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Evolutionary algorithms and related mutation-based methods have been used in software engineering, with

recent emphasis on the problem of repairing bugs. In this work, programs are typically not synthesized from

a random start. Instead, existing solutions—which may be flawed or inefficient—are taken as starting points,

with the evolutionary process searching for useful improvements. This approach, however, introduces a chal-

lenge for the search algorithm: what is the optimal number of neutral mutations that should be combined?

Too much is likely to introduce errors and break the program while too little hampers the search process,

inducing the classic tradeoff between exploration and exploitation.

In the context of software improvement, this work considers MWRepair, an algorithm for enhancing

mutation-based searches, which uses online learning to optimize the tradeoff between exploration and ex-

ploitation. The aggressiveness parameter governs how many individual mutations should be applied simul-

taneously to an individual between fitness evaluations. MWRepair is evaluated in the context of automated

program repair problems, where the goal is repairing software bugs with minimal human involvement. The

article analyzes the search space for automated program repair induced by neutral mutations, finding that

the greatest probability of finding successful repairs often occurs when many neutral mutations are applied

to the original program. Moreover, repair probability follows a characteristic, unimodal distribution. MWRe-

pair uses online learning to leverage this property, finding both rare and multi-edit repairs to defects in the

popular Defects4J benchmark set of buggy Java programs.
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1 INTRODUCTION

Some of the earliest program repair tools [Weimer et al. 2009] and some of the most recent [Wong
et al. 2021; Yuan and Banzhaf 2020b] use population-based evolutionary search. These tools
generate initial populations by applying a small number of mutations to each of many copies
of the original program. Then the fitness of each program variant in the population is evaluated
by executing it on a set of test inputs and comparing the result to a set of expected outputs.
Next, selection and crossover use this fitness information to construct the subsequent generation,
and the algorithm iterates. The termination condition is either a time limit or the discovery of
a program that passes all of the test cases, including those that demonstrated the defect in the
program.

The surprising success of population-based evolutionary algorithms in repairing bugs in
software spawned a subfield of software engineering called Automated Program Repair

(APR) [Gazzola et al. 2019; Le Goues et al. 2019; Monperrus 2018]. As it has matured, diverse
approaches have been proposed for generating mutated programs, most of which are not evolu-
tionary algorithms. These algorithms include brute-force search over single mutations [Weimer
et al. 2013], synthesis methods based on program semantics [Mechtaev et al. 2016; Xiong et al.
2017], the use of templated mutation operators [Liu et al. 2019b], and the prediction of code by
neural networks [Chen et al. 2019; Jiang et al. 2021].

This earlier work in APR has historically used conservative search processes, because it is much
easier to break a program than it is to repair one [Harrand et al. 2019; Schulte et al. 2014]. This mo-
tivates our investigation of the search space of neutral mutations that, unlike untested mutations,
have been filtered by their impact on program behavior. We define the set of neutral mutations

as {m(p) : f (m(p)) = f (p)}, where p is a program, f (.) assigns a fitness value to a program, and
m(.) applies a mutation to a program. In this article, we explore how neutral mutations can be
employed to enhance exploration of the search space for program repair.

Despite their successes, current APR algorithms are still quite limited, which motivates our
work. In particular, they repair only a fraction of the presented defects [Durieux et al. 2019;
Le et al. 2019; Le Goues et al. 2015; Long and Rinard 2016]. For example, Java APR algorithms
individually repair between 1% and 15% of programs in the Defects4J benchmark. Our survey of
all published Java APR algorithms finds that only 130 out of 357 defects (39.2%) in the popular
Defects4J benchmark [Just et al. 2014] are reported to have been repaired by any algorithm. In
addition, APR searches are expensive because they execute the test suite on each step of the
search [Monperrus 2018].

Our work addresses these challenges using an algorithm designed with three key features. First,
we combine many neutral mutations to enable evaluation of more than one mutation at a time,
which reduces the cost of searching for repairs. Second, we incorporate online learning to guide
the search to the optimal region of the search space, as characterized by our model (Section 4).
Third, we precompute neutral mutations to reduce the cost of the online search process, refactoring
some of the expense normally paid when the repair is needed to an offline, parallel process, which
can be reused for multiple bugs (Section 6.5). These innovations extend the reach of evolutionary
software repair algorithms (e.g., GenProg) by enhancing their ability to explore the search space
effectively.

This article extends prior work that evaluated parallel computation of the inputs (neutral muta-
tions) and studied several implementations of online learning to identify the most efficient for this
problem. Here, we present additional detail characterizing the search space, extend the evaluation
from 5 to 357 bugs in the Defects4J Java APR benchmark, and situate our results in the broader
context of the field.

ACM Transactions on Evolutionary Learning, Vol. 3, No. 4, Article 13. Publication date: December 2023.



Evolving Software: Combining Online Learning with Mutation-Based Stochastic Search 13:3

In summary, the main contributions of this work are as follows:

• An empirical analysis of the search space for mutation-based program repair : Repairs are on
average 42.4 times as frequent in the optimal region of the search space for C programs (6.9
times as frequent for Java programs), as they are one mutation away from the original, which
is where current methods search most intensively.
• An evaluation of MWRepair with GenProg’s mutation operators on the Defects4J benchmark:

MWRepair repairs significantly more defects than two reference evolutionary tools for Java
(jGenProg and GenProg-A), and it discovers some repairs that have not been repaired by any
earlier tool, including some multi-edit repairs.
• A quantification and visualization of the success of all published Java repair algorithms applied

to Defects4J : We discuss the relative overlap and uniqueness of the repairs generated by each
algorithm.

Section 2 outlines the repair model we assume and briefly motivates the research questions
that structure the article. In Section 3, we review related work with a focus on distinguishing
MWRepair from comparable algorithms. Section 4 characterizes the search space; Section 5 details
the MWRepair algorithm, which Section 6 evaluates on reference benchmarks. Section 7 discusses
the results of our evaluation, and Section 8 details promising directions for future work. Finally,
Section 9 concludes the article.

2 REPAIR MODEL AND RESEARCH QUESTIONS

In this article, we are particularly interested in the search space for evolutionary APR algo-
rithms, focusing on the effect of combining neutral mutations, which have previously been val-
idated against the test suite. As mentioned in Section 1, we define the set of neutral mutations as
{m(p) : f (m(p)) = f (p)}, where p is a program, f (.) assigns a fitness value to a program, andm(.)
applies a mutation to a program. Mutations are generated relative to the original version of the
program we are trying to repair. Mutations are evaluated for neutrality using all of the positive
tests in the test suite. These positive tests define the required behavior of the program; only mu-
tations passing this positive test suite are deemed to be neutral, and they have the same fitness
value as the original version of the program on these tests, which may contain latent bugs.

We assume that later, one or more (negative) test cases are added that surface a latent defect
in the program. These negative tests initially fail, and a successful program variant must pass
them (while retaining positive test behavior) to be deemed a patch. Thus, we define patches as
{m(p) : f ′(m(p)) = f ′(p∗)}, where f ′(.) is the fitness function augmented with new, negative
tests and p∗ is the reference human repair in the benchmark. This reflects how test suites evolve
in practice, with new test cases added to formalize behavior in response to bug reports [Pinto et al.
2012]. Under this definition, some semantically correct patches will not be labeled as repairs if
they repair the defect differently from the reference human repair. In the remainder of the article,
we refer to neutral mutations as those generated at time t with reference to the original test suite
f (.) and evaluate their utility when deployed in a repair process at time t ′ with reference to the
augmented test suite f ′(.).

With this framework in mind, our first cluster of research questions (1–3) centers around char-
acterizing the search space in terms of neutral mutations:

• RQ 1: How many neutral mutations can be safely combined?
• RQ 2: How often do neutral mutations generate a patch?
• RQ 3: Can we describe the effects of combining neutral mutations in a general model?

Answers to RQ 1 and RQ 2 will shed light on the structure of the search space, but they are not
immediately relevant because the location of the optimum varies with the particular program and
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defect. In addition, APR searches are typically terminated after a single patch is discovered, so in
most cases we do not expect to observe the full distribution of patch frequency. We return to these
topics in Section 4, where the answer to RQ 3 provides the requisite information for designing an
adaptive, online algorithm.

We hypothesize that improving search processes, in light of our analysis of the search space, will
allow evolutionary algorithms to repair a wider variety of defects than they do today. To investigate
this, the next cluster of research questions (4–8) centers around an evaluation of search-based
repair algorithms, which was designed to exploit these insights:

• RQ 4: Does MWRepair improve the ability of Java-based GenProg tools to discover patches
and (unique) repairs?
• RQ 5: Do patches found by MWRepair minimize to single mutations or can MWRepair dis-

cover multi-edit patches?
• RQ 6: How many of the patches MWRepair identifies are correct repairs?
• RQ 7 : Do neutral mutations remain neutral or are they invalidated over time by changes to

the test suite as a software project matures?
• RQ 8: How does MWRepair-enhanced GenProg compare to the state of the art?

These topics are addressed in Section 6.

3 BACKGROUND

3.1 Online Learning Algorithms

Online learning algorithms are designed to efficiently incorporate information obtained while a
system is running, without requiring expensive model training. Multiplicative Weights Update

(MWU) is a popular example [Arora et al. 2012] that has many implementations that have been
devised for different applications. In earlier work [Renzullo et al. 2021], the three most relevant
versions of MWU were studied in the context of APR. The algorithm formulations vary in their
use of memory (globally shared or distributed), communication requirements (full synchronization
or partial), the number of trials required per timestep, and the time to convergence. For problem
domains like APR that are characterized by high resource cost per trial and low communication
cost, an implementation that uses globally shared memory and full synchronization (e.g., the stan-
dard MWU formulation [Arora et al. 2012]) was found to be optimal. We incorporate MWU in
MWRepair (and inherit part of its name) due to its time and space efficiency and its attractive
mathematical bound on regret, which in our application area corresponds to unnecessary test suite

evaluations. The time complexity required for MWU to converge isO ( ln (n)
ε2 ), wheren is the number

of options (in our context, this is the number of combined mutations) and ε is the error tolerance.
We discuss the finer-grained components in Section 5. MWRepair reduces the dominant cost asso-
ciated with search-based APR.

3.2 Evolving Software

Evolutionary algorithms have been applied in many domains [Bäck et al. 1997], particularly where
the creativity of the evolutionary search process allows it to navigate problem spaces that are in-
feasible to optimize explicitly. The idea of evolving software has a long history [Petke et al. 2019],
originating with ideas about automatic programming that predate modern computers, and continu-
ing through decades of research on genetic programming [Banzhaf and Leier 2006; Koza 1992]. The
goal of genetic programming is to evolve programs from scratch that satisfy a specification. This
is challenging because the space of possible programs is enormous and fitness functions typically
provide only coarse guidance. Two key ideas that enabled genetic programming to successfully
evolve software were (1) focusing on improving an existing program rather than starting from
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scratch and (2) using existing test suites from programs to define a fitness function [Arcuri 2008;
Weimer et al. 2009].

3.2.1 Neutral Mutations. Our proposed approach rests on the idea of neutral mutations—that
is, mutations that do not change the measured fitness of the program. This term neutral mutations

has been used in software engineering [Jia and Harman 2011; Schulte et al. 2014], where they
are sometimes referred to as sosies [Baudry et al. 2015], and in evolutionary computation (e.g.,
in genetic programming [Banzhaf and Leier 2006] and genetic improvement [Veerapen et al.
2017]). Neutral mutations have long been observed in biology [Kimura 1968, 1983], where
they are posited to be a key mechanism for introducing and maintaining genetic diversity.
They have also been measured to be important for search processes in genetic programming
[Banzhaf and Leier 2006].

Mutations applied to tested regions of C programs [Schulte et al. 2014] and Java pro-
grams [Baudry et al. 2014; Harrand et al. 2019] are neutral ≈30% of the time and mutations are
harmful ≈70% of the time. Assuming no interactions, the probability of applying n random muta-
tions together and still passing the positive tests is ≈ (1 − 0.70)n = 0.3n . This quickly approaches
zero asn grows, which Langdon et al. [2010] observed empirically. This motivates our focus on neu-
tral mutations because naively combining random mutations does not allow the search to explore
very far.

However, mutations that are neutral on their own are not guaranteed to be neutral when com-
bined, because they may interact. In the field of software optimization, this interaction is referred
to as synergy [Bruce et al. 2019], and in evolutionary biology and evolutionary computation, it is
called epistasis [Phillips 2008]. Some earlier work in program repair augments fitness functions
to rank mutants and reduce neutrality [De Souza et al. [2018]. Instead, MWRepair uses neutral
mutations as the building blocks of repairs. Interactions between individually neutral mutations
lead to a tradeoff between search aggressiveness and search efficiency. To understand and quantify
this effect, Section 4 presents empirical evidence and a mathematical model.

3.2.2 Search Landscapes. All search algorithms confront the problem of balancing exploration

with exploitation. Our approach enhances exploration by composing large numbers of neutral mu-
tations. This relates to neutral landscapes: networks of equally fit mutational neighbors. The topol-
ogy of neutral landscapes affects a population’s ability to find high-fitness innovations [Banzhaf
and Leier 2006; Wagner 2007]. Neutrality and robustness to mutation are key to biological evolu-
tion [Kimura 1968, 1983], perhaps because they allow population-based search processes to pre-
serve diversity while retaining functionality.

Earlier studies of search spaces for mutating programs [Petke et al. 2019] use diverse algorithms.
Some have characterized the mutation-behavior relationship of the triangle problem [Langdon
et al. 2017], sorting programs [Schulte et al. 2014], and the TCAS (Traffic Collision Avoidance
System) avionics software [Veerapen et al. 2017]. Others sample the search space of patches for
APR [Long and Rinard 2016; Renzullo et al. 2018] or formalize it [Martinez and Monperrus 2015].
However, these earlier studies generate single mutations and analyze their individual effects. Lang-
don et al. [2010] extended this to higher-order (multiple) mutations. They report that the chance
of a single untested mutation being neutral is 16% (lower than several other estimates), but that
the chance of combining four and retaining behavior drops sharply to 0.06%. Our work extends
these earlier results in two ways: (1) by analyzing combinations of hundreds of neutral mutations
and (2) incorporating our analysis into an algorithm.

Because MWRepair searches by combining many mutations, it is likely to generate patches with
many mutations, only some of which are needed to address the defect. There are two shortcomings
inherent to large patches such as these. First, each time a new neutral mutation is added, there is
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a risk that it changes semantics on some untested aspect of the code, and in some cases those
side effects could be harmful. Second, more mutations negatively affects readability, increasing
the difficulty for a human to understand how the patch operates. To minimize the mutation set to
only those that are necessary, we use a standard minimization algorithm. The procedure, known
as delta debugging [Zeller 1999], is used widely by the GenProg family [Weimer et al. 2009] and
other APR algorithms, producing a guaranteed minimal set of mutations that maintains desired
behavior (e.g., repairs the defect).

3.3 Automated Program Repair

3.3.1 Test Oracle Problem. It is infeasible to exactly specify the desired semantics of large pro-
grams [Liu et al. 2021]. The most common approach to this problem is to use test suites as a proxy
for correctness. Used widely in industry and in APR, this approach relies on a set of individual
tests, each consisting of an input and the expected output that corresponds to it. It is difficult to
test all of the desired behavior of a program, and even extensively tested programs (like those in
the Siemens Software-artifact Infrastructure Repository) admit neutral mutations [Schulte et al.
2014], either because the test suite is incomplete or because the mutation is semantically equiv-
alent. Because of this, there is often a gap between what the test suite measures about program
behavior and what the developer intended. Some recent work has moved toward automating the
assessment of patch correctness [Cashin et al. 2019; Wang et al. 2020; Ye et al. 2021].

3.3.2 Terminology. Different papers have defined different terms for programs that have been
modified to pass all of the available tests in a test suite, including final repair [Le Goues et al. 2012],
plausible patch [Qi et al. 2015], and test-suite adequate patch [Ye et al. 2020], among others. Deter-
mining whether a program that passes a given test suite actually repairs a defect is challenging.
The most popular method used today involves comparing the code generated by the APR algo-
rithm to human-written code supplied as the reference in the defect benchmark [Just et al. 2014;
Qi et al. 2015]. In this approach, only code that is semantically equivalent to the reference code is
considered correct.

For simplicity, in this article we refer to a set of mutations that passes the entire test suite as
a patch. Similarly, an algorithm patches a defect if it produces a patch for it. A repair is a type of
patch: one that is semantically equivalent to the reference human-written repair. An algorithm
repairs a defect if it produces a repair for it.

3.4 MWU and Regret

MWRepair uses MWU to guide its search. MWU, reproduced from Arora et al. [Arora et al. 2012]
as Algorithm 1, maintains a weight vector over its options. In our application, each option is a
bin that specifies a range of how many mutations to apply.

MWU bounds regret: the gap between choices made while learning and the best choice in hind-
sight. Following Theorem 2.1 in the work of Arora et al. [Arora et al. 2012]:

Regret =

T∑

t=1

m(t ) · p (t ) ≤
T∑

t=1

m(t )
i + η

T∑

t=1

|m(t )
i | +

ln(n)

η
.

The vector of option costs ism(t ) and the probability vector over the options isp (t ) , both indexed by
time t . The learning parameter, which quantifies how much attention is paid to new information
at each timestep, is η and the number of options is n. Regret has a tight upper bound determined
by the best choice plus two smaller factors that depend on the learning parameter and the number
of options.
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ALGORITHM 1: The MWU Algorithm

1 Initialization: Select learning parameter η ≤ 1/2.

2 For each option i , set its weight w
(1)
i ← 1.

3 for t ← 1 to T do

4 1. option← select(w (t ) )

5 2. m(t ) ← observe_cost(option)

6 3. w (t+1) ← w (t ) ∗ (1 + η ∗m(t ) )

MWU can trade off runtime for accuracy according to the following relationship [Arora et al.
2012]:

T <
4ρ2 · ln(n)

ε2
.

The time limit is T , the success rate of the best option is ρ, the number of options is n, and the
error tolerance is ε . Lower error tolerance increases the runtime, and higher tolerance speeds
convergence. Adding options increases runtime by a logarithmic factor. We normalize by empirical
success, so ρ = 1, and we use a standard error tolerance of ε = 0.1. The optimal learning rate is
η = ε/2 · ρ, which for our settings is 0.05.

4 CHARACTERIZING THE SEARCH SPACE

Ignoring recombination, the search space of an evolutionary algorithm is defined in terms of the
problem representation and the genetic operators that the algorithm can apply. We focus on the
space of possible mutations to a given defective program. In particular, we consider only mutations
that are neutral with respect to the program’s positive test suite. As mentioned earlier, any set of
mutations that repairs a defect must also be neutral (pass the test suite).

We are interested in searching beyond single-mutation changes without breaking the program’s
functionality to improve the chances of finding a repair. To accomplish this, we study the impact of
combining multiple neutral mutations on the probability of finding repairs in the space—that is, the
chance that a random sample of mutations, in combination, repair the defect. Although many of
the defects we study can be repaired with one or two mutations, they can be found more effectively
by considering many neutral mutations in combination. The extra mutations can be removed later
using standard patch minimization techniques. This section extends a prior analysis [Renzullo
et al. 2021] by extending it to a larger set of programs, including Java programs sampled randomly
from the Defects4J benchmark. First, we study the probability of negative interactions among
individually neutral mutations (negative epistasis), then we ask if the number of mutations is
correlated with the probability of finding repairs, and finally we present a theoretical model that
accounts for our empirical results.

4.1 Combining Neutral Mutations

RQ 1: How Many Neutral Mutations Can Be Safely Combined? As a case study, we consider
the program units, a Unix command-line utility for converting measurements into different units.
units is a C program with ≈ 1,000 lines of code (1 kLoC). A well-studied early benchmark program
in APR [Le Goues et al. 2012], units has a defect that crashes with a segmentation fault on some
inputs because of an incorrect buffer size.

We generated all possible 41,344 atomic mutations to the buggy version of units using Gen-
Prog’s mutation operators—that is, all possible applications of the append, delete, and swap oper-
ators applied to the parts of the program covered by the test suite. Of these, 14,726 of the 41,344
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Fig. 1. Effect of combining neutral mutations. Each point (blue dots) is the mean of 10,000 independent

random samples. Each sample combines n (x-axis) individually neutral mutations. The y-axis is the fraction

of samples that remain neutral after the n mutations are applied. Empirical data shown in blue and the

best-fit model in red. R2 = 0.999.

mutations were neutral (35.6%). Next, we studied the effect of applying n randomly chosen neutral
mutations from this pool to the same program, forn ranging from 1 to 1, 000. Each of the samples is
independent, so for each value ofn, the observed fraction of variants that remains neutral (still pass
the positive tests) approximates the probability that a program with n random neutral mutations
applied will remain neutral. The results are shown in Figure 1. Remarkably, even when 190 mu-
tations are applied (annotated point), half of the resulting program variants remain neutral. This
means that we could test 190 neutral mutations at once, with an expected overhead factor of only
around 2. For the simplest case, a defect that can be patched with a single mutation, a search that
tested 190 individually neutral mutations together would be about 95 times faster than a naive strat-
egy that tests one mutation at a time. Additionally, if the naive strategy is not assumed to benefit
from a precomputed pool of neutral mutations, it would be ≈3 times slower still (because ≈ 30% of
mutations are neutral). In other words, for this particular defect and program, a search that sampled
190 individually neutral mutations together would be 95 × 3 times faster than the naive approach.

It is reasonable to wonder, at this point, about the strength of test suites. After all, if the muta-
tions combined here are only neutral because the test suite is too weak to detect them, then the
diversity they introduce will not be useful, because it will lead to overfitting patches. Other work
has examined the phenomenon of neutral mutations in software, finding in Java [Harrand et al.
2019] and in a variety of other languages [Schulte et al. 2014] that neutral mutations are not only
the result of test weakness. In the following section, we examine whether combinations of neu-
tral mutations are able to patch defects in software. We consider the problem of correctness (also
known as patch overfitting) in Section 6.4.

4.2 Optimal Combinations of Neutral Mutations

RQ 2: How Often Do Neutral Mutations Generate a Patch? Figure 1 illustrates the success
rate when evaluating n mutations at a time. It also shows the cost incurred by negative epistasis
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Fig. 2. Probability of finding patches. For each value of n, 10,000 (a) or 1,000 (b–d) independent random

samples of n precomputed neutral mutations were applied, for n = 1 to 1,000. The y-axis reports the fraction

of resulting program variants that patch the defect. Empirical data shown in blue and the best-fit model in

red. (a) R2 = 0.975. (b) R2 = 0.797. (c) R2 = 0.795. (d) R2 = 0.907.

among the sampled mutations. The naive benefit (i.e., the gain in efficiency from sampling many
mutations simultaneously) is a linear function in n. Combining the naive benefit with the effect of
interaction between mutations yields the probability of finding a patch.

Figure 2 plots the probability of finding patches (y-axis) for each choice of n for four different
programs. As before, each choice of n is sampled independently, so the empirically observed
fraction of sets of n mutations approximates the probability that a program combining n neutral
mutations will patch the defect. Programs containing unnecessary mutations (likelier as n
increases) can be minimized to the necessary mutation set using standard techniques, as discussed
further in Section 6.2. Beginning with the units example, Figure 2(a) shows a single-peaked
distribution, with the optimum estimated by a best-fit model (red curve) at n = 269. This is close
to the empirically observed maximum (blue dots) at n = 271. The fraction of patches at the peak
is 0.022, compared to 0.00022 for single mutations: two orders of magnitude better (Table 1).

Figure 2(b) through (d) shows similar results for three other defects in large open source C
programs taken from the ManyBugs benchmark [Le Goues et al. 2015]: libtiff-2005-12-14,
lighttpd-1806-1807, and gzip-2009-08-16. These programs were selected because they ex-
pose different fault types and each is from a different large open source library. The defect in
libtiff-2005-12-14 causes the program to behave incorrectly if given specific inputs (although
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Table 1. Patch Probability as a Function of the Number of Neutral Mutations

Single Mutation Patch Probability Optimal N Advantage
Program Description Language kLoC Patch Probability at Peak (No. of Mutations)

gzip-2009-08-16 Compression C 480 0.270% 7.70% 48 28.4
gzip-2009-09-26 Compression C 480 0.028% 0.90% 34 32.0
libtiff-2005-12-14 Image Processing C 77 0.810% 14.00% 46 17.2
lighttpd-1806-1807 Web Server C 62 0.041% 1.50% 11 36.2
ccrypt Encryption C 7 0.980% 39.50% 43 39.9
look Dictionary C 1 1.580% 69.60% 110 43.9
units Conversion C 1 0.022% 2.20% 271 99.5
Chart 13 Plotting Java 96 0.100% 0.10% 1 1.0
Chart 26 Plotting Java 96 0.050% 1.50% 85 30.0
Closure 13 JavaScript Compiler Java 90 1.050% 5.15% 13 4.9
Closure 19 JavaScript Compiler Java 90 0.150% 2.15% 91 14.3
Closure 22 JavaScript Compiler Java 90 0.500% 0.50% 1 1.0
Closure 107 JavaScript Compiler Java 90 0.140% 0.23% 2 1.67
Lang 10 Java Language Java 22 0.100% 0.10% 1 1.0
Math 8 Math Utilities Java 85 0.500% 5.45% 75 10.9
Math 28 Math Utilities Java 85 0.850% 0.85% 1 1.0
Math 80 Math Utilities Java 85 0.090% 0.32% 9 3.5

106 mutants were generated for each C defect except units, which used 107. All Java defects show results from 104

mutants. “Single Mutation Patch Probability” is the percentage of single mutations (N = 1) that patch the defect. “Patch

Probability at Peak” is the percentage of samples that patched the defect at the optimal number of mutations. “Optimal

N (No. Mutations)” is the number of combined mutations at the peak. “Advantage” is the quotient of the optimal and

single-mutation patch densities, which quantifies the advantage of finding and exploiting the optimum.

it does not crash); the defect in lighttpd-1806-1807 causes some webserver connections to hang
indefinitely, even when servers are configured according to the correct specification; and the de-
fect in gzip-2009-08-16 causes the program to crash when parsing exactly one trailing NUL byte.
The location of the peak varies with each example, but in these examples it always exists and oc-
curs a large number of mutations away from the original program. Each of the four distributions
in Figure 2 is unimodal, and statistical fitting suggests a common model for all four. If the search
can be guided to these optima, it find repairs faster and perhaps more often.

4.3 Modeling the Observed Distribution

RQ 3: Can We Describe the Effects of Combining Neutral Mutations in a General Model?
The preceding experiments shed light on the structure of the search space, but they cannot be
used directly. First, the location of the peak varies with the particular program and defect. Second,
an APR search is typically terminated after a single patch is discovered, so in most cases we do not
expect to observe the distribution of patch probability. We can address the first issue using online
estimation and the second by using the probability of finding neutral mutations (easily measured)
as a proxy for patch probability. We propose a mathematical model for the expected fraction of
patched programs as a function of n, the number of mutations to be combined. Negative interac-
tions (epistasis) are much more frequent than positive ones, but interactions are rare [Bruce et al.
2019; Renzullo et al. 2018]. We assume (conservatively) that all interactions are negative, ignoring
positive epistasis. Because patches are rare, it is often impractical to directly measure enough to
show a pattern. However, we can use the number of neutral mutations in, for example, Figure 1 to
predict the optimum probability of finding patches. Note that the coefficient of the negative expo-
nential (the parameter labeled b) in Figure 1 closely matches that in Figure 2(a). This relationship
allows us to use online estimation to predict the optimal probability of finding patches.

Our model assumes that patches and epistatic interactions are uniformly distributed—that
is, all neutral mutations are equally likely to produce a patch. Thus, the benefit of adding one
randomly selected neutral mutation is an additive constant. But the cost increases with n because
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the probability of negative epistasis increases. Near the original program (low n), the benefit of
adding a mutation outweighs the cost. As we accumulate mutations, however, the marginal cost
rises, matching the benefit at the optimum and then dominating after the peak.

We model this using a linear function for benefit and a negative exponential for cost, as shown
in Figure 2. The form a ∗x ∗ e−bx + c provides an excellent fit for our empirical data. We estimated
a, b, and c using Levenberg-Marquardt nonlinear least squares regression [Marquardt 1963], and
the coefficients of determination for each defect are reported in the caption.

4.4 Do We Observe Similar Dynamics in Other Programs?

We next consider the behavior of other programs by running the same experiments described
earlier and observing where the peak probability of finding patches occurs (see Table 1). We
chose a representative, stratified random sample of programs that vary in size (1k to 480k lines of
code), language (C vs. Java), and repair difficulty (rarity of patches). From the ManyBugs bench-
marks [Le Goues et al. 2015], we evaluated four defects in three large C programs: libtiff,
lighttpd, and gzip. From the GenProg benchmarks [Le Goues et al. 2012], we evaluated one de-
fect each in three small C programs: ccrypt, look, and units. From the Defects4J benchmark [Just
et al. 2014], we evaluated 10 randomly selected defects from four open source Java projects. As in
the units example, mutations to the buggy version of each program were generated and filtered
for neutrality, then combined.

We find that each studied program has a single peak in its distribution of patch probability
(see Table 1). Most optima occur many mutations away from the original program. In Table 1,
the “Advantage” column shows that patches are between 17.2 and 99.5 times more frequent at the
optimum value of n for C programs (average: 42.4). For Java programs, the range is from 1.0 to 30.0
(average: 6.9). Informally, these values represent the theoretical advantage of a search algorithm
that can exploit this information. The location of the optimum does not correlate with obvious
structural properties such as program size, test suite size, and number of functions. So, for a given
defect, we have not been able to identify an easy-to-measure program property that predicts the
optimal number of mutations to combine. However, we can use what we have learned about the
unimodal distribution of patch probability in the search space. We use a well-known statistical
learning algorithm: MWU [Arora et al. 2012]. MWU estimates a distribution by making predictions
based on a model, then evaluating the results, iteratively updating its model. By incorporating
MWU into our search algorithm, it can estimate the location of the optimum while it searches.

5 THE MWREPAIR ALGORITHM

We present MWRepair, a search-based algorithm that discovers patches by adaptively balancing
exploration and exploitation. MWRepair’s inputs are a program with a defect, the program’s test
suite (consisting of positive and negative tests), and a precomputed set of program-specific neu-
tral mutations. MWRepair’s output is a minimized set of mutations that patches the defect. If the
search fails, the set is empty. MWRepair guarantees that the search minimizes regret (i.e., wasted
computational effort).

APR algorithms are computationally expensive, and the dominant cost is running test cases. To
address this, we precompute a large pool of neutral mutations on a per-program basis. The pool
can then be applied whenever a new defect emerges in that program. Precomputation removes a
computationally expensive step from the inner loop of the search algorithm and is easily paral-
lelized [Renzullo et al. 2021].

Algorithm 2 precomputes the set, or pool, of neutral mutations. The algorithm first generates a
set of N mutations (summarized in Figure 3), and then it validates each mutation against the test
suite. This is the dominant cost and is trivially parallel [Renzullo et al. 2021]. It can be computed
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Fig. 3. MWRepair filters mutations that use GenProg’s operators based on their fitness. Mutations, shown

here in shorthand, correspond to code edits. They are screened for fitness via test cases. Neutral mutations

are retained in a pool to be used during the search, whereas non-neutral mutations are discarded.

ALGORITHM 2: Precomputation: Until the limitT is reached, the algorithm selects a random, untested

mutation, applies it to the original program, and retains it if it passes the positive tests.

1 Input: A program, P, a set of positive test cases, S, a fitness function f(P, S)→ N, and a limit, T.

2 Output: A set, M, of neutral mutations.

3 N← get_mutation_list(P)

4 M← ∅
5 for lim ← 1 to T do

6 m← pop_random(N)

7 P’← apply_mutation(P, m)

8 if f(P’, S) == f(P, S) then

9 M←M ∪m

10 Return M

at different points of the software lifecycle, including before development or during continuous
integration testing. Later, when a defect surfaces, the pool of neutral mutations supplies the atoms
that MWRepair combines. Over time, developers can update the set of neutral mutations as needed
whenever the test suite changes, eliminating mutations that no longer pass the new tests or adding
new mutations to replenish or expand the pool (see Section 6.5). The storage cost for the pool is
small: using the popular patch representation [Le Goues et al. 2012] requires only 100 kb to store
10,000 mutations (i.e., 10 bytes per mutation). This storage requirement grows proportionally to
the logarithm of the number of nodes in the program’s abstract syntax tree.

Initially, MWRepair models the search space using an exponentially decreasing probability as
the number of mutations (step size) increases (Section 4). In other words, as n (the number of
combined mutations) grows, the algorithm is exponentially less likely to sample that n. MWRepair
also employs an exponential binning strategy to reduce the number of options by a logarithmic
factor. Instead of each option having its own probability, options are binned by the logarithm of
their value. MWRepair selects a bin and then uniformly samples a value from within that bin. In
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ALGORITHM 3: MWRepair samples a number of mutations, evaluates the resulting program, and up-

dates its model, terminating if a patch is found or the time limit is reached.

1 Initialization: Select a learning parameter η ≤ 1/2, and a time limit, T. Set option weights w
(1)
i to initial

model.

2 Input: a set, M, of neutral mutations, a program, P, a set of test cases, S, and a fitness function f(P, S)→ N.

3 Output: A set of mutations which patch the program.

4 for t ← 1 to T do

5 step_size← select(w
(t )
i )

6 muts← random_sample(M, step_size)

7 P’← apply_mutations(P, muts)

8 if f(P’, S) == ‖S ‖ then

9 Return minimize(muts).

10 else if f(P’, S) ≥ f(P, S) then

11 w
(t+1)
step_size ← w

(t )
step_size ∗ (1.0 + η))

principle, MWRepair could start with a uniform probability distribution or any other model, but
Section 4 and our preliminary experiments suggest that exponential binning is a good fit for our
problem domain. Choosing a good initial model reduces the runtime, which is proportional to the
disagreement between the initial model and the ground truth search landscape.

MWRepair uses its current model to select an n, then chooses n mutations randomly from the
pool, and applies them to the original program to generate a program variant. Each mutated pro-
gram is then evaluated to determine its fitness, and the model is updated according to the MWU
rule. Our implementation of MWU uses a reward of 1.0 for a set of mutations that performs as
well as the original program and 0.0 otherwise. As the weight vector is updated, it biases decisions
toward the empirically observed optimum in the search space. Figure 4 gives a schematic overview
of MWRepair, and Algorithm 3 gives the pseudocode.

5.1 Summary

In summary, MWRepair is an online search algorithm that estimates the optimal number of mu-
tations to combine while searching for software patches. It uses neutrality as a proxy for patch
probability (Section 4.3), which allows MWRepair to focus attention on the part of the search space
with the highest chance to find patches. To the best of our knowledge, three aspects of MWRepair
are novel compared to existing search-based repair algorithms: (1) decomposition of the search
problem into one step that can be precomputed and easily parallelized and one that implements
the search, (2) considering massive numbers of mutations simultaneously, and (3) the use of on-
line learning to change how the search is conducted rather than what it considers. All three are
relevant to the dominant cost of search-based APR algorithms: validating solutions by running
program variants on test cases. These aspects enable low-latency exploration of a large region of
the search space, and we hypothesize that they will enable MWRepair to find novel patches. In the
next section, we evaluate MWRepair’s performance empirically.

6 EXPERIMENTAL RESULTS

We evaluated MWRepair’s performance on the popular Defects4J set of benchmark Java
(buggy) programs. We first analyzed MWRepair’s performance in detail1 and then compared its

1Results data and the code used to generate them are available at https://doi.org/10.5281/zenodo.7906893.
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Fig. 4. MWRepair as defined in Algorithm 3. First, mutate uses test information to generate safe (neutral)

mutations. Sample combines them and then they are evaluated in test_mutations. Repairs are added to

a database, non-repairs are discarded, and evaluation results are used to update the weights. Termination

conditions are in red, data in blue, and subroutines in tan.

performance to state-of-the art APR methods. Many of these do not use evolutionary methods,
although most use some form of random mutation. Our implementation uses mutation operators
modeled after GenProg, an evolutionary APR repair method, so our first analysis compares
MWRepair directly to GenProg. After describing our experimental design, we ask how many
patches MWRepair finds compared to GenProg (Section 6.1), the study patch size (Section 6.2),
consider MWRepair’s ability to find multi-edit repairs (Section 6.3), and examine the correctness
of MWRepair patches (Section 6.4). We also examine the life span of generated neutral mutations
(Section 6.5). Finally, we compare MWRepair’s performance to all published APR algorithms that
target Defects4J (Section 6.6).

6.1 RQ 4: Does MWRepair Improve the Ability of Java-Based GenProg Tools to

Discover Patches and (Unique) Repairs?

For each Defects4J scenario (program/defect pair), we precomputed a pool of neutral mutations.
For smaller programs, this pool is exhaustive; for larger programs, we computed a sample, limited
to a total of 10k test suite evaluations (usually resulting in 3,000 neutral mutations). We then ran
MWRepair 100 times with a limit of 1,000 test suite evaluations and a learning rate of η = 0.05.
These parameters (in particular, the budget of 1,000 test suite evaluations) were chosen to provide
a fair comparison with published results for other algorithms taken from the papers cited. We
acknowledge that comparing to published results run on other hardware precludes an exact com-
parison, but we mitigate this by focusing on repairs found, not execution time or memory usage.
We report the number of scenarios for which MWRepair found patches. We also studied each patch
for correctness by comparing it manually to reference human patches that are supplied as part of
the of benchmark. In Section 6.6, we then place the repairs found by MWRepair in the context
of the results of 34 other published algorithms. However, many of these other algorithms make
stronger assumptions about the information available to the APR algorithm than others—one rea-
son that we focus first on comparing to GenProg. The algorithms that make stronger assumptions
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Table 2. Patch (Repair) Discovery

Algorithm No. of Plausible Patches Average Variance p-Value
Defects (Repairs) Success Rate

MWRepair 357 54 (16) 0.151 (0.045) 0.129 (0.043)
jGenProg 357 21 (6) 0.059 (0.017) 0.056 (0.017) 5.87E-7 (7.35E-3)
GenProg-A 357 30 (2) 0.084 (0.006) 0.077 (0.006) 8.16E-4 (1.62E-4)

MWRepair, jGenProg, and GenProg-A were each tested on the 357 defects in Defects4J v1.0. Variance reports the

uncertainty of the success rate measurement. The p-values are reported for two-tailed t-tests (df = 356) evaluating

the null hypothesis that the performance of the algorithm is equal to the performance of MWRepair.

are annotated as such in Table 3 (presented later) because they assume perfect fault localization,
either by requiring that the buggy method be given as input or that the exact location where the
human repair was applied be identified.

Evaluating MWRepair’s Ability to Discover Repairs. There are two independent implementations
of the GenProg algorithm for Java that have been evaluated against Defects4J: jGenProg [Martinez
and Monperrus 2016] and GenProg-A [Yuan and Banzhaf 2020a]. Each experiment was run 100
times, and the union of these results is presented in Table 2, which reports results comparing
MWRepair’s performance to both. This methodology follows that used in the papers we compare
to here, as well as in Appendix A.

One concern about manually verifying the correctness of proposed patches is human fallibil-
ity [Liu et al. 2021]. To control against this potential source of bias, we cross validated all patches
that we annotated against repairs generated by algorithms that use similar base mutation opera-
tors (i.e., jGenProg, GenProg-A, jKali, and RSRepair-A). In two cases (Closure 21 and Closure 22),
we were more strict than the prior literature and annotated as patches two programs that other
authors had labeled as repairs. For consistency with prior work, we report these as repairs; in all
other cases, our annotations agree. Table 2 shows these results. Single factor ANOVA on all three
algorithms shows a substantial difference in mean repair performance (p = .00127), with MWRe-
pair outperforming the other two methods. This advantage is statistically significant: using the
Sidak-Bonferroni method to control for the effect of multiple hypothesis testing and setting a fam-
ilywise error tolerance of 0.05, p-critical = .0253. We conclude that MWRepair repairs significantly
more defects than comparable implementations of GenProg.

Evaluating MWRepair’s Ability to Repair New Defects. Here, we ask how often MWRepair finds
repairs to defects that other comparable algorithms have missed. Figure 5 visualizes the data sum-
marized in Table 2 and situates it in the context of the APR literature, which is summarized in
Table 3 and discussed in Section 6.6. Each repair is categorized as rare (repaired by only one of
the 35 algorithms summarized in the table), uncommon (repaired by two to four algorithms), or
common (repaired by five or more algorithms). GenProg-A finds only common repairs and jGen-
Prog finds a combination of common and uncommon repairs, but no rare ones. MWRepair not
only finds more repairs than comparable algorithms, but it also finds rarer ones as well.

6.2 RQ 5: Do Patches Found by MWRepair Minimize to Single Mutations or Can

MWRepair Discover Multi-Edit patches?

Because MWRepair searches by combining multiple mutations aggressively, it is likely to report
patches that consist of many mutations, only some of which are needed to address the defect.
Figure 6 illustrates the size of this effect, showing on the horizontal axis the number of mutations
in each patch before and after minimization. Consistent with earlier results [Weimer et al. 2013],
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Fig. 5. Repair novelty. Different shades indicate rare (unique to that algorithm), uncommon (found by two

to four algorithms), or common (found by five or more algorithms). Data compiled from MWRepair results

and all published results for Defects4J (Section 6.6).

most patches are small and require only one or two mutations. However, this is not usually how
MWRepair discovers them (see “Before Minimization”in the figure). For example, one of the
patches to the Closure 19 defect was found by evaluating 127 mutations, whereas the minimized
set contains only 1 of them. A similar phenomenon has been discovered in evolutionary biol-
ogy [Kimura 1983], where the accumulation of neutral mutations is thought to help populations
explore the high-dimensional space of mutations and maintain diversity. At the other end of
the spectrum, the Lang 50 patch contains two mutations, both of which are necessary. The
minimization procedure effectively controls patch size, retaining the necessary mutations while
eliminating any that are not necessary.

6.3 Multi-Edit Repairs

Multi-edit repairs are important for advancing the APR field. For example, 71.77% of the refer-
ence patches in the Defects4J benchmark contain multiple chunks (contiguous regions of edited
code) [Sobreira et al. 2018]. Although simpler solutions are sometimes possible, the edits that hu-
man developers make when repairing most of these defects are more complex than those that are
expressible by single mutations. With this context, we examined the MWRepair results for multi-
edit patches and found four that had more than one required mutation. For each defect (Closure
85, Lang 50, Math 46, and Math 35), the mutations applied to different locations in the program.
Three of these four patches were correct repairs.

MWRepair Finds Two Multi-Edit Patches That Other Algorithms Do Not. Lang 50 is repaired by
MWRepair, which makes two mutations to two similar yet distinct functions in a library that han-
dles date formatting. No other APR algorithm has repaired this defect. The small dissimilarities
between the functions where the mutations are needed presents challenges for algorithms like
Hercules [Saha et al. 2019], which target multi-edit defects but depend on making similar or iden-
tical mutations at related locations. The multi-hunk nature of the bug means that it is out of scope
for all algorithms that make only single mutations (most of them). We note that the code presented
in Listing 1 is not semantically equivalent to the human repair: it modifies the key variable later
than the human repair. This causes a value to be regenerated rather than fetched from cache (which
has performance implications but generates the correct values).
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Table 3. Summary Data for Java APR Algorithms on the Defects4J Benchmark

Algorithm Chart (26) Lang (65) Math (106) Time (27) Closure (133) Total (357)

ACS 2 (2) 3 (3) 16 (11) 1 (1) 0 (0) 22 (17)
ARJA-p 15 (8) 22 (9) 42 (17) 5 (1) 0 (0) 84 (35)
AVATAR 12 (5) 13 (4) 17 (3) 0 (0) 15 (7) 57 (19)
CapGen 4 (4) 5 (5) 13 (13) 0 (0) 0 (0) 22 (22)
Cardumen 4 (2) 0 (0) 6 (1) 0 (0) 2 (0) 12 (3)
CoCoNuT† 7 (7) 7 (7) 16 (16) 1 (1) 9 (9) 40 (40)
ConFix 13 (4) 15 (5) 37 (6) 6 (1) 21 (6) 92 (22)
CURE† 10 (10) 9 (9) 19 (19) 1 (1) 14 (14) 53 (53)
DEAR 8 (8) 8 (8) 21 (21) 3 (3) 7 (7) 47 (47)
DLFix 5 (5) 5 (5) 12 (12) 1 (1) 6 (6) 29 (29)
DynaMoth 6 (0) 2 (0) 13 (1) 1 (0) 0 (0) 22 (1)
FixMiner 14 (5) 2 (0) 14 (7) 1 (0) 2 (0) 33 (12)
GenPat 8 (4) 11 (4) 13 (4) 1 (0) 7 (6) 40 (18)
HDRepair* 2 (0) 6 (2) 7 (4) 1 (0) 7 (0) 23 (6)
Hercules 9 (8) 15 (10) 29 (20) 5 (3) 14 (9) 72 (50)
JAID* 11 (5) 22 (6) 28 (9) 2 (1) 27 (13) 90 (34)
jKali 4 (0) 4 (2) 8 (1) 0 (0) 8 (3) 24 (6)
jMutRepair 4 (1) 2 (0) 11 (2) 0 (0) 5 (2) 22 (5)
kPAR 13 (3) 18 (1) 21 (4) 1 (0) 10 (2) 63 (10)
LSRepair 3 (3) 8 (8) 7 (7) 0 (0) 0 (0) 18 (18)
Nopol 6 (0) 6 (1) 18 (0) 1 (0) 0 (0) 31 (1)
NPEFix 5 (0) 0 (0) 3 (0) 0 (0) 0 (0) 8 (0)
RSRepair-A 4 (0) 3 (0) 12 (0) 0 (0) 22 (4) 41 (4)
Restore 4 (4) 6 (6) 9 (9) 1 (1) 21 (21) 41 (41)
RewardRepair 4 (4) 3 (3) 14 (14) 1 (1) 7 (7) 29 (29)
SelfAPR† 9 (6) 12 (6) 24 (16) 3 (0) 23 (16) 71 (44)
SequenceR† 3 (3) 2 (2) 9 (6) 0 (0) 5 (3) 19 (14)
SimFix 8 (3) 16 (5) 25 (10) 0 (0) 19 (7) 68 (25)
SketchFix* 8 (6) 4 (3) 8 (7) 1 (0) 5 (3) 26 (19)
ssFix 7 (2) 12 (5) 26 (6) 4 (0) 11 (1) 60 (14)
TBar 16 (7) 21 (6) 23 (8) 0 (0) 12 (3) 72 (24)
VarFix 0 (0) 0 (0) 24 (11) 0 (0) 11 (6) 35 (17)

GenProg-A 5 (0) 1 (0) 9 (0) 0 (0) 15 (2) 30 (2)
jGenProg 5 (0) 2 (0) 12 (4) 0 (0) 2 (2) 21 (6)

↓ ↓ ↓ ↓ ↓ ↓ ↓
MWRepair 7 (1) 10 (3) 20 (5) 1 (0) 16 (7) 54 (16)

Combined Algs. 24 (17) 43 (29) 75 (48) 11 (5) 72 (41) 225 (140)

*Data from experiments where the buggy method was provided to the algorithm.

†Data from experiments where the exact line with the bug was provided to the algorithm.

The benchmark consists of five different programs (columns in the table), each of which has multiple defects (shown in

parentheses). Each row reports the number of defects patched (correctly repaired in parentheses) by each algorithm.

Data from APR algorithms given additional input (e.g., perfect fault localization) are indicated with a dagger (†) or

asterisk (*). “Combined Algs.” reports the union over all presented algorithms as an ensemble success rate.
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Fig. 6. Patch size before and after minimization.

−−− F a s t D a t e F o r m a t . j a v a . o r i g i n a l
+++ F a s t D a t e F o r m a t . j a v a . mwrepair
@@ −281 ,6 +281 , 9 @@

i f ( t imeZone != null ) {
key = new P a i r ( key , t imeZone ) ;

}
+ i f ( l o c a l e == null ) {
+ l o c a l e = L o c a l e . g e t D e f a u l t ( ) ;
+ }

i f ( l o c a l e != null ) {
key = new P a i r ( key , l o c a l e ) ;

@@ −471 ,6 +474 , 7 @@
i f ( l o c a l e == null ) {

l o c a l e = L o c a l e . g e t D e f a u l t ( ) ;
}

+ key = new P a i r ( key , l o c a l e ) ;
try {

S impleDateFormat f o r m a t t e r = ( S impleDateFormat )
DateFormat . g e t D a t e T i m e I n s t a n c e ( d a t e S t y l e ,
t i m e S t y l e , l o c a l e ) ;

Listing 1. Multi-Edit Repair to Lang 50

Closure 85 is an interesting case: there were three potential locations for mutations that led to
patches, and each MWRepair patch mutated exactly two of them. Other APR algorithms have not
patched this defect. For the other three defects that required multi-edit patches, there were exactly
two locations involved in each patch. In each case, all of the patches that MWRepair discovered
touched the same locations, although they used different mutations in some of the independent
MWRepair runs. Further, the conserved locations (and sometimes also the applied mutations) are
identical to the modifications made by the reference human repair.

6.4 RQ 6: How Many of the Patches MWRepair Identifies Are Correct Repairs?

One of the challenges of using test cases to validate patch correctness is that test cases are often
incomplete or may not test for undesirable side effects—that is, the proposed patch may be overfit
to the test cases and not generalize to other inputs. A popular way to compensate for potential
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Table 4. Granular Analysis of MWRepair Repairs

Same Location Different Location Total

Same Modification 56.25% 6.25% 62.5%
Different Modification 31.25% 6.25% 37.5%
Total 87.50% 12.5%

Each column reports the percentage of repairs that agree/disagree with the reference

human repair’s location (by line of code). Each row indicates the percentage of repairs

that agree/disagree with the human repair’s code modification.

overfitting involves human inspection, usually a comparison to a human-written reference patch
(e.g., [Qi et al. 2015; Ye et al. 2020]). This is not a perfect solution either, since are many ways to
remedy a defect—not all deviations from a pre-existing example are incorrect—and since human-
written code often introduces further defects or does not fully resolve the root cause of a given
defect [Gu et al. 2010]. Despite these issues, we report the results of that comparative standard here,
annotating programs with identical semantics to the human-written reference patch as correct. We
note one exception, Lang 50, which was discussed in detail in Section 6.3.

Wang et al. [2019] dissected a corpus of repairs from Defects4J. They introduced four categories
of repairs, focusing on location in the code and the particular modification. In their terminology,
these are SLSM (same location same modification, SLDM (same location different modification),
DLSM (different location same modification), and DLDM (different location different modification).
Table 4 shows how this classification applies to MWRepair: the location of MWRepair repairs
agrees with the reference human repair in 87.5% of cases, and the modification agrees in 62.5%
of cases. This result demonstrates the importance of fault localization [Moon et al. 2014], and the
ability of mutations to help pinpoint this localization is an area of active research referred to as
mutation-based fault localization [Moon et al. 2014].

To see why this level of detail can assist analysis, consider the collection of patches suggested
by MWRepair for the Lang 50 defect. Across multiple runs of MWRepair, nine patches were gener-
ated. Of these, each modified the same pair of functions that the human patch modified. However,
not every proposed modification was correct or located at the identical line of code as the human-
modified version. One of the proposed patches is correct and applies the same modification at
the same location (SLSM), identically to the human version. In another case, the MWRepair patch
applies the same modification at a slightly different location (DLSM). Additionally, a third MWRe-
pair patch is partially correct: the first function is modified in the same location in the same way
(SLSM), but the second function is modified at the same location in a different way, which intro-
duces a side effect (SLDM). Each of the other seven patches are located in the same two functions,
but the modifications are overfit to the test cases (e.g., replacing the code that correctly throws an
error with an innocuous initialization statement). This avoids the tested problematic behavior but
does not patch the underlying defect.

6.5 RQ 7: Do Neutral Mutations Remain Neutral or Are They Invalidated over Time by

Changes to the Test Suite as a Software Project Matures?

MWRepair can take advantage of a set of precomputed neutral mutations as the seeds of repair
when a defect emerges. As such, it is important to quantify how far in advance this work can be
done. To answer this question, we consider the space of neutral mutations that TBar makes on
each scenario in Defects4J 1.0, excluding Chart, which does not provide a git history. We selected
TBar because it has a smaller set of mutations that can be exhaustively generated and analyzed.
Although the TBar mutation operators are somewhat different from those that GenProg uses, both
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Fig. 7. Each subplot shows a cumulative density graph of the average age of neutral mutations for defects in

the labeled Defects4J project. Mutation age is the duration elapsed between the modified code’s last change

and the date of the developer repair. It represents the durability of generated mutations over time.

tools use spectrum-based fault localization to prioritize where mutations are applied, and it is these
locations that determine the durability of applied mutations.

For each of these mutations, we analyze the repository’s history to determine when the part of
the program touched by the mutation was last modified. This is done using PyDriller, a Python
interface for analyzing git repositories. It checks, for each commit, the lines changed in that commit
and uses git blame to determine the most recent prior modification of that line. The mutation’s
age is the time between the code’s last modification and the time that the developer repair was
applied. The neutral mutation could be generated at any time in that interval.

Our data show that this age is often large—even though a project is under active development,
individual segments of it are stable for quite some time—even segments containing defects that
are later fixed. We summarize the results of this analysis in Figure 7, showing the average age
in months of each mutation in the neutral pool. For all projects, more than half of the mutations
in the pool are at least 1 year old. For the defects in the Time library, most mutations are more
than 6 years old. Because of the large time span available to a precompute process, even a modest
deployment should be able to keep up with changes in the codebase as it evolves.

6.6 RQ 8: How Does MWRepair-Enhanced GenProg Compare to the State of the Art?

Table 3 compiles data taken from results published for 34 other Java APR algorithms on the
Defects4J v1.0 benchmark: ACS [Xiong et al. 2017], ARJA-p [Yuan and Banzhaf 2020b], AVATAR
[Liu et al. 2019b], CapGen [Wen et al. 2018], Cardumen [Martinez and Monperrus 2018], CoCoNuT
[Lutellier et al. 2020], ConFix [Kim and Kim 2019], CURE [Jiang et al. 2021], DEAR [Li et al.
2022], DLFix [Li et al. 2020], DynaMoth [Durieux and Martinez 2016], ELIXIR [Saha et al. 2017],
FixMiner [Koyuncu et al. 2020], GenPat [Jiang et al. 2019], GenProg-A [Yuan and Banzhaf 2020a],
HDRepair [Le et al. 2016], Hercules [Saha et al. 2019], JAID [Chen et al. 2017], jGenProg [Martinez
and Monperrus 2016], jKali [Martinez and Monperrus 2016], jMutRepair [Martinez and Monperrus
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Fig. 8. APR Algorithms Repair Different Defects. In this Principal component analysis (PCA) embedding of

Java APR algorithms, programs that correctly repair similar subsets of the Defects4J benchmark appear close

to one another. Dense center region shown in lower left (inset).

2016], kPAR [Liu et al. 2019a], LSRepair [Liu et al. 2018], Nopol [Xuan et al. 2017], NPEFix [Cornu
et al. 2015], Restore [Xu et al. 2020], RewardRepair [Ye et al. 2022a], SelfAPR [Ye et al. 2022b],
SequenceR [Chen et al. 2019], SimFix [Jiang et al. 2018], SketchFix [Hua et al. 2018], ssFix [Xin
and Reiss 2017], TBar [Liu et al. 2019c], and VarFix [Wong et al. 2021]. We include each of these
for completeness but note that there are many commonalities and overlaps among the algorithms
encoded by the different tools. As discussed earlier, several of the tools also make stronger
assumptions about how the repair problem is presented than others (requiring method or exact
line fault localization as input), which complicates comparison. Where possible, we compare to
published data generated from experiments that make assumptions roughly similar to MWRepair,
specifically those that do not require perfect knowledge of where the human repair was applied.
For some algorithms (e.g., CURE), these data are not available since the authors report only
results from experiments that do supply perfect fault localization information. With those caveats
in mind, the total number of defects with repairs reported across all of the tools is 140, and the
ensemble success rate (“Combined Algs.” in Table 3) is 39.2%. Each tool repairs a different subset
of these 140 defects, although some have more in common with one another than others.

This large set of program repair tools encompasses different designs and overall performance.
Many of the older tools (e.g., Nopol, GenProg, Kali, and RSRepair) repair a similar set of defects
correctly. Some of the next generation of algorithms are limited in scope: Cardumen, for example,
finds plausible patches for 12 defects but correctly repairs only 3 of them. Other recent algorithms
are more generic (and thus potentially more broadly applicable) and have higher success rates.
For example, TBar finds plausible patches for 72 defects and correctly repairs 24 of them. Recent
deep learning approaches are currently popular, with CURE topping the list with 53 correct repairs.
Some other recent methods, like Hercules (50 correct repairs), perform similarly, but they do not
rely on deep learning to synthesize code modifications.

To better understand how the different tools compare to one another, we developed a spatial
embedding of the data from Table 3, which is shown in Figure 8. Pairwise distance was computed
between each algorithm by computing the number of defects that either algorithm correctly
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repairs but the other does not. Cases where both algorithms repair or fail to repair a defect do
not contribute to this distance, so it is symmetric. These distances form a stress matrix, which is
embedded in two dimensions for visualization. Similar embeddings have been used to analyze the
defects in a variety of benchmarks, which are then highlighted based on whether a particular tool
repairs a particular defect [Aleti and Martinez 2021]. Instead, we use the pattern of which tools
repair which defects to embed the tools themselves, directly.

Tools that are nearby in the embedding have found repairs for mostly the same defects, whereas
those that are farther apart repaired different ones. GenProg clusters mostly with other older APR
algorithms, which repair relatively few defects and mostly the same ones. MWRepair is distant
from algorithms like TBar and DLFix because it patches defects that other algorithms miss.

Recent algorithms such as Hercules [Saha et al. 2019], Restore [Xu et al. 2022], and ARJA-p [Yuan
and Banzhaf 2020b] also explore new ideas for repair (appearing on the perimeter of the figure).
Although all three algorithms use deep learning models, we note that DEAR [Li et al. 2022] em-
beds near Hercules (another method that targets multi-hunk bugs); RewardRepair [Ye et al. 2022a],
which uses neural machine translation, embeds near CoCoNuT and CURE (which use similar ar-
chitectural ideas); and SelfAPR [Ye et al. 2022b], which uses a novel training procedure, appears
on the frontier. Algorithms that require additional fault localization information are shown with a
black border. MWRepair contributes different repairs from other algorithms with similar success
(e.g., SequenceR, AVATAR, and CapGen), and it complements both these and algorithms that are
more performant in terms of the absolute number of repairs generated (e.g., CURE and Hercules).

6.7 Summary of Results

We evaluated MWRepair using GenProg’s mutation operators and the search space they induce.
Because it searches the space differently, MWRepair boosts GenProg’s ability to find both patches
and repairs. Some of the repairs MWRepair finds are not only unique relative to GenProg’s earlier
results but also relative to all published algorithm evaluations on the Defects4J benchmark. These
are composed of multiple edits, even when minimized to reduce potential side effects and improve
readability. MWRepair complements other modern algorithms by repairing a different subset of
the scenarios in Defects4J.

7 DISCUSSION

MWRepair differs from most of the algorithms used in APR along a few key dimensions. We discuss
the potential use of the online learning component of MWRepair (MWU) in other domains, what
it would take to generalize MWRepair to other algorithms than GenProg and why this might be de-
sirable, and discuss MWRepair’s exploration of the APR search space. Finally, we note limitations,
with particular emphasis on those inherited by the field through flaws in common benchmarks.

7.1 Applicability of MWU to Other Domains

The unimodal distribution of patch probability in the search space (Section 4) arose in every pro-
gram/defect pair that we investigated. We conjecture that our model captures this regularity—
that is, the probability of finding a patch increases approximately linearly with the number of
atomic mutations considered, and the probability of failure increases asymptotically faster, but
has a smaller coefficient. As a result, there is a benefit to combining multiple atomic mutations to
enhance search effectiveness, and the benefit is reflected in the unimodal curve, suggesting that
there is an optimal number of mutations to combine. MWU proved useful for estimating the op-
timum number of mutations to combine, using information obtained as the search proceeds. We
suspect that similar optima might exist in other mutation-based search problems than the APR do-
main we studied and that other evolutionary and optimization algorithms in these domains could
benefit from incorporating online learning in a similar way.
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7.2 Generalization of MWRepair to Other APR Algorithms

We implemented MWRepair using GenProg’s mutation operators because they are simple and
generic, and many subsequent tools use variations of these operators. Thus, we expect that our
results will generalize to these settings. Reference implementations of GenProg are available in
both C [Le Goues et al. 2012] and Java [Martinez and Monperrus 2016], and GenProg’s patch
notation facilitated our evaluation of compound mutations.

However, MWRepair makes no assumptions about mutation operators or the patching frame-
work. MWRepair is algorithm agnostic by design and can be applied to algorithms that use other
mutation operators or that target other languages and benchmarks. Even algorithms that by de-
fault consider only single mutations are in principle compatible with MWRepair, which would
dynamically manage how many neutral mutations to consider simultaneously. So, we expect that
MWRepair can help many algorithms search more broadly, including those that use more sophis-
ticated heuristic operators.

We argue for this generality by examining the defects in the Defects4J benchmark [Just et al.
2014], where repairs should be in the search space induced by existing algorithms’ mutation
operators. For example, Time 3 requires that simple preconditions be checked in different parts
of the program; this operation is in the search space for Nopol [Xuan et al. 2017] and ACS [Xiong
et al. 2017]. Lang 4 requires that a function call be modified in unrelated contexts, which
Hercules [Saha et al. 2019] or ELIXIR [Saha et al. 2017] could handle if augmented. Additionally,
Chart 25 consists of four changes, each of which is a templated operator used by TBar [Liu
et al. 2019b]. None of these defects has been repaired by any algorithm, to date, because the
transformations required are more complex than those expressed by single mutations. As this
demonstrates, making progress in searching for multi-edit repairs is an important problem, and
MWRepair takes a step in this direction.

7.3 Search Space Exploration

It is tempting to assume that when existing APR algorithms fail to patch a defect that it is because
the repair requires complex code transformations. However, this is not always the case, and some-
times these failures occur because the search space is large and the successful configurations are
rare. The units utility is an instructive example. In the case of GenProg, a repair is found on 7%
of the runs [Le Goues et al. 2012]; MWRepair repaired units in 100% of our trials. Further, some
defects that GenProg has never repaired are in its search space: MWRepair finds repairs for them
by sampling with replacement to search for epistasis.

MWRepair explores the search space differently from other algorithms because of its at-times
aggressive combination of mutations, which is enabled by the use of neutral mutations. This pro-
motes the discovery of multi-edit patches, which are formed by epistatic interaction between in-
dividually neutral mutations. Multi-edit patches are ruled out by the many algorithms that only
ever consider single mutations in isolation and are unlikely to be found by algorithms that, al-
though they use multiple mutations, are conservative in their combination. For example, none of
the multi-edit defects we repair here (some for the first time) were repaired by GenProg. Addi-
tionally, finding multi-edit patches is crucial for improving the performance of APR algorithms;
as mentioned earlier, 71.77% of the reference patches in the Defects4J benchmark contain edits in
multiple locations [Sobreira et al. 2018].

7.4 Limitations

The cost of evaluating a sizable test suite on a complex software project can be high: even on
modern hardware, running an extensive test suite can take on the order of hours. Generating a
large pool of neutral mutations for such a project may seem expensive. But this is a cost paid by any
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algorithm that uses test suites as acceptance criteria for patches. Additionally, in most cases, these
algorithms test many mutated variant programs before finding a suitable patch. These algorithms
have to pay that cost online; we partially address the expense by refactoring it out of the repair
algorithm itself so that it can be amortized by precomputation. This amortization is particularly
important for real-time scenarios [Highnam et al. 2016].

As software undergoes continuing evolution, once-neutral mutations may be invalidated. This
decay is not immediate or absolute, as we measured in Section 6.5. Changes to large projects of-
ten have limited impact on the test suite. Indeed, this is an assumption underlying change-aware
impact analysis [Ren et al. 2004]. We can amortize the cost of generating and updating a set of
neutral mutations and employ them when a defect emerges.

7.5 Benchmark Quality

Algorithms for APR tend to be evaluated on a small set of bugs in widely used benchmarks, so
their design may be overfit to these [Liu et al. 2021; Wang et al. 2020]. MWRepair is evaluated
against common benchmarks, and so, like the algorithms we compare to, it inherits the limitations
and vulnerabilities of these benchmarks. Defect isolation, the problem of separating the code that
introduces or repairs a defect from other code, is a known problem in this context [Herbold et al.
2020]. This problem can be serious: Defects4J maintainers manually separated what they consid-
ered to be code that was related to the defect from code that was not. This approach means that any
code that was not deemed to directly relevant to repairing the defect is included in the reference
defect. This has benefits—for example, by reducing large change sets that include unrelated pro-
gram refactoring to a smaller set. But the approach is error prone. Consider, for example, the Math
24 defect, which requires changes to multiple code locations to ensure that an optimizer can han-
dle both maximization and minimization scenarios. The human programmer wrote an auxiliary
function from scratch to handle these cases and then inserted invocations of it in two locations.
The Defects4J maintainers committed the bespoke function the human developer created as part
of the defective program; only the two invocations are segmented to the repaired version. A re-
cent paper [Saha et al. 2019] reports a repair to this defect—and highlights it as the motivating
example—because the code the repair algorithm synthesized is an exact match to the reference
human repair. But the repair algorithm did not write the function that does most of the work of
repairing the defect; instead, it uses template matching to synthesize invocations of it. This is an
extreme example, but others are common: it is frequently the case that human-written comments
about the defect repair are not correctly segmented and are included in the defective version. As
algorithms are developed that use language models and program context, the importance of this in-
creases. Recent work has sought to apply algorithmic techniques to better and more systematically
perform this isolation [Yang et al. 2021]. Defect isolation itself cannot easily be solved by the field,
except by the development and adoption of new benchmarks that are explicitly constructed with
this in mind. However, the more general concern of overfitting to the types of defect in a dataset
can be partially addressed by evaluating against more than one benchmark, as some large-scale
studies [Durieux et al. 2019] and replication studies [Guizzo et al. 2021] have recently reported.
This is one potential direction for future work.

8 FUTURE WORK

8.1 Efficiency Considerations

An underexplored metric for Java program repair is the efficiency with which patches are gener-
ated [Liu et al. 2020]. Most studies instead focus on the number or quality of patches. MWRepair
uses MWU to guarantee that it explores in a way that minimizes regret. When a patch proves
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elusive, MWRepair learns the richest part of the search space. Because it pools mutations to test
them, it has an advantage over brute-force algorithms. MWU’s performance depends on the learn-
ing parameter η and the number of options. In this work, we used η = 0.05 and a maximum of 300
mutations for C programs (128 mutations for Java programs). A detailed characterization of the
relationship between MWU parameters and APR performance remains an open problem.

To apply this approach efficiently, we precompute a set of neutral mutations for subsequent
use in online repair scenarios. This precomputation is trivial for algorithms that do not require
semantic information about the defect. But for algorithms like Angelix [Mechtaev et al. 2016] that
do require this type of information, this screening could instead be performed on demand while
the repair algorithm runs. This would likely affect the runtime of such an approach, but it does
not prevent its application.

8.2 Modeling the Search Space

Section 4.3 presents a model that explains the unimodal distribution of patches (see Table 1) using
a single functional form. But we cannot be certain that the model applies universally without
additional experimentation. Additionally, if we had a principled way to predict the optimum’s
location ahead of time, we would not need to integrate online learning: we could instead target
the optimal region from the start.

Although we tested several structural metrics for programs, including the number of test cases
and the program’s size, we did not find any that correlate with the location of the optimum.
However, it is possible that other metrics, such as code complexity or revision histories, may be
predictive.

8.3 Other Search Space Formulations

In this article, we study one of several possible APR search spaces. Our space builds on the set of
all single neutral mutations that apply to the original program. Most existing algorithms use this
space as well. An alternative approach might iteratively apply mutations to already-mutated code.

We do not consider retaining deleterious mutations in this work. But prior work has shown
that ≈ 5% of patches include deleterious mutations [Renzullo et al. 2018]. These contribute to the
diversity of solutions. Future studies may relax the neutrality constraint we impose in this work
to trade off time for repair diversity.

9 CONCLUSION

Evolutionary algorithms face the general problem of balancing exploration and exploitation when
refining existing solutions. The field of APR has advanced rapidly, and a significant body of recent
work has investigated new and improved mutation operators and code transformation techniques.
Most of this work is conservative in how it applies transformations, and many published APR
algorithms repair a similar subset of the defects presented in common benchmarks. It is also typical
to consider the computationally expensive task of generating and evaluating mutations as part of
the inner loop of the search process.

This article investigated how to more effectively and efficiently search the space created by a set
of arbitrary mutation operators. We refactored the process of mutation generation and screening
to a separate phase, which can be precomputed and amortized. We then applied a search strategy
using dynamically learned step sizes (number of mutations to combine) based on our analysis of
the search space. The resulting algorithm leveraged the relative strengths of online learning and
evolutionary computation. MWRepair is a meta-algorithm in the sense that it can be instantiated
with the mutation operators of any search algorithm. We evaluated MWRepair, instantiated with
the GenProg mutation operators, on the ManyBugs and Defects4J benchmarks and found more
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repairs—including multi-edit repairs that GenProg missed in its search space—more consistently.
Where jGenProg found 6 correct repairs, MWRepair found 16. Three of these required multiple
edits, and jGenProg repaired none of those, although the answers exist in its search space. These
results show the promise of exploring search spaces more aggressively, both for APR and more
speculatively for other problem domains.

APPENDIX

A MWREPAIR EVALUATION SUPPLEMENT: MANYBUGS

We selected C defects from the popular ManyBugs benchmark that highlight differences (i.e., de-
fects that not all algorithms patch). For each ManyBugs experiment, we ran MWRepair 100 times
with a time limit of 1,000 test suite evaluations and a learning rate of η = 0.05. We report the
fraction of evaluations in which MWRepair patches the defect, as well as the average number of
test suite evaluations. We used BugZoo [Timperley et al. 2018] to orchestrate evaluation.

The algorithms targeting the ManyBugs benchmark are GenProg [Le Goues et al. 2012],
TrpAutoRepair [Qi et al. 2013], Kali [Qi et al. 2015], Staged Program Repair (SPR) [Long and
Rinard 2015b], Prophet [Long and Rinard 2015a], Angelix [Mechtaev et al. 2016], F1X [Mechtaev
et al. 2018], SOSRepair [Afzal et al. 2021], and Novelty [Villanueva et al. 2020].

A.1 Can We Find the Optimum with Online Learning?

MWRepair guarantees a bounded estimate, at worst 10% from the empirical optimum. We list the
location of the optimum for each program we evaluated in Table 1. For each of these programs,
the probability of discovering patches at the optimum is high. For example, patches are 38.5 times
more common at the optimum for gzip-2009-08-16 than they are at a mutation distance of 1.

We compare MWRepair’s cost to GenProg’s cost, measured in test suite evaluations. For any
algorithm that explores one random mutation at a time, the cost is a simple random variable. In
expectation, this is equal to the reciprocal of the single-mutation patch rate. For example, consider
a case where there are 1,000 mutations in the search space and 4 of them patch the defect. We
expect the algorithm to test 250 mutations by the time it identifies its first patch, noting that the
time taken by any actual execution is random. The algorithm could, in principle, get lucky and
terminate at the first iteration. Or, it could get unlucky and need more than 800 failed attempts
before a success.

The analysis for MWRepair must include that it can test combinations of mutations. That anal-
ysis can decompose the regret from the cost. As first introduced in Section 3.4, we define regret as
the gap between the choices MWRepair would make and the best it could have. The underlying

distribution of patches determines the best choice. Regret =
∑T

t=1m
(t ) · p (t ) . Here, m(t ) is the rela-

tive cost of each option: the gap between it and the best option in hindsight. Additionally, p (t ) is
the probability distribution over each option at each timestep.

Applying this analysis to the concrete case of gzip-2009-08-16 shows its utility. GenProg tests
1/0.0027 ≈ 370 mutations in expectation to identify a patch. MWRepair tests 71. MWRepair’s cost
is lower because it searches where patches are more frequent: the regret is only ≈ 4.24, showing
that it pinpoints the optimum accurately with online learning.

A.2 ManyBugs

Table 5 compares the success of MWRepair, GenProg, and eight other repair algorithms. For the
sample of programs we evaluated, MWRepair patches more defects than any other algorithm.

Table 6 compares the success and cost of MWRepair directly to the success and cost of GenProg.
MWRepair patches 3 out of 15 defects in this dataset that GenProg has not patched. MWRepair’s
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Table 5. Comparison Across Search-Based Algorithms

Program MWRepair GenProg TrpAutoRepair Kali SPR Prophet Angelix F1X SOSRepair Novelty

gzip-2009-08-16 � � � � � � �
gzip-2009-09-26 � � � � � � �
libtiff-2005-12-14 � � � � �
libtiff-2005-12-21 � � � � � � � �
libtiff-2006-02-27 � � � � �
libtiff-2007-11-02 � � � � � � �
libtiff-2007-11-23 � � � � �
libtiff-2009-08-28 � � � � � � �
libtiff-2010-12-13 � � � � � �
lighttpd-1806-1807 � � � � � � �
python-69223-69224 � � � � �
python-70098-70101 � � � �
MWRepair is compared to published results for other algorithms: GenProg [Le Goues et al. 2012], TrpAutoRepair [Qi

et al. 2013], Kali [Qi et al. 2015], SPR [Long and Rinard 2015b], Prophet [Long and Rinard 2015a], Angelix [Mechtaev

et al. 2016], F1X [Mechtaev et al. 2018], SOSRepair [Afzal et al. 2021], and Novelty [Villanueva et al. 2020]. For each APR

algorithm and defect, a check indicates that the algorithm patched the defect at least once.

Table 6. Defect Patch Efficiency

MWRepair GenProg MWRepair GenProg
Defect Consistency Consistency Cost Cost

gzip-2009-08-16 100% 30% 35.64 130.7
gzip-2009-09-26 100% 0% 340.45 ∞
python-69223-69224 27% 0% 101.1 ∞
python-70098-70101 3% 0% 132.0 ∞
libtiff-2005-12-14 100% 90% 4.0 20.8
libtiff-2005-12-21 100% 100% 22.41 20.8
libtiff-2006-02-27 100% 100% 4.33 20.8
libtiff-2007-11-02 100% 80% 3.05 20.8
libtiff-2007-11-23 100% 80% 9.80 20.8
libtiff-2009-08-28 100% 100% 2.89 20.8
libtiff-2010-12-13 100% 100% 11.08 20.8
lighttpd-1806-1807 64% 50% 251.2 44.1
ccrypt 100% 100% 53.1 32.3
look 100% 99% 1.6 20.1
units 100% 7% 83.13 61.7

We ran MWRepair 100 times on each defect. Program names refer to ManyBugs defect IDs. We

compare two key factors: patch consistency and patch cost. Patch consistency is a success

percentage within a fixed budget. Patch cost is the average number of fitness evaluations

required to patch the defect. Data for GenProg is taken from previously published papers [Le

Goues et al. 2012, 2015].

patch rate ranges from 3% to 100%, but it is always greater than or equal to that of GenProg’s. One
motivation for MWRepair is to extend the reach of search-based algorithms, and the above results
demonstrate this for our example C defects.

Table 6 reports search efficiency using two metrics: how expensive the searches are in terms
of test suite evaluations and how many searches are successful. Returning to our earlier example,
units is a small program with a defect that GenProg patches only 7% of the time. MWRepair’s
average cost on this defect was 90.2 test suite evaluations, which is higher than GenProg’s 61.7.
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However, it found a patch in 100% of our trials, where GenProg succeeded in only 7%. Thus, the
expected cost for GenProg, per success, is 61.7 ∗ 0.07 + 400 ∗ 0.93 = 376.3 since it uses its entire
evaluation budget in failed cases. Because of this, reporting costs based only on successful runs
can be misleading.

Composing many neutral mutations and evaluating them together has other advantages. Con-
sider libtiff-2005-12-14 as reported in Table 6, a defect in the libtiff image processing library
that returns an incorrect success code. GenProg took 20.8 test case evaluations on average to patch
it [Le Goues et al. 2015] and MWRepair took 4.0. MWRepair found 17 of these patches on the first
program evaluation. The number of fitness evaluations MWRepair uses ranges from ≈ 1.6 to ≈
340.45. In general, MWRepair’s cost per success is about an order of magnitude lower than that of
GenProg.
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