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ABSTRACT
Automatically improving and repairing software using search-based
methods is an active research topic. Many current systems use ex-
isting source code as the ingredients of repairs, either through evo-
lutionary computation derived random mutation or other heuristic
operators. However, these code transformation operators are not
always well-matched to the granularity of the source code on which
they operate. This paper proposes a static source-to-source prepro-
cessing step to produce code with more uniform granularity that
exposes relevant program components to the repair process. This
approach, called Program Repair Enhancement via Preprocessing
(PREP), has been applied to three different repair tools, each of
which uses different code transformation operators and search al-
gorithms. In every case, applying PREP before the search allows the
tool to repair software defects that were previously unattainable
by that tool. PREP finds 88 unique previously-unreported correct
repairs across these tools. This result is significant because it is ap-
plicable to most search-based software improvement methods, and
it addresses the fundamental issue of how to match the granularity
of the representation to the granularity of operators.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering.
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1 INTRODUCTION
Automated program repair (APR) is an active sub-field of software
engineering, with dedicated tracks in top conferences exploring a
variety of approaches, ranging from search-based methods [7, 16]
to constraint solving [14, 15] and machine learning [10]. Despite
the intensity and diversity of these efforts, today’s APR tools typi-
cally generate semantically-correct repairs at a rate below 50% [26].
Further, most methods do not attempt to synthesize program code
de novo, and, instead, define code transformation operators, such
as mutation, which manipulate existing code, following what is
known as the statement-level redundancy assumption [13] or the
plastic surgery hypothesis [2]: A substantial fraction of human-
generated software repairs are composed entirely of tokens that
exist in the program, providing a rationale for code transformations
that manipulate existing code fragments.

If the ingredients of APR search methods are adequate, why
do the implemented tools fail to find more repairs? There are
many possible explanations, such as search budgets, details of
operators, and so forth. The obstacle we explore in this paper is
code representation—APR operator incongruity. Code representation
refers to an APR tool’s internal representation of input source code,
consisting of elements. APR operators, henceforth operators, access
elements of a code representation and perform actions such as
copy, delete, or replace. Incongruity occurs when the representation
elements are poorly matched with the operators.

We identify two types of incongruity:
(1) Statement Incongruity: Occurs when relevant represen-

tation elements for creating patches are not accessible to
operators, although they are present in the program.

(2) Type Incongruity: Occurs when representation elements
of similar, compatible types are not used by operators.

In this paper, we focus on changing the code representation,
leaving both APR tools and operators intact. Our insight is that
simple syntactic changes to code representation can make more
elements accessible to operators and reduce incongruity.
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Instead of directly modifying the code representation, we employ
source-to-source code transformation in a pre-processing step that
restructures the source code to expose more elements to the oper-
ators. This allows us to be compatible with existing source-level
repair algorithms, including those that apply a patch represen-
tation [16, 28, 29] (a list of edits) to source code, and those that
mutate a code representation [7] (e.g., an abstract syntax tree). To
address statement incongruity, we extract nested elements from
complex statements. To address type incongruity, we statically cast
similarly-typed elements (expressions and variables) to existing ele-
ments (variables). These transformations preserve original program
semantics.

The implementation of our method is called Program Repair
Enhancement via Preprocessing (PREP). Since PREP operates on the
source code, it complements existing APR algorithms, as we show
in our evaluation. We apply PREP to three tools which represent
different underlying algorithm classes: f1x, GenProg, and Prophet.
We evaluate PREP on multiple APR tools over two sets of buggy
programs: the Codeflaws dataset and the DARPA Cyber Grand
Challenge [5] dataset (CGC).

To summarize, this paper makes the following contributions:

• A novel method for improving the congruence between op-
erators and representations in source-level APR. The method
uses general and type-aware source-to-source static code
transformations to address statement and type incongruities
(Section 3).

• An implementation of the method as PREP (Program Repair
Enhancing via Preprocessing) and an evaluation of PREP
on two datasets (Codeflaws and the DARPA Cyber Grand
Challenge) across three independently-developed APR tools
that target the C programming language (f1x, Prophet, and
GenProg). For Codeflaws, we find that PREP, allows these
tools to increase correct repairs found by 2.6%, 7.6%, and
8.8% respectively. For CGC, we find that PREP improves
vulnerability mitigation results by 26.6%, 100%, and 13.6%
respectively (Sections 4 and 5).

• Aquantitative approach for assessing how congruent anAPR
tool’s operators are to its code representation. Considering
three quite different APR tools, we find that f1x is the most
congruent and GenProg the least (Section 5).

These results are significant because they can be applied to
most search-based software improvement methods, and they ad-
dress the fundamental issue of how to match program representa-
tion to popular operators used in both evolutionary computation-
based and other approaches for APR. To further open and
reproducible science, our prototypes, the curated benchmark
dataset, and all of our experimental results are available at
https://github.com/amespi22/code_rewrite.

2 MOTIVATING EXAMPLE
To motivate the utility of source code transformations, consider
the code snippet from the DARPA Cyber Grand Challenge pro-
gram Palindrome, shown in Listing 1. This code contains a bug
on line 8, where the hardcoded value of 128 in the third param-
eter is too large and admits an overrun of the allocated 64 bytes.

1 int cgc_check (){

2 int len = -1;

3 int i;

4 int pal = 1;

5 char string [64];

6 for (i = 0; i < sizeof(string); i++)

7 string[i] = '\0';

8 if (cgc_receive_delim (0, string , 128, '\n') != 0)

9 return -1;

10 ...

11 }

Listing 1: CGC Challenge : Palindrome with stack-based
buffer overflow.

1 int tlv3;

2 char * tlv4;

3 int tlv5;

4 char tlv6;

5 tlv3 = 0;

6 *tlv4 = string;

7 tlv5 = 128;

8 tlv6 = '\n';

9 tlv1 = cgc_receive_delim(tlv3 , tlv4 , tlv5 , tlv6);

10 if (tlv1 != 0) {

11 return (-1);

12 }

Listing 2: The result of simple source-to-source, static code
transformations.

The human-generated patch replaces this hardcoded value with
sizeof(string).

Ideally, an automated tool would mimic the human-generated
patch. However, this requires that (1) the element sizeof(string)
be available in the source code or repair templates, (2) the tool can
manipulate function parameters, and (3) the tool can access the
repair ingredient.

In our example, condition (1) is satisfied by line 6 in the Palin-
drome source. The conditions (2) and (3) are not so easily met, how-
ever, as they depend on the operators. Although some search-based
methods define operators that manipulate function parameters and
other operands directly, when implemented naively this can greatly
expand the size of the search space, and many current research
prototypes do not operate at that level of granularity. They may
also lack access to the required repair element, e.g., because of
scope or typing issues. From our example, sizeof(string) could
be unavailable for a number of reasons: sizeof(string) is nested
within a larger, atomic expression (i.e., the conditional check of a
loop), the type of sizeof(string) is not available, or the type for
sizeof (i.e., size_t) is not considered compatible with type int.
PREP seeks to remedy both disparities—those between mutation
operators and code constructs (statement incongruity) and those
between the required int type and size_t (type incongruity).

If one could expose these elements to the operators via a source-
to-source code transformation, they would become available and
potentially help many of today’s APR methods. For example, line 8
could be transformed from Listing 1 to the code shown in Listing 2,
and patch ingredients of similar and valid types could be generated
from the standard C-style elements of Listing 3. Simple trans-

https://github.com/amespi22/code_rewrite
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1 void fix_ingred_service_1_0_2 (){

2 char string [ 64 ];

3 bzero(&string ,( 64* sizeof(char) ));

4 int len;

5 bzero(&len ,sizeof(int));

6 {int len; len = (int)(sizeof ( string )); }

7 ...

8 {int tlv5; tlv5 = (int)(sizeof ( string )); }

9 ...

10 }

Listing 3: Static type-casting fix ingredients examples for
Palindrome.

formations such as these preserve the semantics of the program
while simultaneously allowing the contents of the function call to
be manipulated by many existing APR operators.

To illustrate this point, we ran GenProg [7], an early EC-based
APR tool, on the Palindrome bug, and it failed to find a repair using
the original source code of Listing 1. However, when we reran
GenProg with the semantically-equivalent transformed code from
Listings 2 and 3, it found a correct repair. The repair was found by
a copying a mutation that used line 7 of Listing 2 as the destination
and the declaration in line 8 of Listing 3 as the source expression.

This sort of simplemutation operator is available inmany current
research tools, including those that do not use EC. Our proposed
transformation allows the third argument of cgc_receive_delim
to be replaced without changing any such underlying mutation op-
erators. Our evaluation of PREP includes Palindrome (Section 5.2).
Of the three APR algorithms we studied, GenProg and Prophet both
correctly repair (i.e., find a patch that is equivalent to the human-
supplied patch) Palindrome by using the semantically-equivalent
code generated by our code transformations.

3 CODE TRANSFORMATIONS
We propose to use source-to-source code transformations to reduce
statement and type incongruity between representations and op-
erators for automated program improvement. In this section we
describe our transformations (summarized by examples in Table 1).
Our transformations address both statement (T1–T3) and type (T4)
incongruence. Due to compound statements, T2–T3 transforma-
tions are applied recursively and stop when no further transforms
are applicable.

Decouple assignments from declarations (T1). This transforma-
tion decomposes complex assignments and declarations, allowing
operators to access subsets of compound assignments as elements.
Our code transformations are tool agnostic, and we do not assume
that they separate assignments from declarations. We illustrate this
in Transform 1.

[typ] [var] = [expr] ;

[typ] [var] ;
[var] = [expr] ;

Transform 1: Decoupling assignments from declarations.
(“Before” code is shown above the dashed line, “after” code
is shown below.)

Decouple function calls from conditional statements (T2). When
function calls are embedded within conditional statements, it may
be difficult for APR tools to change their parameters. By extracting
the function call and replacing it with an equivalently-typed tempo-
rary variable equal to the return value (show this in Transform 2),
PREP enables manipulation of conditional statements containing
function calls. The APR tool can then mutate the function call
independently (e.g., replacing it with a type-equivalent variable).
Additionally, this transformation allows an APR tool the ability
to replace function call parameters with any equivalently typed
variables when applied in conjunction with transformations T3
and T4. This increases the repair search space while preserving
program semantics.

if ( [func] ([args]) )

[typ] [tmp_var] = [func] ([args]); s.t. typ = return_type(func)
if ( [tmp_var] )

Transform 2: Decoupling function calls from conditional
statements.

Decouple content from function call parameters (T3). Human-
written repairs often replace a function call parameter with another
value located elsewhere in the code (e.g., Section 2). Due to state-
ment incongruity, such repairs may not be expressible by APR tools.
This transformation extracts all function call parameters, declares
temporary variables of the same type and assigns values equal to
the original parameters, and replaces the original parameters with
their respective temporary variables (shown in Transform 3). This
enables APR tools that perform mutation operations such as swap
or append to modify any function call parameter.

[func] ([args])

[typ𝑖] [tmp𝑖] = [val𝑖]; ∀ (typ𝑖,val𝑖) ∈ {val0,...,val𝑁 }=[args]
| s.t. typ𝑖 = parameter_type(func,𝑖)
[func]([tmp0],...,[tmp𝑁 ])

Transform 3: Decoupling content from function call parame-
ters.

Type compatibility and static casting (T4). Many APR tools ag-
gressively screen potential patch element components. For example,
patch elements are commonly required to match in name and type.
Aggressive screening benefits standard APR tools by eliminating
early compilation failures in strongly-typed languages. However,
many screening approaches may conservatively rule out useful re-
pairs because they use strict notions of type equivalence that do not
account for type congruity or safe casting (cf. physical typing [3]).
This transformation casts statements and expressions of equivalent
types to a target type to generate usable type-compatible elements.
We illustrate this in Transform 4. This allows APR tools to access a
richer set of patch ingredients while remaining type safe.

To preserve semantic equivalence across all transformations, as
well as the original source’s intended scope and functionality, we



GECCO ’22, July 9–13, 2022, Boston, MA, USA Reiter and Espinoza, et al.

{ [typ𝑏] [var𝑏]; [var𝑏] = ([typ𝑏]) [e𝑎]; }
| ∀ S ∈ Scopes
| ∀ (typ𝑏,var𝑏) ∈ Variable_declarations(S),
| ∀ (typ𝑎,e𝑎) ∈ Expressions(S)
| s.t. typ𝑏 = variable_type(var𝑏 ) ,
| typ𝑎 = resolved_type(e𝑎 ) ,
| and equivalently_typed(typ𝑎 ,typ𝑏 ) is True

Transform 4: Creating type-compatible elements through
static casting.

Transformations
Type Example

T1 type name = value -> type name
name = value

T2 if(func(args)) -> type tmp_var = func(args)
if (tmp_var)

T3 func(arg1, arg2) ->
type tmp1 = arg1
type tmp2 = arg2
func(tmp1,tmp2)

T4 {type tmp1; tmp1 = (type) expr2; }

Table 1: Transformation types and examples.

transform conditional and loop statements with a single statement
as their body into multi-line scope statements by introducing blocks.

4 EXPERIMENTAL DESIGN AND SETUP
We selected three APR tools that operate on C code, each of which
uses different methods for creating patches to buggy code. GenProg
is an EC-based method with mutation operators that rely on the
statement-level redundancy assumption. Prophet uses code tem-
plates that are discovered with machine learning. Finally, f1x relies
on constraint solving. By testing each of these tools on the same
datasets we can examine the degree to which each is limited by the
incongruity problem and the degree to which our transformations
can improve off-the-shelf methods.

4.1 Datasets
We evaluate our static code transformations on two datasets: Code-
flaws [21] and theDARPACyber GrandChallengeDataset (CGC) [5].
Codeflaws was intentionally created for program repair tools and
obtained from the Codeforces online database [4]. The Codeflaws
dataset provides a buggy source file, the corresponding human-
repaired source file, a build mechanism, and test content (input,
output, and evaluation scripts). It provides heldout test content,
which supports testing patches for overfitting. We consider any
patch that passes all heldout tests to be “correct.” Codeflaws directly
supports multiple APR tools.

The CGC content was created by security-focused software con-
tractors as challenge problems for autonomous Cyber Reasoning
Systems for the 2016 DARPA Cyber Grand Challenge (CGC). It con-
tains a collection of 32-bit binary programs, their corresponding
source code, at least one negative, i.e., proof-of-vulnerability (POV)
test, and a mechanism for generating new test cases.

Using a Linux variant [22] of the CGC benchmark, we have mod-
ified the CGC dataset to run with program repair tools, including
the program source code, a build mechanism, and test content. Each
program may have multiple POVs associated with it; we use the
term scenario to refer to each program–POV pair. The CGC dataset
has a less strict repair requirement than Codeflaws: a program’s
vulnerability is considered mitigated if the program no longer raises
an exception when the POV is executed.

For the CGC dataset evaluation, we first screened for a subset
of scenarios that could easily support all three APR tools. Specifi-
cally, C programs (baseline and developer-supplied patch) must (1)
compile with both gcc and clang, (2) exhibit expected behavior on
negative and positive tests, and (3) correspond only to a single pro-
gram executable used to evaluate all test content (100 C programs).
Of these 100 valid C-programs [18], we selected a subset (27) from
those which a repair algorithm operating on the entire program
source failed to identify a repair within its 8hr budget. These 27 pro-
grams correspond to 55 scenarios for the PREP evaluation, covering
most valid programs’ vulnerability types.

4.2 Tool Configurations
Codeflaws. The Codeflaws dataset includes the tool configura-

tion files required to run both GenProg and Prophet but does not
include the required files for f1x. To keep the configuration of f1x
as simple as possible and admit fair comparison to the other two
tools, we used the same positive and negative tests that are used for
GenProg and Prophet, a test timeout of 1 second and f1x’s option
to create all patches. Unlike GenProg, which was run locally on a
Ubuntu 18.04 machine, we used the default f1x Docker container
to ensure it ran with its intended system configuration. Similar
to f1x, we used a Docker container for Prophet in our Codeflaws
evaluation.

CGC. For the CGC dataset we used standard configurations for
GenProg, Prophet, and f1x. We used the developer-identified set of
buggy source files as the input source code. All test content was
generated from the same testing sources, but we tailored the test
harnesses individually to meet the invocation requirements of each
APR tool.

Our CGC GenProg evaluation runs with both the single-edit mu-
tation search option and with the genetic algorithm (GA) search [7,
24] option using GenProg’s standard population size of 40 for ten
generations. Our runs also expand GenProg’s default locally scoped
strict type matching with the --semantic-check name parameter.
This parameter enables GenProg to use same-named, exactly-typed
externally-scoped variables and their respective statements as in-
gredients for mutation.

Our CGC Prophet evaluation uses standard profiling as the lo-
calizer method [10]. We extended Prophet’s implementation for
multilib build environments, specifically adding support for 32-bit
libraries. This was necessary to allow Prophet to evaluate the 32-bit
CGC dataset.

Our CGC f1x evaluation uses its default configuration, identical
to the Codeflaws f1x evaluation. Similar to Prophet, we extended
f1x for the CGC dataset by adding support for 32-bit libraries. Ad-
ditionally, f1x’s testing requirements did not directly support the
CGC’s Python test harness. Equivalent f1x oracles were generated
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Baseline PREP
Plausible Correct ΔPlausible ΔCorrect

f1x 2190 1379 46 36
Prophet 2475 840 75 64
GenProg 1185 1170 101 99

Total Unique 2761 2046 27 88
Table 2: New repairs enabled by PREP. Codeflaws results for
f1x, Prophet and GenProg. ‘Δ’ indicates the increase discov-
ered after applying PREP.

from the positive test content as well as the DARPA POVXML files
from which the POV executables were generated. However, DARPA
did not provide POVXML files for seven of the 55 CGC scenarios
(shown as ‘NEG’ in Table 3) prohibiting us from testing them with
f1x.

Implementation. PREP is implemented in Python using the
antlr4 [1] parser generator to parse C. Our implementation is avail-
able from https://github.com/amespi22/code_rewrite. We evaluated
the CGC dataset using an f1x docker image built using Ubuntu
16.04 (Binutils 2.26), a Prophet docker image built using Ubuntu
18.04 (Binutils 2.30); while GenProg evaluations were conducted
on Ubuntu 18.04 (Binutils 2.30) development machines.

5 RESULTS
We first report experimental results for Codeflaws and CGC. Using
these results, we then consider their implications for the different
tools in terms of the congruity between their representation and
operators.

5.1 Codeflaws
PREP’s transformations improved the number of plausible and
correct patches for all three tools.

f1x: Because f1x uses symbolic execution to generate patches,
and focuses on conditional statements (including loops), we did not
expect our transformations to have a large effect on its performance.
As Table 2 shows, however, f1x found new patches with PREP that it
was unable to find in the baseline. PREP and f1x together discovered
36 correct patches that the baseline f1x did not, 16 of which are
unique across all tools tested (Figure 1).

Prophet: When Prophet was run with PREP, it discovered 64
new correct patches above its baseline, of which 23 are unique
(Figure 1).

GenProg: When GenProg was run with PREP, it discovered 99
new correct patches that the baseline GenProg missed, 45 of which
are unique. Only two of the 101 candidate repairs failed to pass the
heldout tests, i.e., almost all of the discovered patches were correct.

Collectively PREP, when paired with these three off-the-shelf
repair techniques, discovered 88 new correct patches and 27 unique
plausible patches, as shown in Table 2. By ‘unique’, we mean that
the correct patch was found by only one PREP-enabled tool and was
not found by any of the baselines. Many of the plausible patches
found by the baseline runs and by the PREP-enabled tools were
not correct according to the dataset’s definition. For example, there

were 2,761 unique plausible patches in the baseline, of which 2,046
were found to be correct, leaving 715 plausible yet incorrect (overfit)
patches. Using PREP, each tool was able to correctly repair some of
these overfit patches.

Of the new patches discovered with PREP, most were unique to
each tool and there was very little overlap, as shown in Figure 1.
This indicates that PREP is not just helping one tool discover a patch
that other tools can find, but in several cases, it is helping them
to discover unique patches. Overall, PREP improved each tool’s
correct repair success: GenProg had a relative increase of 8.8%,
f1x of 2.6%, and Prophet of 7.6%. This improvement is particularly
relevant because techniques such as GenProg are often associated
with lower-quality repairs that overfit to visible tests (e.g., [17]):
techniques that can reduce overfitting and instead produce correct
patches are highly desired.

5.2 Cyber Grand Challenge
In the CGC evaluation, we first applied PREP and then provided the
result as input to f1x, GenProg, and Prophet. There were twenty-
two repairs of interest, i.e., CGC Scenarios (from Table 3). For four
of these repairs, applying PREP alone mitigated the vulnerabil-
ity (e.g., introducing well-typed temporary variables may cause a
compiler to emit code with a different stack layout, potentially dis-
rupting certain buffer overruns). We focus on the remaining repairs
in which the vulnerability was mitigated by a repair tool operating
on PREP-transformed code. For 15 of the top 22 rows of Table 3,
Prophet was unable to find a repair on the original source code, but
discovered a repair with PREP. In row 1 (cotton_swab_arithmetic.1),
GenProg was unable to find a repair when provided only the origi-
nal source code, but found a repair with PREP. For two scenarios
(Music_Store_Client.2 and Music_Store_Client.3), GenProg did not
find a vulnerability mitigation within the 8hr time period, but found
themwith PREP.We see that PREPwas not as effective at improving
f1x results, aiding in the discovery of only one patch (HackMan.1).

Overall, the PREP-enabled tools found mitigations for eigh-
teen new scenarios, which they failed to find when using the
original source code: six new uniquely-mitigated scenarios were
found with PREP. For the CGC results, we manually reviewed
the APR-generated repairs. This review found that two vulnerabil-
ity mitigations were equivalent to the developer supplied repair—
these correct repairs were found by both GenProg and Prophet for
Palindrome using PREP-enabled source only. While GenProg took
advantage of all four transformations in its correct repair, Prophet
utilized T1–T3.

With PREP, we observed an increased number of timeouts in
the given search budget (DNF for Did Not Finish), particularly for
large programs such as CGC_Planet_Markup_Language_Parser.
This is perhaps not so surprising, because our transformations
increase the representation granularity, and therefore, increase the
search space for operators that rely on existing code ingredients.
There are cases in which the baseline tool found a repair with the
original source code but failed with the PREP-transformed code.
We analyzed these repairs carefully, particularly for Prophet, and
found that the baseline repairs were overfit in each case. With the
original source, the tool found patches that (1) changed the control
flow of the source code with terminating statements, (e.g., exit),

https://github.com/amespi22/code_rewrite
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Figure 1: PREP enables each tested tool to find unique correct
repairs in the Codeflaws dataset. Each number is a count of
how many correct (not simply plausible) repairs the tool
discovered with PREP that it failed to discover without PREP.
Patches that were also found in the non-PREP baseline are
not counted.

or (2) removed the initialization of variables or reset them (e.g.,
malloc).

Determining why these particular patches were overfit with-
out PREP and correct with PREP is nuanced. We note, however,
that the code transformations can change stack behavior, which
influence outcomes for the tools. The transformations targeting
fault-locations, T1–T3, introduce new local variables, which can in-
crease stack usage and influence the nature of existing stack-based
vulnerabilities. Our fix ingredient transformation, T4, initializes
variables using bzero, effectively zeroing out portions of the stack.
Taken together, these factors could reduce the chance of a tool mis-
takenly removing a variable initialization or malloc, increasing the
chance of avoiding an incorrect repair, particularly with variables
used for boundary checks.

Overall, PREP affected the relative plausible repair rate for Gen-
Prog by 13.6%, f1x by 26.6%, and Prophet by 100.0% (includes PREP-
only mitigations). We note that even though PREP increases the
search space while the search budget/configuration remained con-
stant, the overall change was positive for each tool. Although it
appears that Prophet outperformed GenProg and f1x, note that the
total vulnerabilities mitigated by GenProg was 80% in the baseline
whereas prophet and f1x were both 27.3%. In comparison to Code-
flaws and its correctness criteria, passing visible CGC tests requires
less effort.

These results suggest that our proposed code transformations
enable existing tools to expand their reach by providing a repre-
sentation that is more congruent with their code transformation
operators.

5.3 Representation and Operator Congruence
PREP addresses two sources of incongruity between representations
and operators: statement incongruity and type incongruity. For
statement, we focused on a problem that plagues many software
repair tools—function parameters, which can occur both outside

f1x GenProg Prophet
Scenario.POV PREP

only
base PREP base PREP base PREP

cotton_swab_arithmetic.1 ✓ ✓ ✗ ✓ ✗ ✗
Diary_Parser.1 ✓* ✗ ✓* ERR ✓* ✗ ✓*
Diary_Parser.3 ERR ERR ERR ERR ✗ ✓
Diary_Parser.4 ERR ERR ERR ✓ ✗ DNF
FablesReport.4 DNF DNF ✓ ✓ ✗ ✓
FISHYXML.1 ✗ ✗ ✓ DNF ✗ ✓
FSK_BBS.1 DNF DNF ERR ERR ✗ ✓
Griswold.4 ✓ ✓ ✓ ✓ ✗ ✓
HackMan.1 ✗ ✓ ✓ ✓ ✗ ✓
HIGHCOO.1 ✗ ✗ ✓ ✓ ✗ ✓
Music_Store_Client.2 ERR ERR DNF ✓ ✗ ✗
Music_Store_Client.3 ✗ ✗ DNF ✓ ✗ ✗
online_job_application2.1 NEG NEG ✓ ✓ ✗ ✓
On_Sale.2 ✓* NEG ✓* ERR ✓* DNF ✓*
Palindrome.1 ✗ ✗ ✓ ✓ ✗ ✓
Palindrome2.1 ✓* NEG ✓* ✓ ✓* ✗ ✓*
SCUBA_Dive_Logging.1 ERR ERR ✓ ✓ ✗ ✓
SCUBA_Dive_Logging.2 NEG NEG ✓ DNF ERR ✓
simplenote.1 ✗ ✗ ✓ DNF ✓ ✗
simplenote.2 ✓ ✓ ✓ ✓ ✓ ✗
stack_vm.1 ✗ ✗ ERR DNF ✗ ✓
The_Longest_Road.1 ✓* ✗ ✓* ✓ ✓* ✗ ✓*
CGC_Planet_Ma..._Parser.1 DNF DNF ✓ DNF ✗ DNF
CGC_Planet_Ma..._Parser.2 DNF DNF ✓ ✓ DNF DNF
CGC_Planet_Ma..._Parser.3 DNF DNF ✓ ✓ ✗ ✗
CGC_Planet_Ma..._Parser.4 DNF DNF ✓ ✓ DNF ERR
CGC_Planet_Ma..._Parser.5 DNF DNF ✓ ✓ ✗ DNF
CGC_Planet_Ma..._Parser.6 DNF DNF ✓ ✓ ✗ DNF
CGC_Planet_Ma..._Parser.7 DNF DNF ✓ ✓ ✗ DNF
FablesReport.1 DNF DNF ✓ ✓ ✗ ✗
FablesReport.2 DNF DNF ✓ ✓ ✗ ✗
FablesReport.3 DNF DNF ✓ ✓ ✗ ✗
FablesReport.5 DNF DNF ✓ ✓ ✗ ✗
FISHYXML.2 ✗ ✗ ✓ DNF ✗ DNF
Griswold.1 ✓ ✓ ✓ ✓ ✗ ✗
Griswold.2 ✓ ✓ ✓ DNF ✗ ✗
Griswold.3 ✓ ✓ ✓ ✓ ✗ ✗
HackMan.2 NEG NEG ✓ ✓ ✓ DNF
KTY_Pretty_Printer.1 ✓ ✓ ✓ ✓ ✓ ✓
KTY_Pretty_Printer.2 ✓ ✓ ✓ DNF ✓ DNF
KTY_Pretty_Printer.3 ✓ ✓ ✓ DNF ✓ ✓
KTY_Pretty_Printer.4 ✗ ✗ ✓ DNF ✓ ✓
KTY_Pretty_Printer.5 ✗ ERR ✓ ✓ ✓ ✓
Minimalis..._Manager_3M.1 ✓ ✓ ✓ ✓ ✓ ✓
Minimalis..._Manager_3M.2 ✓ ✓ ✓ ✓ ✓ ✓
Movie_Rental_Service.1 ✓* ✓ ✓* ERR ✓* ✓ ✓*
Music_Store_Client.1 ✓ ✓ ✓ ✓ ✗ ✗
On_Sale.1 NEG NEG ERR ERR DNF DNF
QuadtreeConways.1 ✓ ERR ✓ ✓ ✓ ✓
Rejistar.1 NEG NEG ✓ ✓ ERR DNF
SOLFEDGE.1 ✗ ✗ ✓ ✓ ✓ ✓
SOLFEDGE.2 ✗ ✗ ✓ ✓ ✓ ✓
SPIFFS.1 DNF DNF ✓ ✓ ✓ ✓
Street_map_service.1 ✓ ✓ ✓ DNF ERR ✗
WordCompletion.1 ✗ ✗ ✓ DNF ✗ ✗

Table 3: CGC Results. Baseline versus PREP results for f1x
robust configuration, GenProg evaluation for all single-edit
mutations and GA search, and Prophet with profile-based
localization. ‘✓’ indicates that a patch was found, ‘✗’ that no
patch was found, ‘DNF’ that the tool did not finish in the
8hr. search budget, ‘ERR’ indicates tool errors, ‘NEG’ when
no f1x-compatible negative test was available, ‘*’ identifies
examples where PREP mitigate the negative test (POV) on
its own with no repair tool.
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and inside conditional statements (if and case). We can use the
number of new patches that a tool discovers with PREP as a proxy
for the congruence of its operators with the program elements that
are accessible from its representation. Using the Codeflaws results
(Table 2), we can rank these tools from most to least congruent: f1x
(36), Prophet (64), and GenProg (99). This finding aligns with, and
provides an additional dimension of support for, recent discussions
of APR overfitting (e.g., [17, 27]) and repair search spaces (e.g., [11,
19]).

6 RELATEDWORK
Because PREP is the first tool that we know of to perform static
source-to-source transformations to aid APR tools, related work
falls under two categories, static code transformations and APR
tools—many of which are evolutionary computation (EC) or genetic
algorithm (GA) based [6, 7, 16, 25, 28, 29].

6.1 Static transformations
The work most similar to ours is Comby [23], a tool that performs
static code transformations for general use, e.g., refactoring, re-
pair, or rewriting. Comby performs static code transformations for
multiple target languages by focusing on context free language
properties utilizing templates and a parser combinator. We were
unable to leverage Comby in this context as the transformations
we make require type information (a known limitation of Comby).
Comby has the ability to extract function arguments for use in a
code rewrite, however there is no mechanism to retrieve the argu-
ment’s type, which is required to make a proper variable declaration
in our rewriting methods. In addition, Comby has no mechanism
with which to make our T4 transformation.

6.2 APR tools
There are three main approaches APR tools take: search-based
(e.g., [7, 20]), templated (e.g., [8]), and semantic approaches such as
symbolic execution (e.g., [14, 15]). Hybrid models such as Prophet
and ARJA-e [29] exist and combine two or more approaches to reap
the benefits of each. Although our code transformation method
is generic, the templated approach is similar in principle to ours.
These templated approaches typically identify static code patterns
that are historically related to bugs and apply templated fixes to the
buggy code via transformations. In addition, tools such as ARJA [28]
and the work of Oliveira et al. [16] tackle the incongruity problem
by addressing patch representation.

Oliveira et al. [16] discuss increasing fault granularity by creating
a new patch representation (as compared to GenProg). This method
does not increase the granularity of the possible patch atoms (the
smallest element that can be used in a single edit patch) but allows
the GA to more easily mix atoms when searching for a patch. While
this method embeds a finer-grained approach, its specialized patch
representation and crossover operators only function within the
APR tool application, and results in uncompilable program variants.

Similar to Oliveira et al., ARJA [28] focuses on a lower-granularity
patch representation. Additionally, ARJA reduces the search space
through the application of rules which screen out edit operations

deemed “meaningless” as well as increasing the likelihood of suc-
cessful compilation through fix ingredient screening. In this screen-
ing, ARJA also applies a “type-matching” method that translates
variables or methods from a patch statement to a compatible in-
scope variable or method.

ARJA-e [29] is a hybrid approach that leverages both the same
premise as ARJA, the statement-level redundancy assumption (the
plastic surgery hypothesis [2]) and repair templates adapted from
PAR [8], and integrates edits of different granularities into their
patch representation.

PAR [8] is a patch-based approach, which defines ten fix tem-
plates from fix patterns identified from human-written patches.
PAR applies a fix template to a fault location and evaluates whether
or not the context is appropriate, e.g., a “null pointer checker tem-
plate” ensures that the fault location contains an object reference
and rewrites the AST with a null check of that object reference.
Different levels of granularity of the program’s AST are indirectly
supported through some fix templates, like “Parameter Replacer”
and “Expression Replacer”, which replace variables or expressions
in statements or method parameters with type compatible elements
from the same scope. Another state-of-the-art template-based re-
pair tool, TBar [9] identifies additional fix patterns, totaling 15, yet
faces similar scope limitations with respect to replacement vari-
ables and expressions. While such template-based APR tools do
have granularity-aware fix patterns, these are applied to the internal
representation of the input program by the tools themselves.

Our strategy is different from ARJA, ARJA-e, PAR, and TBar, in
that our granularity-increasing transformations are independent
from an APR tool. Additionally, our transformation strategy identi-
fies type-compatible fix ingredients agnostic of scope, then gener-
ates assignments between same-named declared variables and these
ingredients, type-casting between compatible standard C types (e.g.,
considering size_t, uint16_t, and unsigned short int as com-
patible in a notion more aligned with physical typing [3]).

7 DISCUSSION
We discuss the broader implications of our results and its limita-
tions.

Of preprocessing on congruence. Our evaluation shows that sim-
ple source code transformations can improve the ability of multiple
tools — using a variety of repair methods — to find repairs for soft-
ware defects. Including PREP, the total number of correct repairs
found by GenProg improved by 2.5%, Prophet by 1.6%, and f1x by
0.9%. This improvement is similar to incremental, tool-specific ad-
vances reported for APR algorithms, e.g., SPR to Prophet (+0.5%
correct) [12] and ARJA [28] to ARJA-e [29] (+9.4%), but PREP’s
improvements generalize across multiple tools.

Of scope. We chose to add type-compatible fix ingredients (T4)
in a distinct external scope to ensure that the transformations are
semantically equivalent. This implementation choice limits colli-
sions with existing code elements, avoiding the need to conduct
additional dataflow analysis before inserting new code. Although
this choice did not impact GenProg, which has flexibility regarding
ingredients and scope, the other tools limit fix ingredients by scope.
For example, Prophet limits Value Replacement expressions to
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the same basic block. This means that for Prophet to take advantage
of T4 ingredients, the type-compatible fix ingredients would need
to be introduced into the appropriate scope.

On completeness of transformations. We initially selected PREP’s
four transformations by studying the motivating example, using
GenProg which failed to find a valid solution from all single-edits
of the original program. We then investigated why other APR tools
did not repair programs that clearly had the set of expressions nec-
essary for the repair. Notably, PREP’s four transformation rules are
not complete; for example, it does not include a rule to decompose
binary operations with complex operands into independent expres-
sions. However, each such code transformation also increases the
search space, creating a trade-off between generality and efficiency.
PREP represents our best guess about this trade-off, providing a
small, general set of transformations that yield improvement across
all tools that we studied.

Of code representation. Our results show that even small changes
to the source code can greatly affect the code representation that a
tool operates over. PREP effectively forces the granularity of the
code representation to be more congruent with many operators.
It is well-known that existing software-repair methods typically
find repairs that involve one or at most two code mutations. The
transformations we propose in PREP lead to a more uniform repre-
sentation granularity because they separate out composite program
elements into their constituent parts, e.g., decoupling function calls
from conditionals. We speculate that such changes could enable
EC-based repair tools to find more complex, epistatic, repairs by
making it easier to recombine program elements [19]. These trans-
formations can potentially disrupt an existing congruence, e.g., if a
composite statement comprises a correct repair element and is con-
gruent with an operator. Although we encountered a few such cases
in our evaluation, on investigation those examples corresponded
to repairs that were overfit to the test cases (see Section 5.2).

Despite their widespread use in industry, test cases can often lead
to overfitting by providing an inadequate specification of correct
functionality. Although we did not change the content of any tests
in our evaluation, we found several examples of overfit patches in
the baseline that had been reported for the different tools. These
were blocked (not discovered) in the PREP-enabled evaluation. This
shows how the source-level representation, particularly the run-
time ramifications of the representation, can affect how tools search
for a valid repair (cf. [11, 17, 27]).

During the Codeflaws GenProg evaluation, we also discovered a
limitation with its configuration, which caused it to incorrectly in-
terpret global variables that use macro definitions. Because PREP’s
preprocessing expands macros (required for T1–T4), PREP miti-
gated this particular issue.

On the stack. Although our transformations produce semantics-
preserving code, they alter how stack resources are used during
run time. Our transformations introduce new local variables within
existing functions (T1–T3) and call new functions which initialize
local variables with default values (T4). These transformations can
change how the stack is used, depending on the resulting source
code and compilation parameters. How compilers manage the stack

during compilation is directed at a high level by the user through
command-line options, directives, or pragmas.

For example, stack behavior can be changed by adding
optimizations (at least -O1) or applying parameters, such as
-fcombine-stack-adjustments. When new local variables are de-
fined in the source code, a specific location is reserved on the
stack based on the type and size of the variable. By contrast, when
constant values such as strings or integers are used as function pa-
rameters, the compiler does not reserve additional stack space, but
instead directly loads the value or address of the value into registers
according to the calling convention. Although this location could be
reused for other content when leaving the reserved variable’s scope,
this implies that the stack behavior will be different, potentially
mitigating some existing stack-based bugs and vulnerabilities.

Although stack usage is transient, the introduction of new func-
tions that initialize a number of local variables can change the
values of stack locations, effectively resetting part of the stack to
some default value. This can cause APR tools to not select patches
that rely on stack dynamics. During testing, we observed that some
positive and negative tests were volatile with respect to stack be-
havior.

Caveats. We ran f1x using two test oracle configurations on the
CGC dataset. For the first evaluation, f1x found patches that did not
pass the positive tests when evaluated outside of the f1x Docker
container. We conjectured that this was caused by a virtualization
or containerization instability, and we updated the test oracle to
evaluate tests with 3 consecutive runs to ensure consistency and
reduce any nondeterminism. In this second test oracle, if any run
failed, that failure was reported, but all three test runs were required
to report a pass for that test. This second oracle is the basis of the
results we reported for f1x on the CGC dataset.

8 CONCLUSION
The source-to-source transformations encoded in PREP were de-
veloped to improve the performance of search-based APR tools
by reducing incongruities between code representations and mu-
tation operators. When the tools are executed with PREP they
discover patches that were previously not discovered, finding 88
new unique correct patches for the Codeflaws dataset. Because
it operates on source code, PREP is general and applicable across
tools, and it can be used in tandem with existing repair methods be-
cause it does not require modifications to the underlying algorithm.
Although we implemented the PREP prototype for C, we believe
that our approach would produce similar improvements for other
imperative or object-oriented languages. We hope that our work
not only improves the power of existing source-based software
repair methods, but that it also draws attention to fundamental
questions about how best to tailor search-based methods for the
domain of software repair.
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