create leaky function, and operator to call it
2 CREATE FUNCTION op_leak(int, int) RETURNS bool
3 AS ’BEGIN
4 RAISE NOTICE ’’leak %, %’’, $1, $2;
5 RETURN $1 < $2; END’
6 LANGUAGE plpgsql;
7 CREATE OPERATOR <<< (procedure=op_leak, leftarg=int,

rightarg=int, restrict=scalarltsel);
8 -- Will call leaky function, printing rows to console

.
9 SELECT * FROM some_table WHERE col_to_leak <<< 1000;

Listing 2: Exploit for CVE-2019-10130

CVE-2019-10130 affects Postgres 10.0 through 10.7, allow-
ing a user-defined operator to leak privileged information from
a table that enforces per-row security policies. We assume the
presence of an SQL injection vulnerability in the frontend of
the application which enables the attacker to send arbitrary
SQL queries to the backend database to affect the exploit.
To be vulnerable, a privileged database user must first create
a table with row-level security, grant SELECT privileges to
another database user, but deny access to one or more rows.
The unprivileged user can then execute the exploit shown
in Listing 2 to leak the protected rows. First, she creates a
function that prints its arguments to the console. Then, she
creates a custom operator to call this function. Finally, she
executes a SELECT query that invokes her custom operator.
The SELECT query itself will not return the protected rows,
since access control is properly implemented for SELECT.
However, the function will still be passed the value of column
‘a’ from every row in the table, and the function can leak them
out.

We compose the N-versioned Postgres deployment from
three instances of Postgres, two at version 10.7 (buggy filter
pair) and a third at version 10.9 (fixed). During the exploit,
RDDR detects the difference in behavior between 10.7 and
10.9 and aborts the connection. The modifications to the
GitLab architecture are shown in Figure 3. An empty database
is initialized with the schema for GitLab and instantiated in
each instance. GitLab is configured to use an external Postgres
database and RDDR’s incoming proxy, which forwards all
queries to every Postgres instance. All benign GitLab functions
remain fully operational: users can log in, create projects,
view projects and more, and RDDR does not interfere. Only

Fig. 3: Modified GitLab architecture with Postgres replicated
behind RDDR(bottom left).

when a neighboring container launches the described exploit
does RDDR react, closing the connection to the client before
protected rows from the table are leaked.

This deployment shows that RDDR functions robustly when
deployed in a complex system with high levels of benign
traffic. It also illustrates how RDDR can be deployed to
protect individual services, which is much more scalable than
monolithic approaches. This enables developers to pay the
cost of protecting only the most critical services in their
application, maximizing reliability and minimizing overhead.

G. Performance

1) TPC-H Benchmark Performance: By design N-
versioned systems incur the overhead of executing multi-
ple versions in parallel. RDDR minimizes this cost through
micro-versioning—replicating and diversifying only the most
vulnerable microservices, e.g., those that handle unmodified
user data. The extent of this savings, however, depends on
the particular configuration of microservices in any given
deployment. Therefore, we quantify RDDR’s overhead by
focusing on a single representative component—a Postgres
database.

First, we compare the performance of a single instance of a
Postgres database (without RDDR) to a 3-version deployment
behind RDDR, where all Postgres instances are identical, using
TPC-H [6], a widely used benchmark in industry for studying
database performance. The benchmark specifies a database
schema and 22 test queries. We initialized each instance with
a TPC-H database using a factor of 10, creating a 10GB
database. We then executed all the queries (except one that
could not be executed in parallel) against each of our two
deployments, when they were running 1, 2, 4, 8 or 16 clients in
parallel. For each query, we measured time to execute, memory
usage, and CPU usage of each deployment for each number of

Fig. 4: Performance of RDDR normalized to the baseline
and run with concurrent clients. Boxes span the 5th through
95th percentile. The mean for each sub-graph is depicted as a
dashed line, and medians in orange.

clients. We measured only the memory and CPU usage of the
process tree that comprises each deployment. All tests were
run on an AWS virtual machine with 32 vCPUs and 128 GB
of memory. Figure 4 reports our results, which are normalized
to the performance of the baseline single-instance deployment
(without RDDR).

As expected, the memory overhead of 3-versioning is ap-
proximately 3× that of a single instance as seen in the bottom
plot of Figure 4. CPU utilization overhead is roughly 3× with
one client, but drops quickly when run with more clients. We
attribute this to the fact that Postgres quickly used all available
cores to service requests in parallel for both the single-instance
and 3-version deployments. Finally, the average slowdown
incurred by RDDR (Figure 4 top plot, dashed line) approaches
a constant value and does not increase exponentially even
when the number of clients does.

2) Throughput and Latency: To evaluate throughput and
latency, we deployed RDDR on three identical Postgres in-
stances and evaluated using the pgbench benchmark. Its
performance is compared to a baseline deployment consisting
of a single Postgres instance, both with and without an
Envoy front proxy. By comparing to a database proxied by
an Envoy instance we can evaluate how RDDR compares to

Fig. 5: Throughput and latency for 10,000 transactions per
client.

an optimized and widely used proxy designed to be cloud
native. Each deployment was hosted on an m5a.8xlarge
AWS machine with 32 virtual CPUs and 128 GB of memory,
which we will refer to as the “server machine.” The pgbench
benchmark was executed from a separate m5a.4xlarge
AWS machine with 16 virtual CPUs and 64 GB of memory,
which we will refer to the “client machine.”

Each deployment was initialized with a database of scale
factor 100, creating a total of 10,001,100 table rows. We
ran pgbench for different numbers of simultaneous clients,
ranging from 1 to 256 in powers of two. Each client is executed
in a separate thread and makes 10,000 SELECT transactions
against each deployment. RDDR’s performance is compared
to two different baseline deployments: a single instance of
Postgres with an Envoy front proxy, and a single instance
without a front proxy. These experiments allow us to measure
RDDR’s overhead and how it compares to the cost of adding a
front proxy (common in many cloud application deployments).
Figure 5 shows RDDR’s throughput and latency compared to
each baseline. At 8 clients, RDDR incurs a 10% reduction in
throughput and an 11% increase in latency compared to the
single instance of Postgres behind Envoy. Above that level,
the host machine became overloaded, which explains RDDR’s
relative performance decline.

In Figure 6, we quantify the relative CPU and memory usage
of each deployment when serving 16 or 128 simultaneous
clients. At 16 clients, RDDR exhibits roughly 3x memory and
compute overhead, showing that RDDR incurs only a small
additional overhead beyond the expected 3X cost for a 3-
instance deployment. As we increase to 128 clients, however,
the compute resources of the server become constrained and
RDDR experiences near 100% CPU utilization.

In summary, the latency incurred is generally constant
and acceptably low (Figure 5), while the memory and CPU
overhead is approximately 3x for the container being pro-
tected, provided the system resources have not been exhausted
(Figure 6).

VI. DISCUSSION

In large microservice deployments, it may not be obvious
which containers should be prioritized for N-versioning. Gen-
erally, any microservice that processes user input data directly
is at risk for leaking data and should be given high priority

(a) 16 clients (b) 128 clients

Fig. 6: Aggregate CPU and memory usage for each deploy-
ment with 16 and 128 clients.

for protection. This includes containers that contain encryption
functions, parsers, tokenizers, proxies, and sanitizers (§ V).
Similarly, containers that receive external input via API calls
(e.g., [30], [57]) are good candidates for N-versioning. Al-
though these recommendations do not cover every possible
deployment type, they include categories that are overall both
highest risk and most likely to benefit from N-Versioning.

Each case study involved a different example deployment,
and in each case RDDR protected the system against the
tested vulnerability. Although we cannot guarantee that our
results generalize beyond these examples, we are optimistic
that the methods described here generalize and will defeat
many similar forms of attack, and RDDR is designed to
support the importation of other sources of diversity.

We evaluated RDDR’s run-time performance using two
benchmarks. On the TPC-H benchmark, memory and CPU
overhead for one client behaved as expected with about a 3x
increase for a 3-instance deployment of the micro-service. On
the pgbench benchmark, we profiled throughput and latency,
comparing RDDR to a single instance of a database with and
without the frontend proxy. We found that, on our 32-core
server, RDDR’s throughput tapers off above 16 simultaneous
clients, when RDDR running with three instances exhausts
the parallelism of the server more quickly than the baselines
running with one. Such degradation can be mitigated by
upgrading to servers with more cores, or deploying each
instance of the N-versioned set on a different machine; RDDR
can easily be reconfigured to run distributed across multiple
hosts.

RDDR is advantageous when relatively few microservices
within a deployment require N-versioning, such as the Git-
Lab example (Figure 3) where one service out of nine was
replicated, adding three new containers. Assuming that all
containers consume equal resources, the expected overhead
would be 33% instead of the 3X required by traditional

monolithic N-versioning. In deployments such as Netflix or
Uber, which are typically composed of 100’s of microservices,
duplicating a few select microservices (the API sever for
example) would have negligible effect on overhead.

RDDR can be used to mitigate many types of attacks, and
our work highlights several important examples. However,
assessing mitigations using standards such as the OWASP
is problematic because specific details of an attack can vary
widely. For example, (5) on the list, which encompasses XML
External Entities (XXE), can be mitigated in some cases (as
we showed for CVE-2020-10799), but not in others, e.g., DOS
attacks triggered by other XXE attacks. A similar issue arises
if we map Common Weakness Enumeration (CWE) numbers
to specific RDDR use cases since the effect of the exploit must
be observable at either RDDR’s incoming or outgoing proxy
to be mitigated.

RDDR is not applicable to social engineering attacks where
a malicious actor uses legitimate credentials to access system
components. Such attacks will not cause divergence, regardless
of the source of diversity.

Important areas for future work are threat models that
include hardware vulnerabilities. RDDR could potentially di-
versify microservices at the hardware level, e.g., using Ku-
bernetes, which can orchestrate a deployment across multiple
physically-diverse machines. Diversity could include the ISA
(x86, ARM, MIPS, etc.) or the chip manufacturer (Intel, AMD,
Snapdragon, etc.).

VII. CONCLUSION

Microservice architectures are the dominant approach for
building today’s large-scale, public-facing, distributed cloud
applications. By revisiting and reframing the classic security
strategy of N-versioning, RDDR provides robust protection
for the most vulnerable components of these systems at a
fraction of the cost of replicating the entire application. This
approach, together with the implementation challenges that
RDDR overcomes, addresses one of the major drawbacks of
N-versioning—the high cost of running the versions. RDDR
can mitigate important web application vulnerabilities with
minimal overhead beyond the cost of running multiple in-
stances of vulnerable components and provides a scalable
approach for protecting large complex micro-service architec-
tures. We hope that the work presented here will bring the
benefits of N-version systems to microservice architectures
and contribute to improving their security.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers for
their insightful feedback. We gratefully acknowledge the
partial support of the NSF (CCF 1908633, OAC 2115075,
CNS 1817020, CNS 1704778), DARPA (FA8750-19C-0003,
N6600120C4020), AFRL (FA8750-19-1-0501), Intel (SCAP
and SRC 2965.001), and the Santa Fe Institute.

REFERENCES

[1] Message formats. In PostgreSQL: Documentation, chapter 52.7. The
PostgreSQL Global Development Group, 12 edition.

[2] OWASP risk rating methodology. https://owasp.org/www-community/
OWASP Risk Rating Methodology.

[3] CVE-2014-0160. CVE Details, Apr 2014.
[4] CVE-2017-7484. CVE Details, Jul 2017.
[5] CVE-2017-7529. CVE Details, Jul 2017.
[6] TPC Benchmark H. Technical Report 2.18.0, Transaction Processing

Performance Council, Dec 2018.
[7] Common Vulnerability Scoring System v3.1: Specification Document.

Technical Report 3.1, FIRST.org, Inc., June 2019.
[8] CVE-2019-18277. CVE Details, Oct 2019.
[9] Deploy to swarm. https://docs.docker.com/get-started/swarm-deploy/,

Mar 2020.
[10] Hanane Abdeldjelil, Noura Faci, Zakaria Maamar, and Djamal Bensli-

mane. A diversity-based approach for managing faults in web services.
In 2012 IEEE 26th International Conference on Advanced Information
Networking and Applications, page 81–88, Mar 2012.

[11] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Ior-
dache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Di-
ana Maria Popa. Firecracker: Lightweight virtualization for serverless
applications.

[12] A. Avizienis. The N-Version Approach to Fault-Tolerant Software.
IEEE Transactions on Software Engineering, SE-11(12):1491–1501,
December 1985.

[13] A. Avizienis and Ling Chen. On the implementation of n-version
programming for software fault tolerance during program execution.
1977.

[14] M. Azab, B. Mokhtar, A. S. Abed, and M. Eltoweissy. Toward smart
moving target defense for linux container resiliency. In 2016 IEEE 41st
Conference on Local Computer Networks (LCN), pages 619–622, 2016.

[15] Michael Backes, Goran Doychev, and Boris Köpf. Preventing side-
channel leaks in web traffic: A formal approach. Feb 2013.

[16] G. Barrantes, D. Ackley, S. Forrest, T. Palmer, D. Stefnaovic, and
D. Zovi. Randomized instruction set emulation to disrupt binary code
injection attacks. In 10th ACM Conf. on Computer and Communications
Security, 2003.

[17] Emery D Berger and Benjamin G Zorn. DieHard: Probabilistic Memory
Safety for Unsafe Languages. page 11.

[18] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll, and
J. Lahti. Pods — a project on diverse software. IEEE Transactions
on Software Engineering, SE-12(9):929–940, 1986.

[19] Liming Chen and Algirdas Avizienis. N-version programming: A fault-
tolerance approach to reliability of software operation. In Proc. 8th IEEE
Int. Symp. on Fault-Tolerant Computing (FTCS-8), volume 1, pages 3–9,
1978.

[20] Cloud Native Computing Foundation. Envoy. https://www.envoyproxy.
io.

[21] M. Co, J. W. Davidson, J. D. Hiser, A. Nguyen-Tuong J. C. Knight,
W. Weimer, J. Burket, G. L. Frazier, B. Dutertre T. M. Frazier, I. Mason,
N. Shankar, and S. Forrest. Double Helix and RAVEN: A system for
Cyber Fault Tolerance and Recovery. In Proc. of the 11th Cyber and
Information Security Research Conf. Oak Ridge National Laboratory,
2016. Runner up, best paper.

[22] Michele Co, Bruno Dutertre, Ian Mason, Natarajan Shankar, Stephanie
Forrest, Jack W. Davidson, Jason D. Hiser, John C. Knight, Anh Nguyen-
Tuong, Westley Weimer, Jonathan Burket, Gregory L. Frazier, and
Tiffany M. Frazier. Double Helix and RAVEN: A System for Cyber
Fault Tolerance and Recovery. In Proceedings of the 11th Annual Cyber
and Information Security Research Conference on - CISRC ’16, pages
1–4, Oak Ridge, TN, USA, 2016. ACM Press.

[23] Cockroach Labs. CockroachDB. https://www.cockroachlabs.com.
[24] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei

Hu, Jack Davidson, John Knight, Anh Nguyen-tuong, and Jason Hiser.
N-variant systems: A secretless framework for security through diversity.
In In Proceedings of the 15th USENIX Security Symposium, pages 105–
120, 2006.

[25] Olivier Crameri, Nikola Knezevic, Dejan Kostic, Ricardo Bianchini, and
Willy Zwaenepoel. Staged deployment in mirage, an integrated software
upgrade testing and distribution system. ACM SIGOPS Operating
Systems Review, 41, 10 2007.

[26] Dewhurst Security. Damn Vulnerable Web App. https://www.
cockroachlabs.com.

[27] Glen Dobson, Stephen Hall, and Ian Sommerville. A container-
based approach to fault tolerance in service-oriented architectures. In
International Conference of Software Engeneering. Citeseer, 2005.

[28] EnterpriseDB Corporation. EnterpriseDB. https://www.enterprisedb.
com.

[29] Dominik Ernst, David Bermbach, and Stefan Tai. Understanding the
container ecosystem: A taxonomy of building blocks for container life-
cycle and cluster management. In Proceedings of the 2nd International
Workshop on Container Technologies and Container Clouds, IEEE,
2016.

[30] facebook.com. Graph api - documentation - facebook for developers.
https://developers.facebook.com/docs/graph-api/.

[31] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 3–
18, 2019.

[32] Robert Gawlik, Philipp Koppe, Benjamin Kollenda, Andre Pawlowski,
Behrad Garmany, and Thorsten Holz. Detile: Fine-grained information
leak detection in script engines. In Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721, DIMVA 2016, page 322–342, Berlin, Hei-
delberg, 2016. Springer-Verlag.

[33] Sara Gholami, Alireza Goli, Cor-Paul Bezemer, and Hamzeh Khazaei. A
framework for satisfying the performance requirements of containerized
software systems through multi-versioning. ACM, Dec 2019.

[34] GitLab Inc. GitLab. https://about.gitlab.com/.
[35] Anatoliy Gorbenko, Vyacheslav Kharchenko, and Alexander Ro-

manovsky. Using inherent service redundancy and diversity to ensure
web services dependability. In Methods, Models and Tools for Fault
Tolerance, pages 324–341. Springer, 2009.

[36] Ronen Heled. Http request smuggling. 2005.
[37] P. Hosek and C. Cadar. Safe software updates via multi-version execu-

tion. In 2013 35th International Conference on Software Engineering
(ICSE), pages 612–621, 2013.

[38] https://cwe.mitre.org. Cwe-1026: Weaknesses in owasp top ten (2017),
2019.

[39] Rui Huang, Hongqi Zhang, Yi Liu, and Shie Zhou. Relocate: a container
based moving target defense approach. In The 7th International
Conference on Computer Engineering and Networks, volume 299, page
008. SISSA Medialab, 2017.

[40] Jessica Jones, Jason D. Hiser, Jack W. Davidson, and Stephanie For-
rest. Defeating Denial-of-Service Attacks in a Self-Managing N-Variant
System. In 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages
126–138, Montreal, QC, Canada, May 2019. IEEE.

[41] J. P. J. Kelly, A. Avižienis, B. T. Ulery, B. J. Swain, R.-T. Lyu, A. Tai,
and K.-S. Tso. Multi-version software development. IFAC Proceedings
Volumes, 19(11):43–49, 1986.

[42] John Patrick Joseph Kelly. Specification of fault-tolerant multi-version
software: Experimental studies of a design diversity approach. 1983.

[43] John C Knight and Nancy G Leveson. An experimental evaluation of
the assumption of independence in multiversion programming. IEEE
Transactions on software engineering, (1):96–109, 1986.

[44] Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and efficient
multi-variant execution using hardware-assisted process virtualization.
DSN, pages 431–442, 2016.

[45] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated
software diversity. In 2014 IEEE Symposium on Security and Privacy,
pages 276–291, 2014.

[46] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. IBM journal of research
and development, 6(2):200–209, 1962.

[47] Soo Jin Moon, Vyas Sekar, and Michael K. Reiter. Nomad: Mitigat-
ing arbitrary cloud side channels via provider-assisted migration. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, page 1595–1606. Association for
Computing Machinery, Oct 2015.

[48] Nginx, Inc. Nginx. https://www.nginx.com.

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://docs.docker.com/get-started/swarm-deploy/
https://www.envoyproxy.io
https://www.envoyproxy.io
https://www.cockroachlabs.com
https://www.cockroachlabs.com
https://www.cockroachlabs.com
https://www.enterprisedb.com
https://www.enterprisedb.com
https://developers.facebook.com/docs/graph-api/
https://about.gitlab.com/
https://www.nginx.com

[49] Christian Otterstad and Tetiana Yarygina. Low-level exploitation miti-
gation by diverse microservices. In Flavio De Paoli, Stefan Schulte, and
Einar Broch Johnsen, editors, Service-Oriented and Cloud Computing,
Lecture Notes in Computer Science, page 49–56. Springer International
Publishing, 2017.

[50] Richard Poschinger, Nils Rodday, Raphael Labaca-Castro, and Gabi
Dreo Rodosek. Openmtd: A framework for efficient network-level mtd
evaluation. In Proceedings of the 7th ACM Workshop on Moving Target
Defense, pages 31–41, 2020.

[51] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano. A
source-to-source compiler for generating dependable software. In Pro-
ceedings First IEEE International Workshop on Source Code Analysis
and Manipulation, pages 33–42, 2001.

[52] David K. Rensin. Kubernetes: Scheduling the Future at Cloud Scale.
O’Reilly Media, 2015.

[53] Atul Singh, Nishant Sinha, and Nitin Agrawal. Avatars for pennies:
Cheap n-version programming for replication. In 6th Workshop on Hot
Topics in System Dependability, 2010.

[54] Neil Smithline, Brian Glas, Torsten Gigler, and Andrew van der Stock.
OWASP Top 10, 2021.

[55] Marthony Taguinod, Adam Doupé, Ziming Zhao, and Gail-Joon Ahn.
Toward a Moving Target Defense for Web Applications. In Proceed-
ings of the IEEE International Conference on Information Reuse and
Integration (IRI), August 2015.

[56] Kennedy A. Torkura, Muhammad I.H. Sukmana, Anne V.D.M. Kayem,
Feng Cheng, and Christoph Meinel. A cyber risk based moving target
defense mechanism for microservice architectures. In 2018 IEEE Intl
Conf on Parallel Distributed Processing with Applications, Ubiquitous
Computing Communications, Big Data Cloud Computing, Social Com-
puting Networking, Sustainable Computing Communications (ISPA/IUC-
C/BDCloud/SocialCom/SustainCom), page 932–939, Dec 2018.

[57] Inc. Twitter. Twitter api documentation — docs — twitter developer
platform. view-source:https://developer.twitter.com/en/docs/twitter-api.

[58] Inc Twitter. Diffy. https://github.com/opendiffy/diffy, Mar 2020.
[59] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu,

Per Larsen, Bjorn De Sutter, and Michael Franz. Secure and efficient
application monitoring and replication. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 167–179, Denver, CO,
June 2016. USENIX Association.

[60] Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and
Stijn Volckaert. dmvx: Secure and efficient multi-variant execution in a
distributed setting. In Proceedings of the 14th European Workshop on
Systems Security, pages 41–47, 2021.

[61] Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per
Larsen, Michael Franz, and Stijn Volckaert. Distributed heterogeneous n-
variant execution. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 217–237. Springer,
2020.

[62] John H Wensley, Leslie Lamport, Jack Goldberg, Milton W Green,
Karl N Levitt, Po Mo Melliar-Smith, Robert E Shostak, and Charles B
Weinstock. Sift: Design and analysis of a fault-tolerant computer for
aircraft control. Proceedings of the IEEE, 66(10):1240–1255, 1978.

[63] Riley Wood and Antonio Espinoza. Rddr documentation. https://rddr.
readthedocs.io/en/latest/.

[64] Riley Wood and Antonio Espinoza. Rddr source code. https://bitbucket.
org/rddr-team/rddr/src/master/.

[65] Ying C Yeh. Triple-triple redundant 777 primary flight computer. In
1996 IEEE Aerospace Applications Conference. Proceedings, volume 1,
pages 293–307. IEEE, 1996.

[66] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,
and Mike Dahlin. Separating agreement from execution for byzantine
fault tolerant services. SIGOPS Oper. Syst. Rev., 37(5):253–267, October
2003.

[67] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lak-
shmi Bairavasundaram. How do fixes become bugs? In Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, page 26–36,
New York, NY, USA, 2011. Association for Computing Machinery.

[68] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace,
Herbert Bos, and Cristiano Giuffrida. kMVX: Detecting Kernel Infor-
mation Leaks with Multi-variant Execution. In ASPLOS, April 2019.

view-source:https://developer.twitter.com/en/docs/twitter-api
https://rddr.readthedocs.io/en/latest/
https://rddr.readthedocs.io/en/latest/
https://bitbucket.org/rddr-team/rddr/src/master/
https://bitbucket.org/rddr-team/rddr/src/master/

	Introduction
	Motivation
	Related Work
	Service Oriented Architecture (SOA)
	N-versioning
	Moving Target Defense (MTD)
	Other Deployment Strategies

	RDDR Design and Implementation
	Threat Model
	RDDR
	Protocol Support
	Handling Nondeterminism
	Handling Ephemeral State
	Handling Known Variance

	Acquiring Program Variants
	Limitations

	Evaluation
	Library diversity in RESTful APIs
	SQL Injection
	Diverse microservice implementations
	Reverse Proxies
	Databases

	Varying microservice versions
	Generating Diversity with ASLR
	N-versioning components of GitLab
	GitLab Architecture
	N-versioning Postgres within GitLab

	Performance
	TPC-H Benchmark Performance
	Throughput and Latency

	Discussion
	Conclusion
	References

