
SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale

Kirtus G. Leyba

Arizona State University

Tempe, United States

kleyba@asu.edu

Steven Hofmeyr

Lawrence Berkeley National

Laboratory

Berkeley, United States

shofmeyr@lbl.gov

Judy Cannon

University of New Mexico

Albuquerque, United States

JuCannon@salud.unm.edu

Melanie Moses

University of New Mexico

Albuquerque, United States

Melaniem@cs.unm.edu

Stephanie Forrest

Arizona State University

Tempe, United States

steph@asu.edu

ABSTRACT
Modern supercomputers rely on graphics processing units (GPUs) to
achieve unprecedented computational capabilities. Multi-node com-

putation with GPUs promises to accelerate and scale simulations

dramatically across many domains, and many scientific simula-

tions have been adapted to this new paradigm of supercomputing.

However, agent-based models (ABMs) are a class of simulations

that to date have seen little development for multinode, multi-GPU

supercomputers because their computation flow poses unique algo-

rithmic and communication challenges for effective performance

on GPU enabled supercomputers. In particular, many ABMs have

irregular and dynamic communication patterns, resource compe-

tition that causes race conditions, and unpredictable effects on

load balancing. We studied the Spatial Immune Model of Coron-
avirus, or SIMCoV, as a target ABM application for acceleration.

SIMCoV is a large-scale ABM which simulates the spread of viral

infection through the epithelial tissue of the lungs and models the

immune response with diffusing inflammatory signals and mobile T

cell agents. Our multinode, multi-GPU implementation of SIMCoV

achieves significant speedups over a competitive baseline version,

up to 11.9x with a ratio of 32 CPU cores to a single GPU. The paper

describes SIMCoV’s GPU-specific optimizations, reports empirical

results, and demonstrates effective solutions to the challenges of

accelerating ABMs on modern supercomputers.

ACM Reference Format:
Kirtus G. Leyba, StevenHofmeyr, JudyCannon,MelanieMoses, and Stephanie

Forrest. 2024. SIMCoV-GPU: Accelerating an Agent-Based Model for Ex-

ascale. In International Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC ’24), June 3–7, 2024, Pisa, Italy. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3625549.3658692

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

HPDC ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0413-0/24/06. . . $15.00

https://doi.org/10.1145/3625549.3658692

1 INTRODUCTION
Computational models of real-world complex systems are found

across diverse scientific domains. Frequently, researchers are in-

terested in adaptive systems with many moving parts that feature

complex interactions, decision making, and communication. For

example, researchers have modeled the impact of different man-

agement strategies on forest fires [30], the flow of traffic in road

topologies [29], and the economic dynamics of demand shocks

impacting a supply chain [24]. These models are all categorized

as Agent-Based Models (ABMs). ABMs model agents that live in a

spatial environment, make decisions and interact with one another

and the environment. ABMs are an essential tool for researchers

because they can encode expert knowledge about components and

interactions within a system and then study its large-scale emergent

dynamics. In many cases, however, the utility of an ABM is limited

because it is too computationally expensive to execute at scale,

either because too many agents are required or communication

between computational units is prohibitively costly.

To improve their scaling and manage highly complex models,

ABMs are frequently parallelized, but they have rarely been de-

ployed at scale on multinode, multi-GPU systems. When ABMs

are implemented on GPUs, they tend to run on a single GPU, a

single node, or a single GPU per node [3, 28]. These limitations are

significant, because the current generation of supercomputers relies

on clusters of GPU nodes to drive their immense computational

capabilities. The supercomputer Frontier, for instance, achieved 1.1

exaflops in 2022 by relying on both CPU and GPU computation [1].

Realizing the potential of exascale supercomputers to run large

ABMs is important: first, it can increase the size of ABMs that can

be executed (crucial for our application), second, it can increase

the number of simulations that can be performed (important for

exploring parameter regimes and repeating highly stochastic simu-

lations), and third, it can support models of increased complexity

to provide more salient results and better predictive capabilities.

In this work, we focus on a single ABM, SIMCoV [25], which

illustrates the need to run at scale and highlights many of the

complexities associated with implementing multinode, multi-GPU

ABMs. SIMCoV (Spatial Immune Model of Coronavirus) is a high-
performance computing (HPC) application that simulates a 2D or

3D voxel world of epithelial (tissue) cells that is used to spatially

https://doi.org/10.1145/3625549.3658692
https://doi.org/10.1145/3625549.3658692

HPDC ’24, June 3–7, 2024, Pisa, Italy Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

model the human lung, which has billions of individual cells. SIM-

CoV is an exemplar for multinode, multi-GPU acceleration because

of its large scale and dynamic computational landscape. SIMCoV

features mobile agents that compete for limited space, introducing

communication requirements to resolve the competition, as well

as diffusing concentrations from multiple initial locations, causing

the expensive to compute simulation regions to grow and vary

over time and between simulations. SIMCoV shares these computa-

tional challenges with other ABMs, which further motivates our

endeavour to accelerate it. Throughout this paper we refer to our

multinode, multi-GPU update to SIMCoV as SIMCoV-GPU, which
we distinguish from the baseline implementation, referred to as

SIMCoV-CPU. We focused on a specific HPC application, but are op-

timistic that our findings will provide helpful insight for researchers

seeking to develop othermany-GPU simulations, particularly ABMs

wheremobile agents induce expensive communication and dynamic

load balance issues.

The contributions of our work are as follows:

• A multinode, multi-GPU implementation of a large complex

ABM. Our development includes applying GPU and cluster

computing focused optimizations to address costly commu-

nication, mobile agents that compete for spatial resources,

and unpredictable load-balancing.

• An empirical evaluation of performance improvement, demon-

strating 11.9x speedup over a competitive baseline imple-

mentation on a system with a ratio of 32 CPU cores to one

GPU, which ideally could provide at most 15.6x speedups.

• Generality: ABMs are a class of computational models that

have yet to take advantage of state-of-the-art supercomput-

ers. The approaches outlined here present a road map for

the deployment of large-scale ABMs on exascale, multinode,

multi-GPU supercomputers.

The remainder of the paper is organized as follows:

• Section 2 provides details of SIMCoV and relevant back-

ground information necessary for accelerating ABMs with

multiple GPUs.

• Section 3 describes our approach to developing SIMCoV-GPU

and where it necessarily differs from SIMCoV-CPU.

• Section 4 reports on an empirical evaluation of SIMCoV-

GPU’s performance and compares it to a competitive base-

line.

• Section 5 discusses relevant prior work, Section 6 discusses

our findings, highlights limitations and suggests future work,

and

• Section 7 concludes the paper.

2 BACKGROUND
This section briefly reviews earlier efforts to accelerate ABMs and

then describes the baseline implementation of our target application,

SIMCoV-CPU and why it is an interesting target for many-GPU

acceleration.

2.1 Parallel Agent-Based Models
ABMs, which are sometimes referred to as individual-based mod-

els [14], are computational models that simulate large dynamic

systems by describing the behavior and interactions of their in-

dividual actors, referred to as agents. ABMs are specified by a

collection of agent types, rules for how agents interact with each

other and their environment (behavior), and a topology that con-

strains their movement in the environment and which agents they

interact with. Agent rules can be static or adaptive; in some cases,

all agents have identical rules and in others, each agent has its

own set of rules which it can update over time through learning

or evolution. For example, in a cancer simulation, different agent

types could correspond to different types of cells in the body; each

individual cell might behave differently, depending on how many

mutations it has suffered; and cell movement could be constrained

to a three-dimensional local neighborhood, representing nearby

physical space [16]. Once the component parts of an ABM are spec-

ified, the system can be studied, much like in a laboratory setting,

by running experiments with varied parameters and setups.

This bottom-up modeling approach has the advantage that the

simulations can reveal interesting emergent behaviors, which are

not predictable ahead of time, despite relatively simple agent rules.

In cases where a certain high-level behavior has been observed,

a plausible underlying mechanism can be discovered by testing

different ABM configurations to see which ones most closely mimic

the observed phenomenon. ABMs have been used to study a wide

variety of complex systems including those in environmental sci-

ences [30], social sciences [5–7], biological sciences [10], and other

domains. ABMs can divide their computation into discrete time

steps or discrete events [4]. In both cases, ABMs can be parallelized

by distributing the operations of agents to computational units

(threads, processes, GPUs, etc.).

Parallelization is necessary for ABMs when they are used to

simulate large populations of agents with many interacting com-

ponents. The emergent properties of ABMs can easily differ based

on population size, and it is often a worthwhile research question

itself to understand the impact of population scale on an ABM. In

the example we describe below, the environment is organized as a

volume of voxels, each five microns cubed, so billions of cells must

be modeled to achieve realistic scale simulations consistent with

the number of cells in a human lung. For large complex systems,

the ability to simulate efficiently at scale is essential for relating

model results to the real world. As mentioned earlier, this is compu-

tationally challenging due to the sheer number of agents, dynamic

workloads, and the communication overhead that arises from man-

aging agent interactions among themselves and their environment.

Each ABM agent has a location on a network topology which is

defined for the specific problem being studied. Nearby agents may

compete for some resource, e.g., two agents may both attempt to

move to the same spatial location in a discrete grid [27]. In a serial

implementation, such conflicts are resolved by random tiebreak.

In a parallel environment, however, extra care must be taken to

ensure that all relevant processes agree on the simulation state after

tiebreaks. This can be solved using random tiebreaks and commu-

nicating the result between the processes, but this communication

can be particularly costly on multinode, multi-GPU systems.

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale HPDC ’24, June 3–7, 2024, Pisa, Italy

(A) (B) (C)
(1) (2)

(3) (4)

(1)
(2)

(3)
(4)

Active list of voxels

Simulation Step

Update T Cells

Update Epithelial Cells

Update Concentrations

Figure 1: A diagram of the behavior of SIMCoV. (A) A 3D visualization of a small SIMCoV simulation seeded with a single FOI.
The spreading damage of the infection is shown. Apoptotic (red) and expressing (blue) epithelial cells are seen on the boundary
of the growing infection. The T cells (green) randomly walk searching for infected cells to bind to. (B) The simulation is
distributed to processes via either block (top) or linear (bottom) domain decomposition, which has impacts on communication
overhead. The processes are labeled 1 through 4 in this 2D example. (C) For a single simulation step, each process iterates over
its portion of the active list of voxels and performs updates: Moving and binding for T cells, updating epithelial cell states, and
diffusing concentrations.

2.2 SIMCoV
SIMCoV was developed as an ABM to simulate the spread of a vi-

ral infection (parameterized for SARS-CoV-2) throughout the lung

tissue of a host as well as a corresponding immune response. SIM-

CoV differs from earlier within-host infection models by including

spatial structure. These earlier models focus on the aggregate statis-

tics of an infection over time using ordinary differential equations

(ODEs) [18, 31]. In the earlier work, ODEs model populations of

cells, virus, and other entities as being well-mixed, which means

that all possible interactions between the entities are equally likely,

regardless of where the entities are located. However, because many

biological processes are localized to nearby cells, spatial effects can

be important. Examples in SIMCoV include the impact of how the

initial infection is distributed throughout the tissue and the spatial

distribution of immune cells that can fight the infection. In particu-

lar, SIMCoV can model varying numbers of FOI (foci of infection).

The spatial environment of a SIMCoV simulation is a 2D or

3D grid of voxels, and the hierarchical branching structure of the

lung can be overlaid on either the full 3D volume or a single slice

represented by a 2D grid. Each voxel can be empty or contain model

components, including epithelial cells, immune cells, and molecular

concentrations. Earlier results showed that SIMCoV can match

longitudinal patient data (spread of virus during an infection) by

fitting three key parameters of the simulation—parameters that are

expected to vary across individuals [25].

A detailed description of the SIMCoV model appears in [25], and

figure 1 illustrates the most relevant aspects of the model for the

high-performance computing (HPC) implementations. SIMCoV’s

agents consist of epithelial cells, which are stationary but can be in

multiple states (healthy, incubating, expressing, apoptotic, or dead)

and motile T cells that can trigger a process known as apoptosis

that kills infected epithelial cells. Epithelial cells transition stochas-

tically from an incubating state (producing virus while not being

detectable to T cells) to an expressing state (now detectable to T

cells) according to an incubation period which each epithelial cell

draws from a parameterized Poisson distribution. In the absence of

stimulation, T cells circulate through the vascular network of the

body, which is modeled implicitly as an available pool of T cells.

A high concentration of inflammatory signal triggers T cells to

leave the vasculature near infected regions of the simulation, and

when they encounter infected epithelial cells they bind to them and

initiate the death of the infected cell (apoptosis). A single voxel con-

tains a maximum of one T cell and one epithelial cell at any point

in time. Structure is defined for the simulation, such as branching

airways in the lung, by leaving some voxels empty without epithe-

lial cells, although in this paper we evaluate 2D simulations which

correspond to the simulations that fit best to patient data in [25].

In addition to discrete agents, where each instance is represented

explicitly in the simulation, the SIMCoV environment contains two

continuous quantities, which vary over time and affect the behavior

of agents: the virus itself and an inflammatory signal that indicates

the presence of infection. These are represented as concentrations

that diffuse through simulation space according to parameterized

diffusion rates. The virus infects epithelial cells as it spreads through

the simulation space, while the inflammatory signal increases the

chances of T cells extravasating at locations with high concentra-

tions. Each time a T cell has a chance to extravasate, a voxel in

the tissue is selected uniformly at random, and with a probability

HPDC ’24, June 3–7, 2024, Pisa, Italy Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

proportional to the concentration of the inflammatory signal at

that voxel, the T cell will enter the simulation at that location.

The original parallelization strategy of SIMCoV divided the sim-

ulation domain into subsets of voxels and distributed them to indi-

vidual CPU processes. The multiprocessing framework for SIMCoV

is UPC++ [8], which is a parallel computation library that uses a

Partitioned Global Address Space (PGAS) to enable interprocess

communication. UPC++ includes features such as remote procedure

calls (RPCs) and support for direct GPU-to-GPU communication.

SIMCoV-CPU can be parallelized by subdividing the simulation

space into subdomains using either linear, 2D, or 3D domain decom-

position. Some of the simulation work in SIMCoV can be performed

locally, such as virus infecting an epithelial cell. Other operations

require communication, such as moving T cells across process

boundaries. These communication instances are handled in the

CPU version of SIMCoV using RPCs in UPC++ which allow one

process to asynchronously queue the execution of a function on

another process.

This approach is convenient for CPU-based parallelism and re-

duces the development effort required to implement the model be-

haviors, but it is not efficient for exploiting the massive parallelism

available in GPUs. A multinode, multi-GPU SIMCoV should process

as much simulated space as possible within each GPU kernel and

minimize costly communication and other general purpose GPU

programming pitfalls. Necessary changes to the implementation to

create SIMCoV-GPU are described next in section 3.

3 ADAPTING SIMCOV TO GPUS
SIMCoV-GPU is implemented using NVIDIA’s Compute Unified

Device Architecture (CUDA) for GPU kernels and GPU library calls,

and relies on UPC++ to handle interprocess communication and

GPU-to-GPU copies. Implementing a computationally efficient ver-

sion of SIMCoV to run across multiple GPUs required substantial

changes to algorithms and data structures. SIMCoV-CPU was de-

signed to allow for communication within simulation iterations,

such as T cells binding to epithelial cells across process bound-

aries. Additionally, it relies on dynamic data structures and the

global address space provided by UPC++. These tools are either

not available within GPU kernels or would introduce prohibitive

overhead when implemented on GPUs. SIMCoV-CPU also reduces

the computational work on inactive regions by tracking the active

voxels in an active list. Maintaining a dynamic data structure that is

shared between GPUs would also incur a high communication cost.

These new requirements for SIMCoV-GPU motivated us to modify

the T cell agent algorithm, introduce memory tiling to manage

inactive regions, and take advantage of GPU shared memory to

reduce global memory accesses and atomic operations.

3.1 T Cell Algorithm
SIMCoV models Cytotoxic CD8 T cells explicitly as agents. SIMCoV

T cells move randomly from voxel to voxel and bind to any virally

infected epithelial cells they encounter, triggering programmed cell

death (apoptosis). In SIMCoV-CPU, this behavior is accomplished

by iterating over active voxels and executing movement and state

updates for the T cells found in those voxels. Since two T cells

cannot occupy the same voxel, collisions are resolved using RPCs; a

Choose
Direction

Assign
Winners

Set Flips

Move Agents

Copy To
Ghost Voxels

2

310

2

10 10

2

10 10

Figure 2: T cell movement algorithm in SIMCoV-GPU. Each
T cell chooses a random direction to try to move and stores
a randomly generated value at that location. After a copy
operation, tie breaks are resolved, voxels are set to flip the
presence of T cells on or off depending on if a T cell is enter-
ing or leaving (red diamond). Next, the moves are executed.
(Left) Blue rectangles indicate the order of kernels, and red
ovals indicate copies between GPUs. (Right) Diagram of the
memory layout for two adjacent GPUs, illustrating a repre-
sentative sequence of T cell operations. Gray regions indicate
ghost voxels.

T cell is prevented from moving if it tries to move into an occupied

voxel. A T cell can also fail to move if a different T cell wins a

tiebreak and to move into an unoccupied voxel. T cell binding

is treated similarly: multiple T cells attempting to bind the same

epithelial cell in one timestep resolve the resource competition in

the same way.

SIMCoV-GPU cannot use this approach because within a single

simulation timestep, one GPU cannot query the simulation state of

a particular voxel. Instead, GPUs acquire information about their

boundaries during communication waves placed between computa-

tion. During communication, the memory of a GPU’s boundary is

copied to its neighbors, and stored there in a halo of ghost voxels

that surrounds the simulation space. For epithelial cells which don’t

move and do not interact directly with their neighbors and for con-

centrations that diffuse according to a stencil code, this is sufficient

to compute all updates for a timestep. T cells are more interesting,

because they make independent pseudo-random choices of where

to move and where to bind every timestep. Simply knowing there

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale HPDC ’24, June 3–7, 2024, Pisa, Italy

is a T cell on the boundary of a GPU’s neighbor in simulation space

isn’t sufficient to know where that T cell is going to go, and even

worse there is no guarantee that a T cell completely unseen to one

GPUmoves into a location that a local T cell has chosen as its target.

This problem arises due to the decision making nature of T cells,

and is a particularity of ABMs that is not shared with many other

HPC applications. While our T cells are random walkers, a similar

spatial resource competition challenge would arise in other ABMs

with adaptive agent behaviors such as evolved decision making.

One solution to this challenge is to first communicate the intent

of every T cell (where it chooses to move or to bind), perform

a communication call, resolve tiebreaks from T cells attempting

to move or bind to the same location, and then copy the results

back to let each GPU know what to do with their boundary T cells.

Fortunately, we can do better and avoid the second communication

call. Our approach is similar to that described in [27], where each

agent bids on the spatial resource that it is competing for. Our

T cell behavior is specialized, however, for the functionality of

SIMCoV because the preference for winners is random on each

timestep and T cells are not expected to try to move multiple times

in any iteration, i.e., T cells can and do run into each other. These

adaptations are necessary to match the behavior of SIMCoV-CPU.

The T cell movement algorithm of SIMCoV-GPU is visualized

in figure 2. First, the T cells within the sub-domain of each GPU

select a random neighbor voxel as a target. Second, each T cell

generates a pseudo random number from a large range of integers

(true ties where multiple conflicting T cells draw the same value are

possible but so unlikely that it is efficient and practical to ignore

them). They store that value at their own voxel, and if it is larger

than the current value at their target voxel they also store it at

the target. Now, a wave of communication between neighboring

GPU processes allows each voxel to determine the winning T cell

which may or may not be stored in local memory. Finally, T cells

that win the tiebreak (or had no competition) are moved in a local

computation step on each GPU where they are copied to their

destination voxels and erased from their source. Conveniently, if a

T cell has moved into the memory space of a GPU, that T cell can

safely be instantiated in memory without fear of duplication. Since

the tiebreak is deterministic in this regard, the GPU from which

the T cell came will erase it.

In the subsequent subsections 3.2 and 3.3 we introduce two GPU

focused optimizations used in SIMCoV-GPU.

3.2 Memory Tiling
There are many possible states that a SIMCoV simulation could

exist in, and the amount of actual activity in the simulated space can

vary drastically over time. For instance, a region of lung tissue that

does not have any virus or inflammatory signal does not change

from one timestep to the next. It is important to take advantage

of this to rapidly compute timesteps with low activity and not

waste computational resources with poor load-balancing. SIMCoV-

CPU addresses this with an active-list data structure to track which

voxels can possibly be changed each timestep. Each process in

SIMCoV-CPU maintains its own active list, and it is straightforward

to determine which voxels could possibly change from one timestep

to the next. This is true over process boundaries as well, because

GPU 1 GPU 2

GPU 3 GPU 4

A B

Figure 3: The memory layout of a SIMCoV-GPU run. This
example is a 2D simulation on four GPUs. (A) The GPUs
subdivide the simulation domain equally using 2D domain
decomposition. (3D domain decomposition is applied simi-
larly for 3D simulations). (B) A zoomed in view of GPU 1’s
voxel layout in memory. In this example, 3x3 memory tiles
are used, indicated by lighter and darker regions. Blue voxels
belong to the ghost halo. The order of voxels in memory is
shown by the zig-zag path that traverses the space.

when a process uses an RPC to communicate with its neighbor, that

RPC can add the affected voxels to the active-list. As previously

explained, in SIMCoV-GPU each GPU performs updates over its

space and communicates its boundaries in separate steps, so the

active-list would not be updated across process boundaries unless

this was handled during communication. An additional challenge

is that the memory footprint of tracking the active-list would have

to be proportional to the number of voxels or the active-list would

have to be a dynamic data structure which could at times be as

large as the total number of voxels anyway. Either approach is

unattractive for GPUs due to their restrictive memory constraints.

Instead we use memory tiling to accomplish this optimization in

SIMCoV-GPU, an approach inspired by optimizations in computer

graphics [19]. In SIMCoV-GPU a tile is defined as the memory (in-

cluding epithelial cells, T cells, and concentrations) containing a

sub-domain of the simulation space. We require that the dimen-

sions of a tile allow for an integer number of tiles to subdivide the

simulation along each dimension. Note that this is a lower order

than the domain subdivision that distributes simulation regions to

GPUs. Each tile stores its voxels contiguously in memory, which

has an added benefit of data locality. For GPUs especially, global

reads and writes are expensive, and it is more likely that voxels

nearby are cached when using memory tiling. Tiles are tracked as

active or inactive and SIMCoV-GPU kernels perform computation

only on the active tiles. Tiles are activated when a check is exe-

cuted via a GPU kernel that sweeps the simulation space looking

for activity. To minimize the cost of this update, we choose to only

perform the check periodically. The maximum the period for active

tile checking can be set is to the size of the side of a tile, on the

condition that when a tile activates it also activates a buffer of tiles

around it one tile thick. We know this will safely encapsulate all of

the simulation activity because nothing in SIMCoV can move faster

than one voxel per timestep. We set tiles that contain ghost voxels

to active always to ensure that entities that enter from other GPU

memory spaces are updated correctly. Importantly, we find that

HPDC ’24, June 3–7, 2024, Pisa, Italy Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

the overhead of checking tiles is much smaller than the benefit of

skipping inactive regions. This suggests that this optimization can

be applied in other ABMs including those with fast moving agents

or agents that interact over long ranges that would increase the

rate of active tile checking. A visualization of the complete domain

decomposition of SIMCoV-GPU including memory tiling is shown

in figure 3.

3.3 Fast Reduction
SIMCoV collects a variety of statistics during execution, which are

used to interpret model output. These include aggregate quantities

such as the total count of virus molecules, the total number of T cells

in the tissue, and the total number of epithelial cells in each of their

possible states. These are collected each time step to enable time

series analysis of infection dynamics. In SIMCoV-CPU, each process

updates these quantities locally and then a UPC++ directive triggers

a reduction, with a single process logging the totals to a file on disk.

In SIMCoV-GPU each kernel is executed with thousands of threads,

so within a single process there would be memory contention and

race conditions when updating global values. One solution is to

use atomics to update simulation statistics within kernels. Atomics

in GPUs introduce considerable overhead, which gets worse when

launch configurations use more threads or larger block sizes. We

find, perhaps counterintuitively, that it is considerably faster to

perform a reduction over every single voxel in the simulated space

than include atomics throughout a single simulation update. We can

further enhance the reduction by using a tree-like parallel reduction

method to take advantage of device shared memory and reduce the

total number of atomic operations [17]. In this reduction, each GPU

thread first accumulates values for a subset of the voxels, and then

each thread block accumulates the values of its threads, and finally

the CPU process that manages each GPU reduces the globals across

all GPUs using a UPC++ directive.

These optimizations focused on GPU programming and multin-

ode operation, which is a lens that must be used in order for ABMs

to effectively take advantage of modern supercomputers. Next, we

investigate the impact these optimizations have on SIMCoV-GPU

in subsection 3.4.

3.4 Profiling Optimizations
The optimizations implemented for SIMCoV-GPU focused on sev-

eral efficiency aspects that are especially important in multinode,

multi-GPU programming: load-balancing, global memory access

patterns, data locality, and atomic operations. In order to evaluate

the performance impact of these optimizations we analyzed four

prototypes of SIMCoV-GPU with different stages of optimization.

Unoptimized SIMCoV-GPU iterates over the entire simulation space

each timestep without tracking active regions and and uses atomics

to accumulate values within GPU memory, Fast Reduction SIMCoV-
GPU includes only the tree-like reduction described in section 3.3,

Memory Tiling SIMCoV-GPU uses the memory tiling described in

section 3.2 but forgoes the fast reduction method, and finally Com-
bined SIMCoV-GPU uses both optimizations in conjunction. We

collected profiling information experimentally on the Arizona State

University (ASU) Agave supercomputer using 4 V100 GPUs on a

single node. We performed a simulation with dense activity (1024

foci of infection (FOI)) and accumulated the total time in three

categories of work: updating agents, updating concentrations, and

reducing statistics. The results of this analysis are shown in figure 4.

These results first highlight that reductions take up a very large

portion of the computational workload, and are an important target

for performance improvement. We also see that both optimizations

provide some speedup on their own. Unsurprisingly, the fast reduc-

tion approach vastly outperforms the unoptimized version. Also

as expected, memory tiling reduces the runtime used on updating

agents (concentrations are included in the figure for clarity but do

not take considerable time to compute at this scale). It is interesting

that memory tiling also improves the performance of reductions,

likely due to the enhanced data locality reducing slow memory

accesses as the reduction kernel sweeps the simulation space. Fi-

nally, we see that the optimizations combine very effectively, which

indicates that their speedups come frommostly independent effects.

4 EVALUATION
We conducted an evaluation of the performance of SIMCoV-GPU

and compared it to a competitive baseline version of SIMCoV-CPU.

First, we conducted a correctness evaluation to verify that SIMCoV-

GPU and SIMCoV-CPU compute the same simulation. Next, we

evaluated how the two implementations of SIMCoV scale in three

ways: strong scaling, which highlights the benefit of more compute

resources for a static problem size; weak scaling, which reveals how

additional computational resources enable larger simulation do-

mains; and scaling foci of infection, which reveals how an important

variable of the simulation affects performance. The configurations

of our evaluations are shown in table 1. We chose these problem

sizes as a function of our available compute resources. We per-

formed three trials for each configuration, except in the FOI scaling

experiment where we only performed a single SIMCoV-CPU trial

at 512 FOI and no trials for SIMCoV-CPU at 1024 FOI. This was

due to limitations in the computational resources available for this

project.

The correctness evaluation was conducted on ASU’s Sol super-

computer [20] which features 61 GPU capable nodes, most com-

monly with 128 CPU cores and four NVIDIA A100s. The scaling

experiments were conducted on the NERSC Perlmutter supercom-

puter [2] which also has 128 CPU cores and four NVIDIA A100s

per node.

4.1 Correctness
Ideally, researchers can use either SIMCoV-CPU or SIMCoV-GPU

to investigate the same scientific questions without worrying about

semantic differences between the implementations. SIMCoV is in-

herently stochastic because many of its behaviors are generated by

pseudo-random number generators (PRNGs). These include which

epithelial cells become infected, when a T cell moves to a neighbor-

ing voxel, and many more. For modeling purposes, it is not critical

that the PRNG implementation in each version be identical—only

that they both provide the same long-term results on average.

We also note that the version of SIMCoV-CPU used for this paper

was slightly modified from the publicly available version referenced

by the original paper. We identified a source of nondeterminism

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale HPDC ’24, June 3–7, 2024, Pisa, Italy

0 100 200 300 400
runtime (seconds)

Unoptimized

Fast Reduction

Memory Tiling

Combined

SI
M

Co
V-

GP
U

Ve
rs

io
n

SIMCoV-GPU Optimization Breakdown

Work Category
Update Agents
Update Concentrations
Reduce Statistics

Figure 4: A breakdown of the runtime needed for components of a SIMCoV-GPU simulation broken down by the category of
the work being done. Four SIMCoV-GPU versions are plotted: an unoptimized version, a version that only implements fast
reductions with shared memory, a version that only implements memory tiling, and finally a version that implements both
optimizations.

Experiment Min. Dimensions Max. Dimensions Min. FOI Max. FOI Min. {GPUs, CPUs} Max. {GPUs, CPUs}

Correctness [10,000x10,000x1] [10,000x10,000x1] 16 16 {4,128} {4,128}

Strong Scaling [10,000x10,000x1] [10,000x10,000x1] 16 16 {4,128} {64,2048}
Weak Scaling [10,000x10,000x1] [40,000x40,000x1] 16 256 {4,128} {64,2048}
FOI Scaling [20,000x20,000x1] [20,000x20,000x1] 64 1024* {16,512} {16,512}

Table 1: Configuration of the performance evaluation of SIMCoV-GPU versus SIMCoV-CPU. Quantities that vary for an
experiment are indicated in bold. All varying quantities double from the previous trial starting from the minimum up to and
including the maximum. Computational units are reported as a tuple in brackets: {# of GPUs, # of CPUs}. *We were unable to
perform a 1024 FOI trial for SIMCoV-CPU due to computational resource limitations.

0 10000 20000 30000
Timesteps

0

1

2

3

4

5

6

7

Vi
ru

s C
ou

nt

1e7A) Virus
CPU
GPU

0 10000 20000 30000
Timesteps

0

20000

40000

60000

80000

100000

T
Ce

ll
Co

un
t

B) Tissue T Cells
CPU
GPU

0 10000 20000 30000
Timesteps

0

10000

20000

30000

40000

50000

60000

70000

Ep
i.

Ce
ll

Co
un

t

C) Apoptotic Epithelial Cells
CPU
GPU

Figure 5: Comparison of aggregate statistics between SIMCoV-CPU (blue) and SIMCoV-GPU (orange) as time-series over the
course of a simulated infection. The shaded region shows the minimum and maximum of the statistics across five trials. Plotted
are (A) the total count of virus in the simulation, (B) the total count of T cells within the tissue, and (C) the total count of
apoptotic epithelial cells.

HPDC ’24, June 3–7, 2024, Pisa, Italy Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

Stat (Peak) Pct. Agree. CPU STD GPU STD

Virus 99.68 3.1 × 10
5

2.2 × 10
5

T cells 99.01 715.82 648.05

Apop. Epi. Cells 99.42 201.09 355.81

Table 2: SIMCoV-GPU Correctness: We show the percent
agreement of simulation statistics at their peak as well as
the standard deviations of those statistics across five runs.
Presented statistics are peak virus count, peak tissue T cell
count, and peak apoptotic epithelial cell count.

related to thread ordering in the original implementation and modi-

fied it for our experiments. T cells could sometimes be more mobile

than expected, and that behavior depended in part on the number

of parallel processes used. We standardized this for SIMCoV-CPU

and SIMCoV-GPU by enforcing a staged version of T cell movement

in which all the T cells first prepare their moves and bindings in

one wave of computation, and then in the next wave they execute

the queued behavior. This produces more deterministic behavior

overall and is more interpretable than the previous implementa-

tion. This modification did not affect the parallelization strategy of

SIMCoV-CPU which still uses RPCs to handle tiebreaks.

Wemeasured correctness by comparing SIMCoV-GPU and SIMCoV-

CPU across five runs using the same parameter set. Both the SIMCoV-

CPU and SIMCoV-GPU evaluations were performed on the ASU

Sol supercomputer using 128 CPUs on a single node for SIMCoV-

CPU and 4 A100s on a single node for SIMCoV-GPU. We used a 2D

simulation of a slice of lung tissue 10,000 by 10,000 voxels in size

and ran each trial for 33,120 time steps. This duration equates to a

simulated time of approximately 23 days, which covers the most

common duration of a SARS-CoV-2 infection (and many others as

well).

We find that the long-run behavior of SIMCoV-GPU and SIMCoV-

CPU is very close given identical initial conditions. Over several

runs, the mean of important statistics, e.g., total quantity of each

possible epithelial cell state and total quantity of virus, track closely

throughout the simulation (figure 5). The percent difference of the

mean values of the most relevant statistics reported by SIMCoV

are shown in table 2. The peak quantities of virus and T cells are

two particularly important statistics for researchers using SIMCoV

in practice and the number of apoptotic cells depends highly on

the pseudorandom nature of the simulation, so we chose them to

study whether or not the two compute platforms produce similar

results. Specifically, no statistic was observed to vary more than

one percent between the two simulations over the course of their

runs, which is much tighter than overall precision of the model.

4.2 Strong Scaling
For our strong scaling experiment we selected a representative

problem size: a 10,000 by 10,000 2D slice of epithelial cells. We

chose this base problem configuration because it is approximately

the number of voxels (100 million) that fit into the A100s’ available

memory, and patient CT lung images are organized into multiple

2D slices. The simulation was instantiated with 16 FOI (spatially dis-

tinct seeds of the infection) and was executed for 33,120 timesteps.

{4
,1

28
}

{8
,2

56
}

{1
6,

51
2}

{3
2,

10
24

}

{6
4,

20
48

}

Compute Resources {GPUs, CPU Cores}

102

103

Ru
nt

im
e

(s
ec

on
ds

)

4.98 3.38
2.59

1.38 0.85

Strong Scaling
SIMCoV-CPU Optimal Scaling
SIMCoV-GPU Optimal Scaling
SIMCoV-CPU
SIMCoV-GPU

Figure 6: Strong scaling performance of SIMCoV-GPU (or-
ange) versus SIMCoV-CPU (blue). We doubled the number of
computational units for each subsequent experiment while
maintaining the simulation size throughout. The number
of GPUs and CPUs is shown as a tuple in brackets on the
𝑥-axis. The runtime of the simulations is plotted on the 𝑦-
axis in seconds. The plot is on a log-log scale. The speedup
of SIMCoV-GPU over SIMCoV-CPU is shown adjacent to the
black dashed-line separating the CPU runs and GPU runs.
Optimal scaling is approximated by starting with the mean
runtime of the smallest scale experiment, and halving it each
subsequent experiment.

The default COVID-19 parameters from Moses et al. [25] were used.

We started with 4 GPUs on a single node for SIMCoV-GPU and 128

CPU cores on a single node for SIMCoV-CPU. For each subsequent

trial we doubled the compute resources by doubling the number of

nodes. The measured runtime in seconds are reported in figure 6.

The results show that while SIMCoV-GPU significantly outper-

forms SIMCoV-CPU in the base case, it quickly saturates at this

problem size when more computational resources are allocated,

as seen by scaling curve deviating from optimal as the number of

GPUs increases. This is expected and highlights the limitation of

using more GPUs than is appropriate for a given problem size. Un-

surprisingly, it is more appropriate to use SIMCoV-GPU on larger

problems. A small number of GPUs can still greatly benefit small

simulations from their flat performance improvement over the cor-

responding amount of CPU cores. Such use cases include parameter

sweeps and data fitting for small simulations because they require

many runs with varied configurations.

4.3 Weak Scaling
Our base instance for weak scaling is identical to that for strong

scaling. Unlike strong scaling, however, each doubling of computa-

tion resources corresponds with a doubling of the problem size. At

each subsequent simulation configuration the FOI is also doubled

to fill the new space with proportional amounts of activity. Figure 7

shows the results of this experiment.

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale HPDC ’24, June 3–7, 2024, Pisa, Italy

{4
,1

28
}

{8
,2

56
}

{1
6,

51
2}

{3
2,

10
24

}

{6
4,

20
48

}

Compute Resources {GPUs, CPU Cores}

103

2 × 103

3 × 103

4 × 103

Ru
nt

im
e

(s
ec

on
ds

) 4.91 4.38 3.53

3.48 3.82

Weak Scaling

SIMCoV-CPU Optimal Scaling
SIMCoV-GPU Optimal Scaling
SIMCoV-CPU
SIMCoV-GPU

Figure 7: Weak scaling performance of SIMCoV-GPU (or-
ange) versus SIMCoV-CPU (blue). We doubled the number of
computational units, the simulation size in voxels, and the
number of FOI for each experiment. The number of GPUs
and CPUs is shown as a tuple in brackets on the 𝑥-axis. The
runtime of the simulations is plotted on the𝑦-axis in seconds.
The plot is on a log-log scale. The speedup of SIMCoV-GPU
over SIMCoV-CPU is shown adjacent to the black dashed-line
separating the CPU runs and GPU runs. Optimal scaling is
approximated as remaining constant from the mean of the
smallest scale experiment.

These results are more favorable to SIMCoV-GPU. We see again

that in the early trials SIMCoV-GPU outperforms SIMCoV-CPU. As

the problem size and computational units used increase together,

there is a higher initial cost of parallelism in SIMCoV-GPU as indi-

cated from the increase in runtime from 4 GPUs to 16. Once this

initial increase in runtime is paid, however, SIMCoV-GPU’s per-

formance remains nearly constant while SIMCoV-CPU begins to

suffer performance loss. This is evidence that SIMCoV-GPU enables

larger scale simulations that SIMCoV-CPU, such as the future goal

of simulating a full lobe or the full lung.

4.4 Foci of Infection
SIMCoV-GPU and SIMCoV-CPU provide alternative approaches

for minimizing the time spent iterating over inactive regions. Ad-

ditionally the most expensive parts of a SIMCoV execution occur

when the simulation space is highly active (a wide distribution of T

cells and infection). We compare the performance of SIMCoV-GPU

and SIMCoV-CPU under these scenarios by varying the initial con-

ditions of the simulation, which in this case is controlled by the

number of initial foci of infection, or FOI. Our FOI experiments were

conducted on 4 nodes (16 GPUs, 512 CPU cores) on a 2D slice of

epithelial cells with dimensions 20,000 by 20,000. This corresponds

to the 4-node weak scaling test. We leave all other parameters

identical to the baseline cases and present the results of the FOI

experiment in figure 8.

We find that increased FOI is SIMCoV-GPU’s strong suit. The

GPU implementationmaintains sublinear increase in runtime, while

102 103

FOI

103

104

Ru
nt

im
e

(s
ec

on
ds

)

3.53
5.16

7.68
11.97

FOI Scaling
SIMCoV-CPU
SIMCoV-GPU

Figure 8: Impact of increased foci of infection (FOI) on the
performance of SIMCoV-CPU (blue) versus SIMCoV-GPU
(orange). Experiments were performed on four Perlmutter
nodeswith sixteenGPUs and 512CPU cores total.Wedoubled
only the number of FOI for each experiment. The number of
FOI is shown on the 𝑥-axis. The runtime of the simulations is
plotted on the 𝑦-axis in seconds. The plot is on a log-log scale.
The speedup of SIMCoV-GPU over SIMCoV-CPU is shown
adjacent to the black dashed-line separating the CPU runs
and GPU runs.

the CPU version does not. This sublinear increase in runtime is

explained by the fact that as the number of FOI increases the simu-

lation approaches a state of maximum activity. As this threshold is

approached, the impact of additional FOI is reduced. We see that

SIMCoV-GPU benefits from this threshold at fewer FOI indicat-

ing less overhead from massive parallelism versus SIMCoV-CPU.

SIMCoV-GPU appears to be highly effective at rapidly completing

large simulations with widespread infections.

5 RELATEDWORK
Accelerating scientific codes has been an important focus of HPC

research throughout the field’s history. Recent work that deploys

scientific codes on multinode, multi-GPU systems emphasizes mod-

els such as particle-in-cell physics simulations or materials simula-

tions. These simulations generally do not face the challenge of local

entities in the simulation making arbitrary decisions (such as T cell

motion in SIMCoV), which simplifies the handling of communica-

tion boundaries. In this work we address that additional complexity

with a deterministic tiebreaking step during resource competition.

Related approaches to accelerate parallel ABMs use multithreading,

multiprocessing, or small counts of GPUs. Examples of work that

use multiprocessing, generally with MPI, include e.g., Care HPS [9],

the EMEWS framework [26], and Repast HPC [12]. In our work,

SIMCoV is deployed on many GPUs distributed across many nodes.

Aaby et al. investigated a latency hiding approach in ABMs for

multinode, multi-GPU setups, but they experimented with only a

single GPU per node [3]. Our work extends these earlier efforts by

considering more a more complex supercomputer deployment and

HPDC ’24, June 3–7, 2024, Pisa, Italy Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

a performance evaluation on larger jobs using multiple GPUs per

node and with UPC++ for GPU-to-GPU communication.

A related approach to report the experience of optimizing ABMs

is the work of Clascà et al. [11]. The authors describe optimizing

PhysiCell, an ABM that simulates cells, substrates, and their envi-

ronment using many computational threads. Their acceleration is

performed on multiple CPU cores in a single compute node. Our

work on SIMCoV-GPU builds on their work, extending ABMs to

multi-node supercomputer environments and to multi-GPU clus-

ters. Similarly, there is relevant work on ABM implementation for

GPUs. FLAME GPU is a framework that allows the modeling of

event based agent simulations on single GPUs [28]. Unlike these

previous works, SIMCoV-GPU includes considerations for scaling

on exascale supercomputers.

Other related work prepares other types of models besides ABMs

for exascale computing. Such models include particle-in-cell simu-

lations, chemical reaction simulations, thermodynamic flow simula-

tions, and many others. Recent developments for HPC simulations

in general include optimized octree construction for multi-GPU sys-

tems [22], adaptive-mesh refinement on fluid dynamics codes [13]

and various physics simulations across diverse compute architec-

tures [21, 32]. SIMCoV-GPU extends the field of HPC acceleration of

scientific codes by addressing the unique challenges of ABMs that

these other simulation frameworks generally do not face. In partic-

ular, SIMCoV-GPU reduces communication for autonomous agents

on communication boundaries during the resource competition

step.

6 DISCUSSION
Our performance evaluation shows that SIMCoV-GPU vastly out-

performs SIMCoV-CPU, particularly on large problem sizes when

the simulation has widespread viral/immune activity. In regards to

scaling, we see some mixed results due to performance plateaus

under certain conditions. In our strong scaling experiments we see

evidence that the cost of parallelism on GPUs outweighs the perfor-

mance gain of additional computational units when more than 16

GPUs are used. This can potentially be improved by optimizing the

memory footprint of SIMCoV-GPU to allow for larger simulations

to be executed on a small number of GPUs. We also see somewhat

poor weak scaling until more than 16 GPUs are utilized. This sug-

gests an initial cost of parallelism that requires sufficient problem

size and computational units to overcome. This is not a significant

issue for SIMCoV-GPU as it still out performs SIMCoV-CPU at all

the problem sizes in the weak scaling experiment, and achieves

a more healthy scaling behavior when many GPUs are used on

even larger problems. On the other hand, our FOI scaling results

are very promising. For a large simulation with many FOI causing

high levels of activity, SIMCoV-GPU provides an 11.9x speedup

over SIMCoV-CPU with a ratio of GPUs to CPUs of 32 to one. Ac-

cording to [2], the Perlmutter supercomputer has 32-bit floating

point performance of approximately 75TFLOPS on GPU nodes and

5TFLOPS of CPU nodes, equating to a maximum speedup of 15.6x.

Our weak scaling results show that as the size of the simulation

space increases, SIMCoV-GPU achieves and maintains a four-fold

advantage over SIMCoV-CPU. This result is encouraging for the

the future use of SIMCoV-GPU to study viral infections throughout

the lung. The total air volume of the average pair of healthy adult

human lungs is approximately six liters [15], which is a rough esti-

mate of the 3D space required for a true-scale simulation. With the

default configuration of SIMCoV using five cubic micron voxels,

this corresponds roughly to a simulation size of order 10
13

voxels—

far larger than any SIMCoV simulation run to date. To achieve this

scale will require exascale supercomputers, and SIMCoV-GPU will

enable us to use those resources efficiently. Once that scale of 3D

space is achieved, other spatial topologies such as fractal branching

airways can be easily tested by overlaying the topology on the

voxels.

Our results on performance scaling with FOI show how SIMCoV-

GPU will accelerate the scientific use of the model. An attractive

use case and validation for SIMCoV is to use patient CT scans to

initialize a simulation, then run the simulation and use it to predict

disease trajectories—first to validate the model, and ultimately, per-

haps for patient triage or to study possible interventions. CT scans

of diseased patients do not contain point-like initial infection loca-

tions, but instead feature large patchy lesions that are distributed

throughout the lung. Incorporating CT scans as initial conditions

requires that many (hundreds, thousands, or more) SIMCoV voxels

be initialized as FOI. In principle, with sufficient FOI, the simulation

will saturate, in the sense that adding additional FOI won’t degrade

performance, because most voxels will already be active. Our re-

sults show that SIMCoV-GPU reaches this point much sooner than

SIMCoV-CPU, demonstrating that SIMCoV-GPU reduces overhead

and achieves high levels of parallelism. These results also set the

stage for additional enhancements to the model, including new

behaviors and parameters. For instance, more detailed modeling of

the immune response, e.g., with additional immune cell and molec-

ular components, or modeling airway dynamics, all of which would

require additional computation per timestep.

SIMCoV is available as open source software and according to

forks of the public repository, it is already being used as a plat-

form for creating other ABMs. These ABMs include a simulation

of large populations of ant-like foragers and a large-scale model

of a coral reef ecosystem. SIMCoV-GPU will provide a straightfor-

ward path for these models to run on exascale supercomputers as

well. Adapting new models that use SIMCoV as a platform to use

SIMCoV-GPU instead will require developers to implement model

behaviors as kernels. The diffusion, T cell movement, and T cell

binding kernels cover a large range of possible behaviors that de-

velopers may need to implement from spreading concentrations

to spatial competition for resources. The most likely behavior that

would need a novel implementation is any kind of non-local inter-

action between agents. One idea for implementing this would be to

define the spatial topology and the interaction topology as separate

meshes which would allow the previous methods to work with-

out much adjustment to algorithms or communication techniques.

While our focus here was on large supercomputers, SIMCoV-GPU

also benefits ABM development by allowing runs to be executed

on personal computing GPUs on laptops or workstations. This

allows researchers to treat their personal hardware as a virtual

laboratory for developing smaller-scale ABMs that run efficiently.

The SIMCoV-GPU project is available publicly and open source at

http://bss.biodesign.asu.edu/projects/simcovgpu/.

http://bss.biodesign.asu.edu/projects/simcovgpu/

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale HPDC ’24, June 3–7, 2024, Pisa, Italy

6.1 Limitations and Future Work
Despite the near-optimal speedups we report in our evaluations,

there is always the possibility of additional improvements, and in

the future we plan to conduct additional performance evaluations

across more nodes, which will likely reveal new opportunities for

optimization. The performance evaluations we report in this paper

are somewhat limited in the number of nodes tested, due to the

computational resources we were able to access.

One interesting prospect would be moving to asynchronous

agent updates, which would reduce the burden of communica-

tion within GPUs and across the GPU network. The T cell and

epithelial cell behaviors in SIMCoV-GPU loosely resemble earlier

cellular automata (CA) approaches to biological modeling which

can sometimes be effectively computed asynchronously in paral-

lel [23]. SIMCoV-GPU could also potentially benefit from dynamic

domain decomposition, which would leverage interactions between

CPU cores and GPUs. Large empty regions could then be quickly

computed on the slowest hardware, using CPU processes for in-

stance, while the available GPU workhorses rapidly compute the

complex, activity-filled regions. Finally, regions of the simulation

could be approximately computed when they are light on agent

or environment activity. For instance, adaptive mesh refinement

(AMR) could be applied such that regions without much activity can

be computed at coarser scale, if the error cost was permissible [32].

7 CONCLUSION
This work presents SIMCoV-GPU, a simulation of viral lung infec-

tion that is deployed on multinode, multi-GPU supercomputers.

Several GPU-focused algorithms and optimizations were required

to achieve acceleration of the ABM, due to complexities arising

from unpredictable load balancing, resource competition among

agents, and the unique programming requirements of fast GPU

codes. Our performance evaluation of the multinode, multi-GPU

implementation reveals that as simulations become larger and more

complex, the scaling performance of SIMCoV-GPU significantly

dominates SIMCoV-CPU and achieves near-ideal speedups for the

ratio of CPU-to-GPU that we studied. Beyond its relevance for SIM-

CoV itself, we hope that this work will pave the way for many other

ABMs that can profit from running at exascale.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the partial support of NSF

(CCF2211750, CICI 2115075, IOS-8044276), ARPA-H, and the Santa

Fe Institute. The authors acknowledge Research Computing at Ari-

zona State University for providing HPC and storage resources

that have contributed to the research results reported within this

paper. The authors acknowledge the support of the UPC++ devel-

opers group for their helpful advice and support. Authors from

Lawrence Berkeley National Laboratory were supported by the

Applied Mathematics and Computer Science Programs of the DOE

Office of Advanced Scientific Computing Research under contract

number DE-AC02-05CH11231. This research used resources of the

National Energy Research Scientific Computing Center, which is

supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231.

REFERENCES
[1] Frontier supercomputer debuts as world’s fastest, breaking exascale bar-

rier. https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-

breaking-exascale-barrier. Accessed: 2023-10-23.

[2] Perlmutter architecture. https://docs.nersc.gov/systems/perlmutter/architecture/.

Last Accessed January 25, 2024.

[3] Aaby, B. G., Perumalla, K. S., and Seal, S. K. Efficient simulation of agent-based

models on multi-gpu and multi-core clusters. In 3rd International ICST Conference
on Simulation Tools and Techniques (2010).

[4] Andelfinger, P., and Uhrmacher, A. Optimistic parallel simulation of tightly

coupled agents in continuous time. In 2021 IEEE/ACM 25th International Sympo-
sium on Distributed Simulation and Real Time Applications (DS-RT) (2021), IEEE,
pp. 1–9.

[5] Axelrod, R. The dissemination of culture. Journal of Conflict Resolution 41, 2
(1997), 203–226.

[6] Axelrod, R., Daymude, J. J., and Forrest, S. Preventing extreme polarization of

political attitudes. Proceedings of the National Academy of Sciences 118, 50 (2021),
e2102139118.

[7] Axtell, R. L., and Farmer, J. D. Agent-based modeling in economics and finance:

Past, present, and future. Journal of Economic Literature (2022).
[8] Bachan, J., Baden, S. B., Hofmeyr, S., Jacqelin, M., Kamil, A., Bonachea, D.,

Hargrove, P. H., and Ahmed, H. Upc++: A high-performance communication

framework for asynchronous computation. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (2019), IEEE, pp. 963–973.

[9] Borges, F., Gutierrez-Milla, A., Luqe, E., and Suppi, R. Care hps: A high

performance simulation tool for parallel and distributed agent-based modeling.

Future Generation Computer Systems 68 (2017), 59–73.
[10] Chumachenko, D., Dobriak, V., Mazorchuk, M., Meniailov, I., and

Bazilevych, K. On agent-based approach to influenza and acute respiratory virus

infection simulation. In 2018 14th International Conference on Advanced Trends in
Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (2018),
IEEE, pp. 192–195.

[11] Clascà, M., Garcia-Gasulla, M., Montagud, A., Carbonell Caballero, J.,

and Valencia, A. Lessons learned from a performance analysis and optimization

of a multiscale cellular simulation. In Proceedings of the Platform for Advanced
Scientific Computing Conference (2023), pp. 1–10.

[12] Collier, N., Ozik, J., and Macal, C. M. Large-scale agent-based modeling

with repast hpc: A case study in parallelizing an agent-based model. In Euro-
Par 2015: Parallel Processing Workshops: Euro-Par 2015 International Workshops,
Vienna, Austria, August 24-25, 2015, Revised Selected Papers 21 (2015), Springer,
pp. 454–465.

[13] Davis, J. H., Shafner, J., Nichols, D., Grube, N., Martin, P., and Bhatele, A.

Porting a computational fluid dynamics code with amr to large-scale gpu plat-

forms. In 2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2023), IEEE, pp. 602–612.

[14] DeAngelis, D. L., and Grimm, V. Individual-based models in ecology after four

decades. F1000prime reports 6 (2014).
[15] Delgado, B. J., and Bajaj, T. Physiology, lung capacity. StatPearls [Internet]

(2022).

[16] Gerety, R., Spencer, S. L., Pienta, K. J., and Forrest, S. Modeling somatic

evolution in tumoregenesis. PLoS Computational Biology 2, 8 e108 (2006).
[17] Harris, M., et al. Optimizing parallel reduction in cuda. Nvidia developer

technology 2, 4 (2007), 70.
[18] Hernandez-Vargas, E. A., and Velasco-Hernandez, J. X. In-host mathematical

modelling of covid-19 in humans. Annual reviews in control 50 (2020), 448–456.
[19] Igehy, H., Eldridge, M., and Proudfoot, K. Prefetching in a texture cache

architecture. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware (1998), pp. 133–ff.

[20] Jennewein, D. M., Lee, J., Kurtz, C., Dizon, W., Shaeffer, I., Chapman, A.,

Chiqete, A., Burks, J., Carlson, A., Mason, N., et al. The sol supercomputer

at arizona state university. In Practice and Experience in Advanced Research
Computing. 2023, pp. 296–301.

[21] Katz, M. P., Almgren, A., Sazo, M. B., Eiden, K., Gott, K., Harpole, A., Sexton,

J. M.,Willcox, D. E., Zhang,W., and Zingale, M. Preparing nuclear astrophysics

for exascale. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis (2020), IEEE, pp. 1–12.

[22] Keller, S., Cavelan, A., Cabezon, R., Mayer, L., and Ciorba, F. Cornerstone:

Octree construction algorithms for scalable particle simulations. In Proceedings
of the Platform for Advanced Scientific Computing Conference (2023), pp. 1–10.

[23] Li, J., Köster, T., and Giabbanelli, P. J. Design and evaluation of update schemes

to optimize asynchronous cellular automata with random or cyclic orders. In

2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real
Time Applications (DS-RT) (2021), IEEE, pp. 1–8.

[24] Lu, L., Nguyen, R., Rahman, M. M., and Winfree, J. Demand shocks and supply

chain resilience: an agent based modelling approach and application to the potato

supply chain. Tech. rep., National Bureau of Economic Research, 2021.

https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://docs.nersc.gov/systems/perlmutter/architecture/

HPDC ’24, June 3–7, 2024, Pisa, Italy Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

[25] Moses, M. E., Hofmeyr, S., Cannon, J. L., Andrews, A., Gridley, R., Hinga,

M., Leyba, K., Pribisova, A., Surjadidjaja, V., Tasnim, H., et al. Spatially

distributed infection increases viral load in a computational model of sars-cov-2

lung infection. PLoS computational biology 17, 12 (2021), e1009735.
[26] Ozik, J., Collier, N. T., Wozniak, J. M., Macal, C. M., and An, G. Extreme-

scale dynamic exploration of a distributed agent-based model with the emews

framework. IEEE Transactions on Computational Social Systems 5, 3 (2018), 884–
895.

[27] Richmond, P. Resolving conflicts between multiple competing agents in parallel

simulations. In Euro-Par 2014: Parallel Processing Workshops: Euro-Par 2014 Inter-
national Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers,
Part I 20 (2014), Springer, pp. 383–394.

[28] Richmond, P., Walker, D., Coakley, S., and Romano, D. High performance

cellular level agent-based simulation with flame for the gpu. Briefings in bioin-
formatics 11, 3 (2010), 334–347.

[29] Sewall, J., Wilkie, D., and Lin, M. C. Interactive hybrid simulation of large-scale

traffic. In Proceedings of the 2011 SIGGRAPH Asia Conference (2011), pp. 1–12.
[30] Spies, T. A., White, E., Ager, A., Kline, J. D., Bolte, J. P., Platt, E. K., Olsen,

K. A., Pabst, R. J., Barros, A. M., Bailey, J. D., et al. Using an agent-based model

to examine forest management outcomes in a fire-prone landscape in oregon,

usa. Ecology and Society 22, 1 (2017).
[31] Wang, S., Pan, Y., Wang, Q., Miao, H., Brown, A. N., and Rong, L. Modeling

the viral dynamics of sars-cov-2 infection. Mathematical biosciences 328 (2020),
108438.

[32] Zhang, W., Myers, A., Gott, K., Almgren, A., and Bell, J. Amrex: Block-

structured adaptive mesh refinement for multiphysics applications. The Interna-
tional Journal of High Performance Computing Applications 35, 6 (2021), 508–526.

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Agent-Based Models
	2.2 SIMCoV

	3 Adapting SIMCoV to GPUs
	3.1 T Cell Algorithm
	3.2 Memory Tiling
	3.3 Fast Reduction
	3.4 Profiling Optimizations

	4 Evaluation
	4.1 Correctness
	4.2 Strong Scaling
	4.3 Weak Scaling
	4.4 Foci of Infection

	5 Related Work
	6 Discussion
	6.1 Limitations and Future Work

	7 Conclusion
	References

