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ABSTRACT
This article summarizes recent work in the field of Automated Pro-
gram Repair that was published in Transactions on Evolutionary
Learning and Optimization as Evolving Software: Combining Online
Learning with Mutation-Based Stochastic Search. Automated Pro-
gram Repair is a subfield of software engineering that has the goal
of repairing defects in software with minimal human involvement.
A popular approach combines random mutation with some form of
search, but these methods are highly conservative, because most
mutations are deleterious and can damage the program. We de-
scribe a method inspired by neutral mutations in biological systems
that splits the problem of finding useful mutations into two stages.
First, before a bug is identified, we generate mutations and screen
them for safety, discarding any that break required functionality
of the program. Then, when a software bug is reported, we rapidly
and dynamically test large subsets of the earlier-discovered pool of
mutations to find those that repair the defect. We implement this
method in an algorithm called MWRepair, which uses online learn-
ing to guide the aggressiveness of the search process. MWRepair
extends the reach of existing mutation-based techniques to repair
harder and more complex defects in programs.
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1 INTRODUCTION
Some of the earliest program repair tools [4] and some of the most
recent [5] use population-based evolutionary search. The surprising
success of population-based evolutionary algorithms in repairing
bugs in software spawned a subfield of software engineering called
Automated Program Repair [2]. Earlier work in APR has historically
used conservative search processes, because it is much easier to
break a program than it is to repair one [1]. Despite their successes,
current APR algorithms are still quite limited, which motivates our
work. Our work addresses these challenges using an algorithm,
MWRepair, designed with three key features. First, we combine
many neutral mutations to enable evaluation of more than one
mutation at a time, which reduces the cost of searching for repairs.
Second, we incorporate online learning to guide the search to the
optimal region of the search space, as characterized by our model.
Third, we precompute neutral mutations to reduce the cost of the
online search process, refactoring some of the expense normally
paid when the repair is needed to an offline, parallel process, which
can be reused for multiple bugs. This paper extends prior work that
evaluated parallel computation of the inputs (neutral mutations)
and studied several implementations of online learning to identify
the most efficient for this problem.

The main contributions of the paper are:
• An empirical analysis of the search space for mutation-based
program repair. Repairs are on average 42.4 times more fre-
quent in the optimal region of the search space for C pro-
grams (6.9 times more frequent for Java programs) as they
are one mutation away from the original.

• An evaluation of MWRepair with GenProg’s mutation oper-
ators on the Defects4J benchmark. MWRepair repairs signifi-
cantly more defects than two reference evolutionary tools for
Java, jGenProg and GenProg-A, and it discovers some repairs
that have not been repaired by any earlier tool, including
some multi-edit repairs.

• A quantification and visualization of all published Java repair
algorithms applied to Defects4J. We discuss the overlap and
uniqueness of the repairs generated by each algorithm.

2 METHODS
In this paper we are particularly interested in the search space for
evolutionary APR algorithms, focusing on the effect of combining
neutral mutations, which have previously been validated against
the test suite. We define the set of neutral mutations as {𝑚(𝑝) :
𝑓 (𝑚(𝑝)) = 𝑓 (𝑝)}, where 𝑝 is a program, 𝑓 (.) assigns a fitness value
to a program, and𝑚(.) applies a mutation to a program. Mutations
are generated relative to the original version of the program and
evaluated for neutrality using all positive test cases. These positive
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Figure 1: 10,000 independent random samples each of 𝒏 = 1 to 1,000 pre-computed neutral mutations. Y-axis: fraction of resulting
programs that are (a) neutral or (b) patch the defect. Empirical data shown in blue, best-fit model in red. Shades in (c) indicate
repair novelty: rare (found by 1 algorithm), uncommon (2–4 algorithms), or common (5+ algorithms). Data from all published
results for Defects4J.

tests define the required behavior of the program; only mutations
passing all positive tests are deemed neutral; they have the same
fitness as the original version of the program.

We assume that later, one or more (negative) test cases are added
that surface a latent defect in the program. These negative tests
initially fail, and a successful program variant must pass them
(while retaining positive test behavior) to be deemed a patch. Thus,
we define patches as {𝑚(𝑝) : 𝑓 ′ (𝑚(𝑝)) = 𝑓 ′ (𝑝∗)}, where 𝑓 ′ (.) is
the fitness function augmented with new, negative tests and 𝑝∗ is
the reference human repair in the benchmark.

3 SUMMARY OF RESULTS
As a case study, we consider the program units, a Unix command-
line utility for converting measurements into different units. units
is a C program with ≈ 1,000 lines of code (1 kLoC). We generated
all possible 41,344 atomic mutations to the buggy version of units
using GenProg’s mutation operators, i.e. all possible applications
of the append, delete, and swap operators applied to the parts of the
program covered by the original test suite. Figure 1(a) illustrates
the success rate (fraction of programs behaving normally) when
evaluating 𝑛 individually neutral mutations at a time. Figure 1(b)
plots the probability of finding patches (𝑦-axis) for each choice of 𝑛.
This established that it is safe and effective to search by combining
large numbers of neutral mutations. A fuller discussion of this that
includes evidence from other programs appears in the full paper.

We evaluatedMWRepair’s performance on the popular Defects4J
set of benchmark Java (buggy) programs. For each Defects4J sce-
nario, we precomputed a pool of neutral mutations within a maxi-
mum budget of 10k fitness function evaluations (usually resulting in
≈3000 neutral mutations). We then ran MWRepair with a limit of 1k
test suite evaluations for testing combinations of this precomputed
subset and summarize the outcome in Figure 1(c).

Here, we ask how oftenMWRepair finds repairs for bugs, relative
to the two independent implementations of the GenProg algorithm
for Java that have been evaluated against Defects4J: jGenProg [3]
and GenProg-A [6]. MWRepair identifies more than twice the num-
ber of repairs to bugs in the benchmark, and it discovers repairs

to harder bugs (measured by the proxy of repair rarity across all
known evaluations). Some of the repairs MWRepair finds are not
only unique relative to GenProg’s earlier results, but also relative
to all published algorithm evaluations on the Defects4J benchmark.

4 CONCLUSIONS
This paper investigated how to more effectively and efficiently
search the space created by a set of mutation operators inherited
from GenProg. MWRepair explores the search space differently
from other algorithms: its ambitious combination of mutations is
enabled by the use of neutral mutations. To apply this approach
efficiently, we precompute a set of neutral mutations for subsequent
use in online repair scenarios. We first established that combining
mutations can be safe and productive, and then showed that this is
effective for repairing harder and more complex bugs in programs.
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