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ABSTRACT

Software testing is a key component of the software engineering
process, but modern software is highly complex. Software config-
urations involve many interacting components and interactions
among them can strongly affect the software’s behavior in hard-to-
predict ways. Combinatorial interaction testing (CIT) concerns the
creation of test suites that either detect or locate the most impor-
tant interactions in a large scale software system. Locating Arrays
(LAs) are a data structure that guarantees a unique location for
every such set of interactions. In this paper we present LocAG,
an algorithm that generates LAs. Our approach uses a simple but
powerful “partitioning” method of interactions to greatly reduce
the computational cost of verifying a candidate LA. Further, we use
evolutionary computation to quickly determine any additional tests
after the partitioning method is complete. We are able to gener-
ate LAs for larger systems faster, with any desired separation, and
greater interaction size than any existing approach.

CCS CONCEPTS

• Mathematics of computing → Combinatorial algorithms; •
Software and its engineering→ Search-based software engi-

neering.
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1 INTRODUCTION

The analysis of large-scale software has always been challenging. It
is imperative in software development to ensure correct operation,
accomplished often with testing; with large systems, exhaustive
testing is often infeasible. Combinatorial interaction testing (CIT)
involves designing a test suite that covers many interactions of sys-
tem components within the tests. Each test’s execution produces a
response from the system which can be checked against the desired
output. CIT guarantees that if all specified tests pass, then any
undesired behavior in the system is the result of more components
than the size of the tested interactions. A limitation of this approach
is that the tests do not guarantee recovery of which interactions
caused a given response or which settings significantly impact the
response.

Determining the fault(s) within a system is a well-studied prob-
lem. One strategy for CIT is to run a set of tests, note which tests
passed and failed, and then test each possible interaction that ap-
pears within each failed test and estimate their likelihood of causing
the fault(s). However, if two interactions appear in the same tests,
then their calculated likelihood will be the same. If there is “noise”
or nondeterminism within the testing environment, different runs
of the same test may yield different responses. Locating arrays,
introduced by Colbourn and McClary [2], are a CIT strategy that
provides a guarantee that a set of interactions of at most a given
size corresponds to a unique set of tests; this solves the first prob-
lem. Further, if redundancy is built into the locating array, the
second problem can be avoided. Despite its general framework,
the construction of locating arrays has only been well studied for
recovering a single interaction, whether mathematically [2] or com-
putationally [7, 8]. This restriction is due to the combinatorial cost
involved of running the algorithms.

This paper presents an algorithm LocAG that uses an evolu-
tionary algorithm to construct locating arrays much faster than
previous methods. We can construct locating arrays far faster for
larger and more complex systems than earlier approaches, includ-
ing arrays that can locate two interactions for some systems. To
the best of our knowledge, this work is the first to produce locating
arrays that can locate two interactions for non-trivial systems.

2 PRELIMINARIES

We specify a formal testing model for CIT. Suppose a system has 𝑘
components, and each has a set of categorical inputs. A test assigns
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Figure 1: (Left) A covering array. (Right) A (1, 2, 1)-locating
array.

to each component one of its inputs. A 𝑡-way interaction is a set of
𝑡 pairs (𝐶𝑖 , 𝑥𝑖 ) where 𝑥𝑖 is an input for component 𝐶𝑖 . Let A be a
collection of tests, 𝑇 be a 𝑡-way interaction, and 𝜌A (𝑇 ) to be the
set of tests in which 𝑇 appears in A. There are two properties that
A can have that we consider in this paper. For these properties, 𝑑
and 𝜆 are given integers.

• (Coverage Property) For every 𝑡-way interaction𝑇 , if 𝜌A (𝑇 )
has size at least 𝜆, then A has the coverage property, and is
denoted a covering array.

• (Locating Property) Let T be a set of 𝑑 𝑡-way interactions,
and 𝜌A (T ) the set of rows in A containing any interaction in
T . For every two T1,T2 collections of size at most 𝑑 , contain-
ing interactions of size at most 𝑡 , if the symmetric difference
of 𝜌A (T1) and 𝜌A (T2) has size at least 𝜆, then A has the
locating property.

Informally, the coverage property holds if every interaction of 𝑡
or less is tested by at least one row in the array, and the locating
property holds if for any fault of 𝑡 or fewer interactions, the array
can unambiguously identify which components have failed.

If an array A satisfies the coverage property, it is a covering
array; if in addition A satisfies the locating property, it is a (𝑑, 𝑡, 𝜆)-
locating array. Figure 1 gives an example of a covering array with
𝑁 = 6 tests, 𝑘 = 4 components, 2 inputs per component, 𝑡 = 2, and
𝜆 = 1 (left); and a locating array with 𝑑 = 1, 𝑡 = 2, 𝜆 = 1 (right).
Here, 𝜆 represents how much redundancy we require. If there is
experimental noise or measurement error in the system, then 𝜆 = 1
may not be sufficient to determine whether or not running the
same test can yield different responses. Enforcing 𝜆 to be “large”
decreases the likelihood of a response’s being incorrect from the
ground truth. For the locating property, when the difference-on-
rows property holds for T1 and T2, we say that these two collections
are a locating pair, and a nonlocating pair otherwise.

3 PROPOSED METHOD

LocAG has two stages, with the overall goal of creating a locating
array. Recall that a locating array is required to have the coverage
and locating properties. The first stage of LocAG generates an
initial array and a list of nonlocating pairs. The second stage takes
this list and uses a genetic algorithm to add rows that guarantee to
locate these remaining pairs. Figure 2 shows the overall workflow
of LocAG. Code is available at https://github.com/ryandougherty/
LocatingArrayGenerator.

Figure 2: Overview of LocAG’s workflow.

3.1 First Stage

Assuming that a locating array exists at all for the given system [2],
the first stage has four sub-parts: (FS1) generates an initial covering
arrayA; (FS2) determines the rows of interaction sets withinA; (FS3)
partitions these sets into appropriate groups; and (FS4) determines
non-locating pairs of these sets based on this grouping.

In FS1, we create a covering array using the fast CAgen algorithm
[16], which satisfies the covering property. In FS2, we determine
the rows for all sets of interactions 𝐷 of size at most 𝑑 . For each
interaction 𝐼 in 𝐷 , we determine 𝜌A (𝐼 ) and take the union all such
sets to determine 𝜌A (𝐷).

In FS3, we calculate for each interaction set the number of rows
in which it appears in A, and partition these sets based on their
numbers. If the number of rows in any two sets in this partition
differ by 𝜆 or more, then they automatically form a locating pair.
The purpose of this partition is to avoid checking pairs of sets that
are already locating, which greatly reduces computational cost.

FS4 determines all nonlocating pairs by comparing every two
sets from FS3 that have their rows differing less than 𝜆, and insert
all nonlocating pairs found into a list. In practice, we can further
improve performance by using sorted arrays instead of sets, because
(1) computing set difference can be performed in linear time, and (2)
one can terminate the comparison process if the second examined
set appears in rows that are all strictly larger than those of the first.

3.2 Second Stage

We use a multi-objective, multi-stage evolutionary algorithm to
locate the remaining pairs. The goal is to find a small number of
tests that accomplish the goal with minimal computational cost.

Each individual’s representation is a list of initially uniform-at-
random real numbers between 0.0 and 1.0, with the last element of
the list fixed to 1.0. For each number 𝑥 within the list, we create a
small number of tests that locates at least 𝑥 percent of the remaining
pairs. Once these tests are found, we update the remaining pairs.

Suppose that we need to locate 𝑥 percent of remaining pairs. We
use binary search to quickly find a number of tests that can locate
an 𝑥 percent of pairs. Suppose we want to determine if 𝑅 tests are
sufficient.We use a simulated annealing approach similar to Konishi
et al. [8], but with random seed to ensure the fitness function is
deterministic. If the process fails, 𝑅 is increased and the EC tries
again. Once a particular 𝑅 succeeds, we iterate through all pairs to
determine if they are locating in these 𝑅 rows. The fitness function
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outputs a pair (𝑁,𝑇 ) where𝑁 is the total number of rows generated
and𝑇 is total wall clock time. The EC uses one-point crossover, non-
dominated sorting [4], and simple mutation operators: uniformly-
at-random choosing one of: (1) alter an existing number in the list,
(2) add a new random number, or (3) delete a randomly chosen
number.

4 EVALUATION OF LOCAG

Our experimental evaluation of LocAG centered on the following
research questions:

• RQ1: How much faster does LocAG produce locating arrays
than existing methods, if at all?

• RQ2: How much smaller are the locating arrays produced
by LocAG compared to existing methods, if at all?

Our data set consists of the several real-world systems, described
below: The numbers after each system describe how many compo-
nents each system has (the exponents) and how many inputs each
component has (the base). For example, the Apache system has 158
components with 2 inputs each, 8 components with 3 inputs each,
etc.

• Apache: 215838445161
• Bugzilla: 2493142
• GCC: 2189310
• Mobile: 228394654610758491108
• SPIN-S: 21345
• SPIN-V: 24232411
• Wireless: 23374559

These examples were taken from [6, 8]. The initial covering array
produced by CAgen often includes entries that are “don’t cares,”
meaning that they can be set to any value and do not affect coverage.
We ran LocAG by setting these entries uniformly-at-random five
times and took the best results. For each of these, we ran LocAG
on each systems with 𝑑 = 1, 𝑡 = 2, and 1 ≤ 𝜆 ≤ 4 with a fixed
choice of random selections to the “don’t care” entries. The EC ran
for 50 generations, had an individual list size between 10 and 30
initialized uniformly-at-random, 100 individuals in the population,
used a crossover rate of 30% per pair, and mutation was set to 30%
per individual.

We ran all experiments on a Windows laptop with an Intel Core
i7 processor at 3.0GHz and 32GB of RAM using our C++ imple-
mentation, and table 1 shows our results. It reports two pairs of
numbers: the first–(LocAG, Min N)–contains the lowest number of
rows found, within the Pareto frontier, together with the rutime
time; the second column–(LocAG, Min Time)–reports results for
the fastest run. Runtime is reported as total number of CPU seconds.
The third column–(Best Known)–contains the best (1, 2, 𝜆)-locating
array reported in the literature, with accompanying reference, and
computational time if reported; the last column is the identical ex-
cept for 𝑡 = 2 instead of 𝑡 = 2. Although our own experiments only
consider 𝑡 , which must involve more rows and computation time
than for 𝑡 , these results provide insight into LocAG’s performance
as there are few reported results for 𝑡 , and none with wall clock
time for 𝑡 .

Although not shown in Table 1, LocAG can also generate locating
arrays with 𝑑 = 2, 𝑡 = 2, and 𝑘 = 10 components all under 2 hours
of compute time. As far as we can tell this is the first algorithm that

can generate small locating arrays able to locate two interactions
in any “reasonable” amount of time.

RQ1: As is evident from Table 1, LocAG finds locating arrays
far faster than any previously reported method, sometimes two
orders of magnitude faster than even results that involve 𝑡 (which
is easier than 𝑡 ). This effect is smaller for larger systems, but is still
striking; most of computational time for these larger systems was
spent determining nonlocating pairs in the first stage, since many
pairs are already locating.

RQ2: Here, there are few previous results to which we can com-
pare LocAGĊomparing to the previous results that do exist, LocAG
improved three examples in terms of number of rows produced:
Mobile and 𝜆 = 2, and Wireless for 𝜆 = 1, 2. Because LocAG relies
on the CAgen algorithm to generate an initial covering array, and
doesn’t not modify existing entries from that array to ensure the
coverage property, the larger number of rows observed here is not
suprising. Despite this limitation, the number of rows at the end of
LocAG is often competitive.

5 THREATS TO VALIDITY

These experimental datasets may not generalize to other systems.
Further, the correctness of any implementation is always a concern.
To determine the correctness of CAgen, we wrote an independent
covering array verifier. Next, we ran the verifier on the initial cov-
ering arrays produced by CAgen, all of which passed verification.
The algorithms for both algorithm stages were implemented in
in both Python and C++. For the first stage and each system, we
fixed a single covering array and verified that the resulting set of
nonlocating pairs is the same for both implementations.

6 FUTUREWORK

Runtime for both stages varies widely depending on the system’s
profile, which was caused by systems with an unbalanced number
of inputs leading to many “don’t care” positions. In principle, one
could add a third initial stage, where a greedy algorithm is used
to find a better choice for the “don’t care” entries than uniformly-
at-random. Interestingly, if there is sufficient “imbalance” in the
system’s profile, then the initial covering array can be very close
to being locating.

In the first stage of LocAG, the CAgen tool constructs covering
arrays using the “in-parameter-order” algorithm [11]; our approach
could adopt a similar algorithm for checking locating pairs. Addi-
tionally, one could add an intermediate “post-optimization” stage
[13], which would take a locating array, rearrange rows, and ran-
domize “don’t care” values until a row is determined to be redun-
dant.

7 RELATEDWORK

We outline related works with regard to metaheuristic methods.
For a general background of CIT, see [9, 14]. Nagamoto et al. [12]
developed a two-stage method for locating array generation. The
first stage of LocAG is a significant extension of their work based
on the partitioning strategy. Lanus et al. [10] created a tree-based
verification algorithm for locating arrays and was the first paper (as
far as we are aware) to computationally create locating arrays with
both 𝑑 > 1; however, they only concernedmain effects (𝑡 = 1) due to
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Table 1: Results from LocAG for generating (𝑑, 𝑡, 𝜆)-locating arrays on all tested systems with 𝑑 = 1, 𝑡 = 2.

Name Profile 𝜆 LocAG, Min 𝑁 LocAG, Min Time Best Known (1, 2, 𝜆) Best Known (1, 2, 𝜆)
Apache 215838445161 1 87, 12.2 91, 12.1 63, 2062.5 [8]
Bugzilla 2493142 1 43, 0.6 44, 0.4 32, 82.4 [8]
GCC 2189310 1 52, 11.8 56, 10.7 39, 1581.3 [8]

Mobile 228394654610758491108 1 439, 18.5 467, 13.6 421 [1] 333, 3055.7 [8]
2 484, 11.2 499, 7.5 654 [15]

SPIN-S 21345 1 44, 0.2 55, 0.1 34, 24.6 [8]
SPIN-V 24232411 1 66, 0.3 74, 0.2 50, 234.5 [8]

Wireless 23374559
1 99, 1.6 105, 0.9 109 [3] 74, 113.9 [8]
2 135, 0.5 141, 0.3 144 [15]
3 180, 0.7 191, 0.5 169 [15]
4 221, 1.6 234, 0.6 194 [15]

computational cost. There may potentially be some optimizations
in our approach based on theirs. Dougherty [5] partitioned covering
array generation into multiple stages (instead of just 1 or 2) using
a genetic algorithm. Instead of using the algorithm to modify the
arrays directly, the genetic algorithm helped determine the optimal
number of stages in which to have every interaction covered 𝜆

times. In principle his methods can also be applied to locating array
generation. As far as we are aware, only Konishi et al. [8] has used
any metaheuristic for finding locating arrays, namely simulated
annealing. LocAG is able to generate locating arrays on the same
parameters far faster than their approach with slightly more rows.

8 CONCLUSION

This paper introduces LocAG, a two-stage algorithm for construct-
ing locating arrays that uses a multi-objective evolutionary algo-
rithm in the search. Our strategy relied on the empirical observation
that in nearly every covering array with redundancy 𝜆, there are
many interactions that are covered more than 𝜆 times. If there is
a sufficient difference between the number of times two sets of
interactions are covered, then they automatically become locating
pairs. Our partitioning step drastically reduces the number of pairs
to be compared, and our results show that the number of pairs is
much smaller than the total number of pairs, facilitating the use
of an evolutionary algorithm to locate the remaining pairs. This
approach allowed us to construct locating arrays for several previ-
ously studied systems much more quickly than any other approach.
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