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Abstract

New technologies have been developed to measure the expression level of thou-
sands of genes simultaneously. These genomic-scale snapshots of gene expression—
i.e. how much each gene is "turned on” —are creating a revolution in biology. How-
ever, such large-scale data also creates an urgent need for computational tools to

make sense of it all.

Genes encode proteins, some of which in turn regulate other genes. Now that
the human genome is within our grasp, we need to start thinking of the next step:
determining the structure of this intricate network of genetic regulatory interactions.

Many different modeling methodologies could be used to model such gene networks.

viii



Analysis of various network models shows that, given a sufficiently constrained model,
data requirements should scale well. Additive regulation models—where the regula-
tory inputs are combined using a weighted sum—can be used as a first-order approx-
imation to the gene network. We can infer regulatory interactions directly from the
data, by fitting these simple network models to large scale gene expression data. The
amount of data typically is insufficient to derive a fully determined network model.
Nevertheless, we can extract the most well-determined interactions in the network,
using knowledge of the error levels on the measurements in a Monte-Carlo analysis

of the resulting variability in the network parameters.

Using this methodology, a linear model is fit to a data set on development and
injury in the central nervous system. The results compare favorably with the liter-
ature on the genes involved. Next, a more realistic, nonlinear model is presented,
resulting in a set of nonlinear differential equations equivalent to a specific type of
recurrent neural network. This model should allow for a closer fit with the biological

reality, but requires more computational effort to fit to real data sets.
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Chapter 1

Introduction

SAM:

It could all be coincidental.

JACK:

There are no coincidences, Sam.

Everything’s connected, all along the line.

Cause and effect. That’s the beauty of it.

Qur job 1is to trace the connections and reveal them.
— Terry Gilliam (”Brazil”)

1.1 Functional Genomics

All science is either physics or stamp collecting.
— Ernest Rutherford, physicist

Genes code for proteins, some of which in turn regulate other genes. This network
of gene regulation, combined with protein interactions, can be very complex. The
traditional approach to research in Molecular Biology has been an inherently local
one, examining and collecting data on a single gene, a single protein or a single

reaction at a time. This is, of course, the classical reductionist stance: To understand
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the whole, one must first understand the parts. Over the years, this approach has led
to some remarkable achievements, allowing us to make highly accurate biochemical

models of such favorites as bacteriophage Lambda [183, 22].

However, with the advent of the “Age of Genomics” an entirely new class of data
is emerging. As the goal of structural genomics—sequencing entire genomes—comes

into sight, the focus is gradually shifting to functional genomics.

Specifically, functional genomics refers to the development and applica-
tion of global (genome-wide or system-wide) experimental approaches to
assess gene function by making use of the information and reagents pro-
vided by structural genomics. It is characterized by high throughput
or large scale experimental methodologies combined with statistical and

computational analysis of the results. [107]

Biology used to be a data-poor science, out of necessity having to rely on carefully
designed hypothesis and meticulously planned experiments. Over the past couple of
years, however, it has been rapidly evolving into a data-rich field, opening up the
possibility of data-driven research—for which Hood coined the term “discovery sci-
ence” [1]—rather than hypothesis-driven research. Such analysis-without-hypothesis
has often been compared pejoratively to a fishing expedition. But perhaps, as Gesh-
wind [83] states, it is “fishing, but with a stick of dynamite in a stocked pond”.
Obviously, there is a trade-off to be made between unbiased analysis—allowing for
the possibility of entirely innovative conclusions—and uninformed analysis—ignoring

all the accumulated wisdom of the field.

Unfortunately, the arrival of this flood of large scale data has so far not been ac-
companied by an equal abundance of computational techniques to handle the data.
Researchers who were used to looking at perhaps a few tens of measurements from

very focused experiments are suddenly faced with literally tens of thousands or even
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millions of measurements. Initially, analysis of this data was mainly of a descrip-
tive nature, consisting of little more than lists of how many genes were previously
unknown, which genes are under or overexpressed under certain circumstances, etc.
More recently, simple statistical techniques such as clustering and classification are
being discovered, and—occasionally—reinvented. The goal of this dissertation is to
develop computational tools to analyze this data at a higher level of complexity,
by attempting to determine the underlying network of regulatory interactions that

causes the behavior observed in these large scale measurements.

Of course, this large-scale data is an equally valuable resource for researchers who
are focusing on individual genes. But can we really expect to construct a detailed
biochemical model of, say, an entire yeast cell with some 6000 genes (only about
1000 of which were defined before sequencing began, and about 50% of which are
clearly related to other known genes), by analyzing each gene and determining all

the binding and reaction constants one by one?

Rather than waiting until we have worked out all the biochemical details, we
would like to be able to analyze such large systems in a genome-wide fashion at
some intermediate level of representation, without having to go all the way down
to the exact biochemical reactions. At the very least, such an intermediate-level
analysis could help guide the traditional biochemical approach towards those genes
most worthy of attention among these thousands of newly discovered genes. Ideally,
a sufficiently predictive and explanatory model at an intermediate level might obviate
the need for an exact understanding of the system at the biochemical level. For now,
we will be satisfied with “cherry-picking” the most salient features of the regulatory

networks, without trying to achieve an accurate model of the entire system.
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1.2 An intermediate representation

Everything is deeply intertwingled.
— Theodor Holm Nelson

I intend to focus on genetic regulatory networks at the level of single cells. This
ignores the extra complexity that comes with cell to cell interactions and spatial
differentiation (see Reinitz and Sharp [185] in Section 3.2 for example), but is still
of major importance to cellular biology. A biological system can be considered to be
a state machine, where the change in internal state of the system depends on both
its current internal state and any external inputs. The goal is to observe the state
of a cell and how it changes under different circumstances, and from this to derive
a model of how these state changes are generated. The state of a cell consists of
all those variables—both internally and externally—which determine its behavior.
Included are the concentrations of all the chemical species (DNA, RNA, proteins,
metabolites, etc.) involved in the inner working of the cell, concentrations in the
environment of the cell, receptors presented on the membrane, volume, position
in the cell cycle, location of structural components within the cell, and so on. A
sufficiently informative subset of these will have to be chosen, usually consisting of

concentrations of certain key elements within the cell.

It is unlikely we will ever achieve a simultaneous measurement of the full set of
important variables within a cell. In the immediate future, it seems likely we will
primarily be focusing on mRNA data, plus perhaps protein data (see Chapter 2).
Exogenous inputs or important intermediates which are missing in our set of measure-
ments are impossible (or at least very difficult) to model. It should be emphasized
that these models are, therefore, not intended to imply biochemical mechanism, but
merely a higher-level view of regulation. This distinction is especially important for

the small data sets used in Chapters 6 and 7.
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The intermediate representation most familiar to molecular and cell biologists is a
directed graph, with the nodes representing the key elements—often genes, proteins
or metabolites—being modeled, and the arcs representing how these influence the
production or destruction of others. To formalize this sort of description, we might
want to add weights—positive or negative—to these arcs, and define how the inputs
to a node interact. Figure 1.1 illustrates how a simple network model might be
represented. Even though it consists of only six nodes, the dynamical behavior of
the network is far from obvious. Nevertheless, the network representation provides a
clear and concise summary of the regulatory interactions, and higher-level structures

(such as the two pathways from a to e) can easily be extracted.

=
OB G

Figure 1.1: Example of a simple, 6-node regulatory network. For simplicity, no
input-output mapping is specified, and interactions have been given a sign (regular
arrowheads are positive, flat ones are negative) but not a specific weight. Nodes a
and e receive external inputs (e.g. signaling molecules). Nodes a and ¢ are auto-
inhibitory, i.e. they will repress their own activation. Notice also the two pathways
for upregulation of e by a.

1.3 Additive regulation models: A simple model

of gene interaction

One of the simplest ways to model a system of interacting variables is to assume

that the change in each variable over time is given by a weighted sum of all other
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variables!:
Ay; =Y wjiy; + b; (1.1)
J

where 7; is the level of the i¢th variable, b; is a bias term indicating whether ¢ is
expressed or not in the absence of regulatory inputs, and weight w;; represents the
influence of 5 on the regulation of :. We will say that A is a regulator of B if
the network model predicts a causal relationship between the level of A and the
change in level of B (i.e., an “arrow” in the network), regardless of the underlying
mechanism of this regulation. Note that this is a more general interpretation of the

terms “regulator” and “regulate” than is normally used in biology.

For a continuous-time system we get the corresponding differential equation:

dy;
—_— = Zwﬁyj -+ bZ (1.2)
dt 7

Because of the nature of interactions between regulatory factors, gene regulation
is often context sensitive, e.g. A upregulates C, but only if B is present as well.
The model presented here cannot implement such a nonlinear interaction between
A and B in the regulation of C. However, the model should be able to extract the
linear component of this regulation, i.e. that both A and B upregulate C, even if the

regulation is not independent.

Obviously, an additive model like this will be a gross simplification for almost
any natural system, but modeling a gene network with such a minimal model might
allow us to extract at least the “Most Significant Bits” of information we’re looking

for: Which genes regulate which other genes (i.e. which interaction factors w;; are

!With an additional noise component €(t), such a system is generally called a first-order
auto-regressive, or AR(1) time series model [95].
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nonzero)? If gene j regulates gene 4, is j an inducer or repressor of 7 (i.e. is wjy;

positive or negative)?

In Chapter 6, we will examine a purely linear model such as this, apply it to
real gene expression data, and compare the results with the literature on the genes

involved.

Note that the variables in Equation 1.2 can theoretically become negative, or
unboundedly large. Since these variables typically correspond to concentration lev-
els, we may want to impose realistic upper and lower bounds. Most genes exhibit
a sigmoidal dose response curve: As the concentration of the inducing regulatory
signals increases, the gene activation at first increases slowly, then more rapidly, and
finally saturates at a maximum level. For an added level of realism, we therefore add

a sigmoidal transfer function to Equation 1.2:
dy;
j

where S(-) is some sigmoidal function, e.g. S(z) = (1 +e %) !, S(z) = tanh(z),
or a more biologically justified dose-response curve (although it should be noted
that some studies indicate that the behavior of the entire network may not be very

sensitive to the exact shape of the sigmoid [85]).

Note that the addition of a nonlinear response also allows us to model a large
class of interesting nonlinear interactions between regulators. For example in the
example above, where both A and B must be present to upregulate C, wsc and wge
individually may be too small to exceed the lower threshold of the sigmoidal S(-),
but their combination may be large enough to cause a significant upregulation of

gene C.



Chapter 1. Introduction

Because decay of gene products is often an important factor in their regulation,

we can also add an extra decay term to each gene as follows:

dy;
J

where D; is the decay rate for gene 7. The resulting model is very close in form to
a specific type of recurrent neural networks, and can be fitted to real data in the
same manner. Chapter 7 develops such a model and describes tests of the model on

synthetically generated data sets.

The idea to use a neural network representation to model regulatory networks is
not new, dating back at least to Bray’s work on cell signaling and parallel distributed
processing networks [37]. The reasons for using a neural network model, rather than
a more general differential equation model, are twofold. The neural network has
a straightforward graphical representation which is close to what researchers are al-
ready used to—a very important advantage considering that refinement of these sorts
of models usually benefits greatly from collaboration with scientists in the field. Sec-
ondly, a large variety of efficient learning algorithms have already been developed for
neural networks, whereas determining the parameters in a more general differential

equation model would require more general-purpose optimization methods.

Various researchers have used variants of this representation to model genetic
regulatory networks. Most notably, Mjolsness, Reinitz and Sharp [164] used a gene
regulation model as in Equation 1.4, interspersed with a simple model of cell division,
to model small gene networks involved in pattern formation during the blastoderm
stage of development in Drosophila. Weaver et al. [241] used a discrete-time version
of Equation 1.3, and showed it is possible to reconstruct randomly created networks

of this kind, given enough time series data generated by the network.
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Unfortunately, with so many researchers arriving at similar models independently,
a variety of different names have been invented for them: connectionist model (Mjol-
sness et al. [164]), linear model (D’haeseleer et al. [66]), linear transcription model
(Chen et al. [51]), weight matrix model (Weaver et al. [241]). Considering the core of
all these models is the use of a weighted sum to implement gene regulation, I propose
we file them under the more general classification of additive requlation models®. This
distinguishes these models from other representations which may make use of weight
matrices, such as Savageau’s power law formalism([195]: dy;/dt = o; [1y;” —Bi [1y; ",
where the two terms account for the production and destruction of the gene prod-
uct ¢, v;; and wj; are the kinetic orders, and «; and §; the rate constants for these

elemental processes.

One implicit assumption of these models is that the concentrations of the chemical
species are continuous, i.e. that stochastic fluctuations due to single molecules can
be ignored. We know that this does not hold at least for some proteins which are
present in concentrations of only a couple of molecules per cell. Indeed, there are
indications that stochastic fluctuations may actually be exploited by some organisms
[22]. However, differential equations are widely used to model biochemical systems.
Hopefully, a continuous approach will prove to be appropriate for the majority of

interesting mechanisms.

1.4 Caution to the reader

A number of new technologies are producing a flood of genomic-scale data about the
internal state of a cell. Unfortunately, even though these data sets look large to a

biologist, they are large “along the wrong dimension”, i.e. a large number of variables

2In statistics, models consisting of a nonlinear function of a weighted sum of inputs are
also called Generalized Linear models [159], whereas models consisting of a weighted sum of
nonlinear (nonparametric) functions of inputs are called Generalized Additive models [231].
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are measured, but the number of individual measurements of any one variable is still

relatively small.

The network models employed here require a substantial number of data points.
For example, a common rule of thumb in the neural network community is to use at
least a couple times more measurements than weights in the network. This would
imply hundreds of data points for the small set of 65 genes used in Chapter 6, or tens
of thousands of data points for yeast (= 6000 genes). Conventional wisdom would
suggest that these sorts of models are underdetermined given the small number of

data points currently available.

Iintend to show that a shortage of data points does not invalidate the use of these
models, as long as we can determine which parts of the model are well determined
versus poorly determined. Indeed, much of this dissertation could be viewed as an
exercise in distinguishing the few nuggets of well determined interactions from an
otherwise poorly determined model. Unfortunately this does mean that it is not yet
possible to infer a complete network model as in Figure 1.1. For now, we will settle
for being able to infer those individual connections within the network which are

best supported by the data.

Even for those relatively well determined parts of the model, we may not be able
to show results with the same level of significance as with some simpler (but less
powerful) methods. However, I view this approach not so much as a direct way to
find “scientific truth” (however that is defined in one’s favorite discipline: P < 0.057),
but rather as a way to derive interesting new hypotheses to guide experimentalists

in further investigation.

No doubt, as the measurement technologies mature, and larger data sets become
publicly available (and calibrated with each other), the usefulness and accuracy of

the network models developed in this dissertation will increase. The trend towards
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data sets with large numbers of measurements (see Section 2.2.3) definitely bodes

well in that respect.

1.5 Overview

Chapter 2 will provide a brief overview of the technologies currently available for
measuring the internal state of a cell on a large scale, as well as some of the publicly
available data sets, with a focus on mRNA expression data and protein data. In
Chapter 3, I list some of the related work in this area, especially with respect to
techniques that have been used (or could be used) to infer genetic regulatory net-
works from large scale expression data. Chapter 4 will address some of the issues
that arise—and decisions that have to be made—when attempting to model genetic
regulatory networks, especially regarding trade-offs between realism and tractability

of the model.

In Chapter 5 I derive a number of estimates for how much data is needed for var-
ious simple network models, and compare this with the amount of data needed for
clustering—currently the most favorite analysis tool for gene expression data. Com-
bined with estimates from other sources, this provides a clear overview of the features
of a model that are important to reduce the data requirements: limited connectivity

of the network model, and restrictions on the type of regulatory functions.

In Chapter 6, I further develop the most simple type of additive regulation
models—a purely linear one. Such a linear model can be seen as a first-order ap-
proximation. I illustrate how this model can be applied to a real gene expression
data set, analyze the results in detail, and show that they compare favorably with

the literature on the genes involved.

Chapter 7 points out some weaknesses in the linear model and develops a more

11
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realistic network model, introducing a nonlinear dose-response curve, as well as a
separate mRNA decay term. Such a model—essentially a set of nonlinear differen-
tial equations—is equivalent to a specific type of recurrent neural network. I test
this methodology on some artificially generated networks, and explore a number of

standard techniques to improve the performance.

Finally, in Chapter 8, I will present my conclusions on the efficacy of these models,
present a number of ways to extend these results further, and look ahead at what

the future may bring, and how these models would fit in.

Large portions of this dissertation have been published previously, in collabora-
tion with Dr. Roland Somogyi and his team, who kindly provided the data used
in Chapter 6. In D’haeseleer et al.(1997) [65], I presented an initial analysis of
the first data set provided by this group, mainly focusing on clustering methods.
Little of this material is included here, except for occasional references (e.g. in Ap-
pendix A.1). In D’haeseleer et al.(1999) [66], I introduced the linear model, applied
it to all three data sets used in Chapter 6, and hinted at the “robust parameters”
approach used in Section 6.4.2 and the neural network model developed in Chapter 7.
Some of the neuroscience results in Chapter 6 are to be published in a book chapter:
Fuhrman et al.(2000, in press) [81], and the data requirement estimates (Chapter 5),
modeling issues (Chapter 4) and overview of clustering methods (Section 5.1.7 and
Appendix A) will appear in a review paper: D’haeseleer et al.(2000, in press) [64]
(reprinted here by permission of Oxford University Press). The published material
included here is primarily my own work, with the exception of some sanity-checking
and suggestions from Stefanie Fuhrman and Roland Somogyi on the neuroscience re-
sults in Chapter 6; and the clustering overview, which was co-written with Shoudan

Liang and appears here in Appendix A (copied verbatim from the review paper [64]).
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Chapter 2

Large scale measurements of

internal cell state

Data! Data! Data!, he cried impatiently.
I can’t make bricks without clay.
— A. Conan Doyle

What sort of data on the internal state of a cell would we lzke to have, in order to
reconstruct the genetic regulatory network? What sort of technologies are available
to biologists to measure the internal state of the cell on a genomic level? This
Chapter attempts to give a brief overview of the collection of large-scale expression
data, and to give a sense of the ever-increasing scale of the data sets that are publicly

available.

2.1 What are the important variables?

The state of a cell consists of all those variables—both internal and external-—which

determine its behavior. According to the Central Dogma of molecular biology, the

13
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activity of a cell is determined by which of its genes are expressed—i.e., which genes
are “turned on”, resulting in the active production of the respective proteins. When
a particular gene is expressed, its DNA is first transcribed into the complementary
messenger RNA (mRNA), which is then translated into the specific protein this gene
codes for. We can measure the level of expression of each gene—how much each gene
is “turned on”—by measuring how many mRNA copies are present in the cell. To

quote Eric Lander:

The mRNA levels sensitively reflect the state of the cell, perhaps uniquely
defining cell types, stages, and responses. To decipher the logic of gene
regulation, we should aim to be able to monitor the expression level of

all genes simultaneously ... [138]

The cartoon picture of the Central Dogma presented above is, of course, incom-
plete. Apart from the classical DNA — mRNA — protein pathway, the genes in
the DNA are themselves regulated by the presence or absence of certain proteins.
Furthermore, many of the interactions in the cell occur entirely at the protein level,
which can cause significant discrepancies between protein and mRNA levels. Stud-
ies investigating the correlation between steady-state protein and mRNA levels find
poor (r = 0.36 [94], r = 0.48 [18]) to moderately good (r = 0.76 [82]) correlations,
with 10 to 20-fold variation in protein levels for genes with the same mRNA levels.
(So far none have looked at the more interesting issue of whether changes in protein
levels can be explained by changes in mRNA level. l.e., is the variation of protein
levels due to a different “amplification constant” because of differences in translation
and protein decay rates, or is it primarily due to regulation at the protein level?)
Proteins can also undergo a number of different post-translational modifications, so
each mRNA may correspond to several functionally different versions of the protein

(depending on phosphorylation state, dimerization state, different protein folding,

14
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etc.) Clearly, protein levels also form an important part of the internal state of a

cell.

mRNA and protein levels do not make up the entire state of a cell. One could
imagine measuring a number of other parameters, including cell volume, growth rate,
methylation states of DNA, localization of proteins and mRNA within the cell, ion
levels in neurons, etc. One class of data which could be very important to measure
is levels of metabolites and nutrients. For example, DeRisi et al. [63] measured the
change in mRNA levels during the transition from glucose metabolism to ethanol
metabolism (the “diauxic shift”) in yeast. Glucose levels were measured to represent
how far into the diauxic shift the system was. It would have been interesting to
measure at the same time the ethanol level, as well as a number of other metabolites
involved such as acetate, pyruvate, glycogen, trehalose, etc. Specific assays exist for
many of the more common metabolites. However, in order to be able to measure
many of them simultaneously, we might want to use more general techniques. For
example, Arkin et al. [23] uses capillary zone electrophoresis [171] to measure eight

of the small molecular species in an in vitro glycolysis reaction.

Currently, most studies trying to infer expression mechanisms from cell state data
use mRNA levels, because they are the easiest to measure (especially with the new
large-scale gene expression technologies). Large-scale protein measurements tend to
be very incomplete (typically only measuring the highest abundancy proteins), but
can be supplemented with more exact measurements of individual proteins which
are known to play an important role. When collecting time series data for example,
protein levels could at least be collected at the start and end point. Similarly,
when measuring gene expression data on a process involving metabolism (and which
cellular process doesn’t?), ideally an effort would be made to quantify the most
important metabolite and nutrient levels. For now, I have decided to focus primarily

on mRNA data, in the hope that this will already give us a large part of the overall
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picture. If and when additional types of data become available, it should be feasible
to fit them into the same modeling framework. See, for example, Section 8.2.2 for a

suggested model incorporating mRNA and protein data.

2.2 mRNA levels

2.2.1 Oligonucleotide and cDNA microarrays

Most mRNA assays use probes consisting of single-stranded DNA sequences, either
derived from mRNAs via reverse transcription, or synthesized based on known mRNA
sequences. If the mRNA comes into contact with its complementary DNA probe,
it will form a stable mRNA-DNA hybrid. If mRNA labeled with fluorescent dye is
passed over the DNA probes, the amount of hybridization can be measured by the
amount of fluorescence at each probe and will be proportional to the amount of spe-
cific mRNA present, and hence to the level of expression of the corresponding gene.
(In practice, because of the higher stability of DNA over RNA, the mRNA’s are first
reverse-transcribed into cDNA. The “probes” then consist of DNA complementary

to the cDNA.)

Oligonucleotide arrays: One of the main proponents of this approach is Affy-
metrix, whose “GeneChip” arrays [76], consist of small glass plates with thousands
of oligonucleotide DNA probes (short stretches of nucleotides, typically 25-mers, in
Affymetrix’ case) attached to their surface. The oligonucleotides are synthesized
directly onto the surface using a combination of semiconductor-based photolithog-
raphy and light-directed chemical synthesis, as illustrated in Figure 2.1. Due to the
combinatorial nature of the process and the high-tech approach, very large numbers

of mRNAs can be probed at the same time. However, manufacturing and reading
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of the chips requires expensive equipment. Current chips have over 65,000 different

probes, with several probes (and controls) for each mRNA.
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Figure 2.1: Construction of an oligonucleotide chip through in-situ light-directed syn-
thesis. Photolithographic masks are used to protect specific areas of the chip surface
from light-directed activation. Nucleosides (A, T,C or G) will attach to the activated
sites. Using four complementary masks, all oligonucleotides under construction are
extended by one nucleoside. Due to the combinatorial nature of the synthesis process,
only 4n masks are needed for any number of length-n oligonucleotides.

Affymetrix currently manufactures GeneChip sets for >60,000 human genes and
EST’s (Expressed Sequence Tags, snippets of expressed mRNA); 30,000 mouse genes
and EST’s; all 6,400 yeast ORF’s (Open Reading Frames, putative genes); >8300
Arabidopsis genes and EST’s; >4200 known E. coli ORF’s plus probe sets for stable

RNA species and intergenic regions; as well as several special-purpose chip sets.

The following are some milestones achieved using this technology: In 1997, Wod-
icka et al. [251] illustrated the capability of oligonucleotide chip technology to do
genome-wide analysis on yeast gene expression. Holstege et al. [113] in 1998 used
various temperature-sensitive yeast mutants to dissect the regulatory interactions of

components of the transcription initiation machinery in yeast. In 1999, Winzeler
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et al. [250] published the start of an ongoing project to characterize the function
of all yeast genes using thousands of individual gene deletion mutants. Expression
time series were collected for 558 strains, at six time points during growth in rich
and minimal medium. Golub et al. [89] used oligonucleotide chip data to classify 38

bone marrow samples into different cancer types.

cDNA microarrays: Developed at Stanford University [197], these are a more
low-tech solution to mRNA measurement. The microarrays are glass slides on which
full-length ¢cDNA! has been deposited by high-speed robotic printing. They are
cheaper to manufacture and easy to read, but require handling a large number of

cDNAs, which makes them somewhat less scalable.

Microarray measurements are carried out as differential hybridizations to mini-
mize errors originating from cDNA spotting variability: mRNA from two different
sources (e.g control and drug-treated), labeled with two different fluorescent dyes, is
passed over the array at the same time, as illustrated in Figure 2.2. The fluorescence
signal from each mRNA population is evaluated independently, and then used to

calculate the expression ratio.

Because of the non-proprietary nature of the technology (the Brown lab at Stan-
ford even has an online guide [62] for building your own arrayer from scratch), this

is currently the most widely used technology in academia.

Some important milestones achieved with this technology: In 1997, DeRisi, Iyer
and Brown [63] published the first whole-genome gene expression measurements (ap-
proximately 6400 distinct cDNA sequences), a seven-point time series on the diauxic
shift (transition from sugar metabolism to ethanol metabolism) in yeast. In 1998,

Spellman et al. [217] published a set of yeast cell-cycle time series, consisting of three

1«cDNA”, or complementary DNA, is a long stretch of single-stranded DNA comple-
mentary to a full-length mRNA, typically 500-5000 bases long.
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Figure 2.2:

Gene expression measurement using differential hybridization to a cDNA microarray.
mRNA is extracted from two different sources (A and B) and labeled with a different
fluorescent tag. The microarray has a spot corresponding to each mRNA species,
containing the complementary DNA sequence. The spot for the longer mRNA species
(left) shows more fluorescence at the wavelength associated with the tag used for B,
the spot for the shorter mRNA species (right) shows more fluorescence from the tag
used for A.

microarray data sets, and one oligonucleotide data set which had been published ear-
lier by Cho et al. [53]. The four time series used different ways to synchronize the
cells. The longest time series contained 24 time points, spanning almost two and a
half cell cycles.? This is still one of the reference data sets for yeast (and for the
cell cycle in general). Richmond et al. [186] published the first whole-genome E. coli
expression measurements in 1999, using nylon membranes rather than glass slides.
More recently, Alizadeh et al. [9] used ¢cDNA microarray data to discover a previ-
ously unknown sub-classification within diffuse large B-cell lymphomas, associated

with significantly different survival of the patients.

2Synchronizing the cells is usually done by halting them in some stage of the cell cycle.
After release, the cells quickly lose synchrony, so in general one can only measure a few
cycles.
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Microarray variants: A number of variants of these approaches have been devel-
oped. Rosetta Inpharmatics developed their own manufacturing technique based on
in-situ oligonucleotide synthesis using inkjet technology [34], combining some of the
best properties of genechips (combinatorial synthesis based on sequence databases)
and microarrays (relatively low-tech printing and read-out). They claim to be able
to go from design—picking the mRNA sequences—to a finished array in a few hours.
Unfortunately, their technology is strictly proprietary, and they require collabora-
tors to do experiments on-premises at Rosetta. Recently, Hughes et al. [118] released
a large “compendium” of their yeast expression data, gathered under standardized

conditions allowing for comparisons between all measurements.

Other variants include the use of a digital micromirror array for light-directed
in-situ synthesis, avoiding the use of expensive photolithography masks for each chip
(Singh-Gasson et al. [207]); bubble jet printing technology for creation of cDNA
microarrays (Okamoto et al. [173]); and fiber-optic arrays, where each optical fiber

is tipped with a microsphere carrying oligonucleotide probes (Steemers et al. [218]).

2.2.2 Other approaches

SAGE: Serial Analysis of Gene Expression [236] uses a very different technique for
measuring mRNA levels. First, double stranded cDNA is created from the mRNA. A
single 10 base pair “sequence tag” (long enough to uniquely identify most genes) is cut
from a specific location in each cDNA. Then the sequence tags are concatenated into a
long double stranded DNA which can then be amplified and sequenced. This method
has two advantages: the mRNA sequence does not need to be known a priori—so it
will also detect previously unknown genes—and it uses sequencing technology that
many labs already have. The method is rather complex though, and requires a

large amount of sequencing. It has also recently been shown that the results contain
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significant biases [219].

In 1997, SAGE was used to analyze the set of genes expressed during three
different phases of the yeast cell cycle. A total of 4665 genes were detected [237]. In
1999, Velculescu et al. [235] analyzed 3.5 million tags from 19 normal and diseases
human tissue types, detecting a total of 84,103 unique genes (close to some estimates
of the total number of human genes). They found as many as 43,500 genes can be
expressed in a single cell type, although nearly one half of the mRNA content is
accounted for by only 623 genes. Recently, a public SAGE gene expression database

has been announced [139].

RT-PCR: Reverse Transcriptase Polymerase Chain Reaction is a somewhat more
orthodox approach, relying on amplification to measure low-abundance mRNA spe-
cies. The mRNA is first reverse-transcribed into ¢cDNA, and the cDNA is then
amplified to measurable levels using PCR. PCR is known to be somewhat error-
prone and may have slight differences in amplification factor, but RT-PCR uses
built-in calibration techniques to achieve high accuracy coupled with an excellent
sensitivity and a dynamic range covering 6-8 orders of magnitude. The method does
require PCR primers for all the genes of interest, and is not inherently parallel like
microarrays or SAGE, so automation is crucial to scale up. Nevertheless, it is gaining
in popularity because of it’s higher accuracy, partially as a way to check results from

microarray analyses.

Roland Somogyi at the NIH Laboratory of Neurophysiology has used this method
to measure the expression levels of 112 genes at nine different time points during the
development of rat cervical spinal cord [245], and 70 genes during development and
following injury of the hippocampus [212]. These are the data sets that were used to
construct a linear model in Chapter 6. See Section 6.2 for a more in-depth overview

of this data.
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2.2.3 Truly large-scale gene expression

We are now beginning to see individual publications reporting up to hundreds of
expression measurements at a time, starting with the combined cluster analysis of
79 yeast experiments (most of which were already published elsewhere) by Eisen
et al. [70]. More recently, Alizadeh et al. [9] published 128 microarray analyses
of 96 samples of diffuse large B-cell lymphoma, using a specially designed “Lym-
phochip” containing 17,856 cDNA clones. Alizadeh and Staudt [10] used the same
Lymphochip to extend this analysis to 242 experiments, adding measurements on
various other normal and malignant lymphocytes, as well as a total of thirteen time
series consisting of activation of T-cells and peripheral blood monocytes. In the same
issue, Manger and Relman [152]—also at Stanford—published a data set of 112 ex-
periments, containing thirteen times series on the response of monocytes against
various pathogens. Most recently, Hughes et al. [118] released the aforementioned
compendium of 300 mutations and chemical treatments in yeast, probably more than
doubling the current publicly available data on yeast. Several public gene expression

databases are also in development [71, 167, 168|.

2.3 Protein levels

Protein levels are harder to quantify than mRNA levels. The basic method, two-
dimensional polyacrylamide electrophoresis (2D-PAGE), is straightforward enough,
and has been around for about 25 years [172]. 2D-PAGE separates proteins on a
two-dimensional sheet of gel, first in one direction based on their isoelectric point,
and then in the other direction based on their molecular weight. The result is a
two-dimensional image with a large number of protein “spots” The intensity of each

spot is proportional to the amount of the specific protein present.
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It is not a priori known which protein each spot represents, although the position
of known proteins can be estimated. Also, new microsequencing and mass spectrom-
etry techniques allow spots to be identified with proteins of which the sequence is
known. Still, most spots on 2D gels tend to be unidentified as yet. Furthermore,
the resolution of the spots may not be high enough to separate all proteins, only
the highest expressed proteins form clearly identifiable spots (typically limited to
less than 1400-1500 spots per gel)[82, 93], and 2D gel results have traditionally been
hard to reproduce because of sensitivity to operating parameters and a host of pos-
sible artifacts. These problems have been somewhat alleviated by the use of highly

standardized protocols and higher accuracy techniques [33].

Despite these problems, 2D gel electrophoresis has been very productive the past
couple of years, with a number of proteome databases springing up around the world.
Currently, there are several 2D gel databases available for a variety of organisms. One
of the most important ones is the SWISS-2DPAGE database [20, 19], containing a

total of 692 entries from human, yeast, E. coli and Dictyostelium.
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Related work

This Chapter consist of two broad, partially overlapping segments. Firstly, those
techniques which were around when I started on this line of research and occasion-
ally served as inspiration for my own work, especially the “gene circuits” work in
Section 3.2. Other work in this category include Correlation Metric Construction
(Section 3.3), some of the early work on inference of Boolean networks (Section 3.4,
especially [213]), and the work on diauxic shift in Section 3.1. Secondly, there are
those techniques which have been introduced since then, some of which have oc-
casionally been influenced by my own early work, such as a few of the clustering
approaches in Section 3.5 (and Appendix A), some networks of clusters (Section 3.6,
in particular [239, 234]), and some of the work on Bayesian networks (Section 3.7, in

particular [165]).

3.1 Fitting known networks

So far, relatively little work has been done trying to fit such large-scale information

to known networks. One notable early example is in the work on diauxic shift in
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yeast [63]. The authors focused mainly on genes coding for enzymes known to play a
role in glucose or ethanol metabolism, using the expression data to quantify changes
in the different parts of the known metabolic pathway. Expression levels of one
deletion mutant and one overexpression mutant were measured as well. This study
merely observed how the expression levels for the enzymes changed to compensate for
the changes in demand for the different metabolic pathways. No effort was made to
propose a model for the regulation of these genes, i.e. to find the requlatory network

that maintains the metabolic network.

More recently, Roberts et al. [187] used large-scale gene expression data to eluci-
date the signaling and crosstalk in several yeast MAPK (mitogen-activated protein
kinase) pathways: the pheromone response pathway; the PKC (protein kinase C)
pathway activated by cell surface stress; the HOG (high-osmolarity glycerol) path-
way activated by osmotic stress; and the filamentous growth pathway. They exam-
ined a large number of mutants, under various amounts of exposure to the a-factor
pheromone, for a total of 46 experiments, and were able to verify—and clarify—the
known pathways. They also found evidence of higher-order interactions between the
pathways, such as the sequential activation of the pheromone and PKC pathways

during formation of mating projections.

The two examples above analyzed the data mainly in a classical reductionist,
one-gene-at-a-time fashion (with the exception of some cluster analysis in [187]).
For a more computationally-oriented analysis, Zien et al. [258] have suggested a
scoring function for putative pathways, based on how well they are supported by
gene expression data, and found that it assigns statistically significant scores to
biologically relevant pathways. von Dassow et al. [238] (see below in Section 3.2)
fit the parameters of a small predefined network to an idealized spatial pattern of

expression.
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3.2 Gene circuits: spatial patterns in development

Mjolsness, Reinitz and Sharp have used a neural network approach to model small
gene networks involved in pattern formation during the blastoderm stage of devel-
opment in Drosophila [164, 185]. Cell divisions at this stage are under the control
of a maternal clock, so they used a simplified cellular model with synchronized cell
divisions along a longitudinal axis, alternated with updating the gene expression lev-
els using a neural network. Simulated annealing was used to find a least-squares fit
to real gene expression data. Because of the hybrid nature of the model, classical
neural network learning algorithms do not apply. The lack of an efficient learning
algorithm implies that this method is limited to very small networks (6 genes and a

total of 50 parameters for the eve stripe example in [185]).

The model was able to successfully replicate the pattern of eve stripes (named
after the even-skipped gene) in Drosophila, as well as some mutant patterns on which
the model was not explicitly trained [204]. It has since also been successfully applied
by Marnellos et al.to early neurogenesis [154] and to the emergence of ciliated cells

in Xenopus [153].

Some of the methodology used in the work on the segment polarity network by von
Dassow et al. [238] shows distinct flavors of the gene circuit approach as well. They
proposed a simple network diagram (although more detailed than in the gene circuits
approach) of the segment polarity network in Drosophila, and attempted to find a
set of parameters that would fit the desired spatial pattern. This approach allowed
them to get around the significant problem of having to determine all the parameters
“from the ground up”, as in the work on modeling lysis-lysogeny switch in phage
Lambda [22]. They showed that their initial model could not be fit to the desired
spatial patterns, and found two additional interactions (supported by the literature)

that would allow a fit. The main difference from the gene circuits approach is that the

26



Chapter 3. Related work

latter generally makes no prior assumptions regarding the structure of the network,
while the work by von Dassow et al.starts with a fixed network structure, allowing

for a more detailed model.

3.3 Correlation Metric Construction

Adam Arkin and John Ross at Stanford University have been working on a method
called Correlation Metric Construction, to reconstruct reaction networks from mea-
sured time series of the component chemicals [21, 23]. This approach is based in
part on electronic circuit theory, general systems theory [48, 57, 58] and multivariate

statistics.

The system (a small chemical reaction model in [21], a reactor vessel with chem-
icals implementing glycolysis in [23]) is driven using random (and independent) in-
puts for some of the chemical species, while the concentration of all the species is
monitored over time. First, the time-lagged correlation (cross-correlation) matrix is
calculated, and from this a distance matrix is constructed based on the maximum
correlation between any two chemical species. This distance matrix is then fed into
a simple clustering algorithm to generate a tree of connections between the species.
Finally, the chemical species and the tree connecting them is displayed using multi-
dimensional scaling (MDS), mapping each species to a point in 2D space while trying

to preserve the distances between each prescribed in the distance matrix.

So far, they have not used the information regarding the time lag between species
at which the highest correlation was found, which could be useful to infer causal
relationships. Also, they have not yet taken advantage of more sophisticated methods
from general systems theory, based on mutual information, to infer dependency. They

are currently working on both of these issues.
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3.4 Reverse engineering of Boolean networks

Boolean networks were first introduced by Kauffman in the late 60’s [129] as an
abstraction of genetic regulatory networks: each gene is modeled as being either
“ON” or “OFF”, and the state of each gene at the next time step is determined by
Boolean function of its inputs at the current time step. Despite their extreme sim-
plicity, Boolean networks have proven useful for developing insights in the behavior
of large interconnected networks [130]. Clear analogies are found for such concepts as
cell types (attractors in state space), differentiation (transition between attractors),
stability of expression patterns (basins of attraction), and so on. Based on the—
somewhat debatable—hypothesis that real gene regulation networks should exhibit
features of random Boolean networks (RBN’s), he derived plausible scaling laws for
the size and number of attractors (showing a similar scaling coefficient as is found
when plotting number of cell types versus size of DNA for a variety of species), and
illustrated the importance of the degree of connectivity of the network, and the type
of Boolean functions on its dynamical behavior (showing that for similar number of
inputs and Boolean functions found in the biological literature, RBN’s are close to
the “edge of chaos”, i.e. show near maximal complexity, between completely ordered

and completely disordered).

Despite the poor fit of the Boolean network models to biological reality (see also
Section 4.2), they have recently been used for the analysis of real gene expression
data [214, 213, 223, 142, 3, 4, 6, 5, 128, 117, 119]. A variety of algorithms has
been developed for reverse engineering of Boolean networks, starting with Somogyi
et al. [213]. The work of Akutsu et al. [3, 4, 6, 5] has been especially productive,
with careful analysis of computational complexity and sample complexity of several
variants, including noisy Boolean networks [6, 5]. Both Akutsu et al. [3] and Ideker
et al. [119] look at the issue of learning from overexpression or underexpression

mutants; and Karp et al. [128] and Ideker et al. [119] suggest ways to determine the
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optimum set of additional experiments.

One avenue that has been largely unexplored—despite the use of the “reverse engi-
neering” term—are the algorithms developed in the engineering community. Reverse
engineering has a long history in electrical engineering of digital circuits [127, 158]:
given a certain specification of the desired input-output mappings, what is the cheap-
est way to design a digital circuit to implement this? Several highly efficient algo-
rithms exist, some of which, such as ESPRESSO [39, 38], are publicly available.
Some of the assumptions on which these algorithms rely do not necessarily make
biological sense, such as minimizing the number of gates to implement the Boolean
functions.! A special purpose reverse engineering tool for biological networks would
also allow the networks to be biased towards biologically plausible features (types
of Boolean functions, number of inputs per gene, reuse of inputs from important

regulators, etc.).

Real gene expression levels tend to be continuous rather than discrete, however,
and discretization can lead to a large loss of information, as described in [65]. Further-
more, important concepts in systems theory, such as positive and negative feedback,
either cannot be implemented with discrete variables, or lead to a radically different

dynamical behavior (see also Section 4.2).

3.5 Co-expression clustering

Currently, by far the most popular computational technique for large-scale analysis
of gene expression data is clustering of genes (or experiments) based on similarity
of expression patterns. This method is only tangentially related to gene network

inference (with the exception of Sections 3.5.1 and 3.6), but because of its importance

L Although analysis of data collected by Harris [99] shows that Boolean abstractions of
real regulatory function in the literature do tend to be of minimal complexity in this sense.
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in analyzing gene expression patterns, it is included here for completeness. Much of
the material in this section can also be found in [64]. Briefly, a clustering method
generally consists of two distinct components: a distance measure that indicates
how similar two gene expression pattern are (or more generally, two clusters); and
a clustering algorithm, which uses some heuristics to identify clusters of similar
gene expression patterns, based on the distance measure. The section of our review
paper on specific distance measures and clustering algorithms used in gene expression

analysis is reproduced here in Appendix A.

For further information on coexpression clustering, Claverie [55] provides a pre-
liminary review of gene expression analysis techniques, focusing on coexpression
clustering. Niehrs and Pollet [169] provide an overview of very tightly coexpressed
groups of genes (which they call “synexpression groups” that have been identified
based on large-scale gene expression data. Some useful textbooks on clustering in-
clude Massart and Kaufman [155], Aldenderfer and Blashfield [8] and Kaufman and

Rousseeuw [131].

There are three broad areas of application for co-expression clustering: (1) ex-
traction of regulatory motifs (co-regulation from co-expression); (2) inference of func-

tional annotation; (3) classification of cell types, tissue samples, etc.

3.5.1 Extraction of regulatory motifs

The transcriptional regulation of a gene occurs primarily by binding of various regu-
latory proteins—transcription factors—to the DNA just “upstream” from the start-
ing position of the actual gene—the promoter region. Interactions between these
transcription factors, other regulatory proteins and the RNA polymerase complex
(responsible for transcribing the DNA of the gene into mRNA) determine whether

transcription of the gene is initiated. Each transcription factor binds to a specific
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pattern of DNA in the promoter, so the presence or absence of these “motifs” influ-

ences how the gene is regulated.

If the promoter regions of the genes are known—as is the case for yeast—it is
possible to identify the regulatory motifs shared by a cluster of genes with very
similar expression levels throughout a number of experiments. In other words, it
is possible to infer co-regulation from co-expression. Hampson et al. [96] found
that genes with extremely similar upstream regions have similar activity levels. A
variety of algorithms to extract common regulatory motifs from gene clusters have
been developed [40, 189, 233, 252, 257, 96, 111, 208, 44]. For example, Tavazoie
et al. [228] identified eighteen biologically significant DNA-motifs in the promoter
region of genes clustered based on yeast cell-cycle data [217]. Most motifs were
highly selective for the cluster in which they were found, and seven were known
regulatory motifs for the genes in their respective clusters. If we can combine this
knowledge with identification of proteins binding to these regulatory motifs [170],
it may be possible to build up the network of regulatory interactions regulator by

regulator.

3.5.2 Inference of functional annotation

Considering the wealth of data coming out of various genome projects, it is no sur-
prise that the function of the majority of sequenced genes is currently unknown. If
an unknown gene tightly clusters with a number of genes which all have the same
function, we may be able to use “Guilt By Association” [240] to infer the function
of the unknown gene. For example, in developing rat spinal cord, co-expression clus-
ters were found to segregate according to functional genes families [245]. Tavazoie
et al. [228] found clusters to be significantly enriched for genes with similar func-

tions. Chu et al. [54] identified yeast genes with previously unknown functions based
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on their expression pattern during sporulation, and confirmed their functional role

through deletion experiments.

3.5.3 Classification

One of the most popular uses of gene expression data is for classification tasks such
as identifying and distinguishing cell types, tissue samples, malign versus benign
cancers, etc. Especially classification of cancer samples has received a lot of in-
terest [256, 179, 89, 240, 9, 29, 209, 188, 198, 46, 180]. Because of its promise as
a diagnostic tool, this could very well be the first application of gene expression

technology that will have a direct impact on how medicine is routinely performed.

For classification, one often clusters “along the other dimension”, i.e. clustering
samples based on similarity of expression levels across a number of genes, rather than
clustering genes based on similarity of expression levels across a number of samples.
In some instances, it has proven useful to cluster along both dimensions [243, 70, 13,

9, 52]. Such two-way clustering also allows for easy visualization of the data.

Clustering is typically unsupervised, without any prior knowledge of classes in the
data. In this case it takes on an explorative role, and can be used to discover classes to
explain heterogeneity within the samples. For example, Golub et al. [89] were able to
automatically derive a classification to distinguish between acute myeloid leukemia,
and acute lymphoblastic leukemia. Alizadeh et al. [9] classified samples of large
B-cell lymphoma (DLBCL) into two distinct—and previously unknown—subtypes.
The newly discovered classes corresponded to significantly different survival times,

and should probably be considered separate diseases.

Clustering can also be supervised, with knowledge of what classes the samples
belong to. In this case the goal is to discover an efficient classifier that can be used

on samples with unknown classification; or to discover genes which are associated
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with the classes in question—which may clarify the reason behind the existence of
the classes. Although we have mentioned classification within the context of cluster-
ing, classification has a long history within the Artificial Intelligence and Machine
Learning communities. Some of these methods are now being applied to classifica-
tion of expression patterns as well. For example, Brown et al. [42] investigates the
use of Support Vector Machines (SVM’s) to predict functional roles for unknown
yeast genes. Ben-Dor et al. [29] compares SVM’s, Boosting [202], and their own

clustering-based classifier [30].

3.5.4 Which clustering method to use?

Currently, the most popular clustering techniques are the agglomerative hierarchi-
cal clustering algorithm of Eisen et al. [70], the self-organizing maps of Tamayo
et al. [225], and—Dbecause of its simplicity—the K-means algorithm. However, this
may reflect a premature convergence on easily available tools [69, 224] (and appealing

visualization of results), rather than a consensus on a set of best practices.

Different clustering methods can have very different results, and—at this point—
it is not yet clear which clustering methods are most useful for gene expression
analysis. Each combination of distance measure and clustering algorithm will tend
to emphasize different types of regularities in the data. Some may be useless for
what we want to do. Others may give us complementary pieces of information. Jain

and Dubes [124] state:

There is no single best criterion for obtaining a partition because no
precise and workable definition of “cluster” exists. Clusters can be of any
arbitrary shapes and sizes in a multidimensional pattern space. Each
clustering criterion imposes a certain structure on the data, and if the

data happens to conform to the requirements of a particular criterion,
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the true clusters are recovered.

It is impossible to accurately evaluate how “good” a specific clustering is without
referring to what the clustering will be used for. However, once an application has
been identified, it may be possible to evaluate the quality of the clustering for that
particular application. For example, if we want to extract regulatory motifs from
clusters, we can compare clustering methods based on the P-values (i.e., significance
levels) of the resulting motifs. Similarly, for functional classification, we can com-
pare P-values associated with enrichment of clusters in certain functional categories.
It is unlikely that there would be a single best clustering method for all applica-
tions. Considering the overwhelming number of combinations of distance measures
and clustering algorithms—far too many to try them all each time—the field is in
dire need of a comparison study of the main combinations for some of the standard
applications, such as functional classification or extraction of regulatory motifs. A
promising development in this respect is the upcoming Critical Assessment of Tech-
niques for Microarray Data Analysis (CAMDA) Conference [143], which “aims at
establishing the current state of the art in microarray data mining, identifying what
progress has been made, and highlighting where future effort may be focused.” Ye-
ung et al. [254] also developed a number of internal and external criteria for cluster
validation. Internal criteria look at internal properties of the clustering, such as
variance within versus between clusters, while external criteria compare a clustering

result to a given “gold standard”.

If we want to use gene clusters to infer regulatory interactions, synthetic data
generated from small but detailed models of regulatory networks could provide a
useful touchstone for comparing clustering methods. Preliminary results comparing
SOM, K-means, FITCH and Autoclass—all using Euclidean distance—showed very
poor performance of all clustering methods in identifying a metabolic pathway with

associated regulation of the enzymes by the metabolites [160].
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Because of the nature of genetic regulation, there is no reason to require each
gene to fall in only one single cluster—as many of the standard algorithms do. A
gene may have several functional annotations, and its promoter region may contain
several regulatory motifs. As more data becomes available to accurately delineate
expression behavior under different conditions, we should consider using some of the
clustering methods that partition genes into non-exclusive clusters. Alternatively,
several clustering methods could be used simultaneously, allocating each gene to

several clusters based on the different regularities emphasized by each method.

3.5.5 Related methods

The clustering methods mentioned so far are inherently local methods, depending
on local clumping of genes in the high-dimensional space determined by the exper-
iments. An alternative approach is to examine some of the more global properties
of the data, using principle component analysis (PCA), or the related singular value
decomposition (SVD).?2 The assumption is that the principle components of gene
expression may represent independent regulatory processes. This assumes of course
that the expression level of each gene can be decomposed into a linear superposition

of regulatory processes.

For example, Raychaudhuri et al. [184] find that over 90% of the variation in the
yeast sporulation data set by Chu et al. [54] can be explained by the first two principle
components. Similarly, Holter et al. [114] use a more elaborate pre-processing and
SVD to extract the “characteristic modes” of gene expression in the same sporulation
data set [54], a yeast cell cycle time series from Spellman et al. [217], and a time

series of serum-treated human fibroblasts from Iyer et al. [122]. They found the

2Although the popular clustering method by Eisen et al. [70] uses SVD for the final
ranking of genes, this is not really part of the clustering algorithm itself, but mainly done
for visualization purposes.
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first two modes to capture 76%, 62% and 69% of the variation, respectively. Alter
et al. [14] used a similar analysis (although with greater emphasis on normalizing and
filtering the data) on two other cell cycle time series from Spellman et al. [217], finding
approximately 40% of the variation in the top two “eigengenes”. As expected, in each
case the two first modes for the cell cycle time series are approximately sinusoidal and
90° out of phase. It remains to be seen whether these techniques will tell us anything
more than that many genes show broad trends in gene expression across all genes.
At the very least they may provide a useful tool for data filtering and dimensionality

reduction, whether for visualization or for further computational manipulation.

Hastie et al. [102] developed a clustering technique which can be thought of
as finding representative clusters for each of the principal components in the data,
which performs quite well in a supervised setting for classification of diffuse large
B-cell lymphoma [9] based on survival time. Note that all these approaches may be
adversely affected by highly correlated experiments (such as neighboring samples in

a time series, or multiple copies of the cell cycle).

3.6 Networks of clusters

One of the main problems in trying to derive networks of regulatory interactions from
large-scale expression data is the dimensionality of the data sets. With this in mind,
several groups have tackled the easier problem of deriving regulatory interactions
between clusters of genes. At least two of these [239, 234] were inspired by my own
work on linear models of rat CNS expression levels (Chapter 6, [66]). As with SVD (or
PCA) based analysis of gene expression data (Section 3.5.5), this approach tends to
analyze broad, general trends. It is as yet unclear how these results can be extended
to specific regulatory interactions, or whether they will give us a higher-level insight

of coordination between functional “modules” within a cell.
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Wahde and Hertz [239] reduced 65 genes from the rat CNS data sets [245, 212]
(see also Section 6.2) down to the four “waves” of expression identified in [245] using
the FITCH hierarchical clustering algorithm [73], and then used a genetic algorithm
(GA) to derive a small, 4-node recurrent neural network, similar to the ones used in

Chapter 7 (although without the extra decay term).

Chen et al. [50] used average linkage clustering to reduce 3131 significantly fluctu-
ating genes in the yeast cell cycle data set from Cho et al. [53] down to 308 clusters,
then used simulated annealing (SA) to optimize a qualitative network based on tim-

ing of peaks in the data.

Mjolsness et al. [162] used Expectation-Maximization (EM) to reduce 2467 genes
from the combined yeast data set in Eisen et al. [70] down to 15 clusters, and then
used SA to derive a recurrent neural network (identical to the type used in Chapter 7)

of part of one of the cell cycle time series from Spellman et al. [217].

Van Someren et al. [234] took the same 2467 yeast genes in Eisen et al. [70],
drastically reduced this set by excluding those whose expression ratio never exceed
+2-fold, then used complete linkage clustering to reduce them further to 7—1 clusters
(where T is the total length of the time series), then generated a linear model (as in
Chapter 6) of the cdcl5 and a-factor time series from Spellman et al. [217] (T' = 15
and T = 18 respectively). 3

3.7 Bayesian networks

Bayesian Networks model each variable as a conditional probability function with

respect to a subset of the other variables. Their stochastic nature makes them

3T — 1 is the largest number of variables for which the linear model of Chapter 6 is
well-determined, given a time series of T' data points.
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excellent candidates for modeling gene regulation systems where we may expect to
see stochastic effects, or simply data sets with large amounts of noise. Learning
algorithms for both the structure and parameters of Bayesian networks have been
developed [43, 103]. Bayesian networks tend to generalize better than regular neural

networks, and can be used for causal inference.

Most research on Bayesian networks so far has focused on acyclic networks (Di-
rected Acyclic Graphs), and static systems with discrete variables and/or linear
Gaussian models. Hofman and Tresp [110] present an approach to learning Bayesian
networks of continuous variables with nonlinear interactions, using nonparametric
density estimation, but it is unclear how well this technique would work with limited

amounts of data.

Friedman et al.used Bayesian networks to generate a causal model of the yeast
cell cycle data from Spellman et al. [217], using either a model with discretized
expression levels (e.g. Boolean, or underexpressed / normal / overexpressed) [78],
or a linear Gaussian model [79]. The latter treats the expression level of a gene
as being normally distributed around a mean which is a linear sum of inputs. The
implicit assumption of a static model (i.e. relating the expression levels at a single
point in time with respect to each other) may be valid for developmental time series
which we can assume to be in a quasi-equilibrium most of the time, but may be
problematic for the cell cycle data, where sampling rate was typically on the same
order of magnitude as initiation of transcription.* Therefore, rather than true causal
relationships, the results may reflect co-regulation of genes. Likewise, the assumption
of an acyclic network is a poor fit for the data (i.e. they construct an acyclic model
of the cell cycle). However, as the authors suggest, it is also possible to generate

temporal models, describing the future expression levels based on the current levels.

4Sampling rate was as fast as 7 minutes per time point for a-factor synchronization [217],
whereas yeast mRNA half lives (which also determine the rate of increase of mRNA lev-
els [98]) average around 20 minutes [112]
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(Alternatively, one could relate the current slopes in gene expression with the current
expression levels. In fact, a linear Gaussian Bayesian network of the expression slopes
with respect to the expression levels would be largely equivalent to the linear model

proposed in Chapter 6.)

Dynamic Bayesian networks (DBN’s) can be generated by “unrolling” the net-
work in time. They are no longer restricted to equilibrium situations, nor to acyclic
networks (as long as there is at least one time delay involved in any cycle). Murphy
and Mian [165] provide an excellent overview of different DBN variants and their
learning algorithms, and how these relate to various gene expression models. In
particular, they point out the similarity of learning DBN’s with discrete variables
and unknown structure, to Boolean network reverse engineering algorithms such as
REVEAL [142]; mention the issue of inventing hidden nodes in the case of partial
observability; show the equivalence of linear Gaussian DBN’s and the linear model
used in Chapter 6; and suggest the use of the Extended Kalman Filter or recurrent

neural networks techniques [177] as in Chapter 7 for the nonlinear case.
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Modeling issues

The sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct, which, with the
addition of certain verbal interpretations, describes observed phenomena. The

gustification of such a mathematical construct is solely and precisely
that it is expected to work.
— John von Neumann

Various types of gene regulation network models have been proposed, and the
model of choice is often determined by the question one is trying to answer. In this
Chapter we will briefly address some of the decisions that need to be made when
constructing a network model, the tradeoffs associated with each, and the choices

made for the modeling approaches in this dissertation.

4.1 Level of biochemical detail

Gene regulation models can vary from the very abstract—such as Kauffman’s random
Boolean networks [130]—to the very concrete—like the full biochemical interaction

models with stochastic kinetics in Arkin et al. [22]. The former approach is the
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most mathematically tractable, and its simplicity allows examination of very large
systems (thousands of genes). The latter fits the biochemical reality better and may
carry more weight with the experimental biologists, but its complexity necessarily
restricts it to very small systems. For example, the detailed biochemical model
of the five-gene lysis-lysogeny switch in Lambda phage [22] included a total of 67
parameters—resulting from almost 50 years of research on Lambda—and required

supercomputers for its stochastic simulation (in 1998).

In-depth biochemical modeling is very important for understanding the precise
interactions involved in common regulatory mechanisms. However, it is doubtful we
could construct such a detailed molecular model of, say, an entire yeast cell with some
6000 genes by analyzing each gene individually and determining all the binding and
reaction constants for each molecular interaction one-by-one—at least not in the near
future. Likewise, from the perspective of drug target identification for human disease,
we cannot realistically hope to characterize all the relevant molecular interactions
one-by-one as a requirement for building a predictive disease model. There is a need
for methods that can handle large-scale data in a global fashion, and that can analyze
these large systems at some intermediate level, without going all the way down to
the exact biochemical reactions. For this reason, and because of the limited amount
of data available, we will choose a more abstract model, and attempt to infer very

general regulatory interactions without specifying the precise mechanism.

4.2 Boolean or continuous

The Boolean (ON/OFF) approximation implicitly assumes highly cooperative bind-
ing (very “sharp” activation response curves) and/or positive feedback loops to make
the variables saturate in ON or OFF positions. However, if one examines real gene

expression data, it seems clear that genes spend a lot of their time at intermediate
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values: gene expression levels tend to be continuous rather than binary. Further-
more, important concepts in control theory that seem indispensable for gene regu-
lation systems either cannot be implemented with Boolean variables, or lead to a
radically different dynamical behavior: amplification, subtraction and addition of
signals; smoothly varying an internal parameter to compensate for a continuously
varying environmental parameter; smoothly varying the period of a periodic phe-
nomenon like the cell cycle, etc. Feedback control (see e.g. [77]) is one of the most
important tools used in control theory to regulate system variables to a desired level,
and reduce sensitivity to both external disturbances and variation of system param-
eters. Negative feedback with a moderate feedback gain has a stabilizing effect on
the output of the system. However, negative feedback in Boolean circuits will al-
ways cause oscillations, rather than increased stability, because the Boolean transfer
function effectively has an infinite slope (saturating at 0 and 1). Moreover, Sav-
ageau [196] identified several rules for gene circuitry (bacterial operons) that can
only be captured by continuous analysis methods. Positive and negative modes of
regulation were respectively linked to high and low demand for expression, and a re-
lationship was established between the coupling of regulator and effector genes and

circuit capacity and demand.

Some of these problems can be alleviated by hybrid Boolean systems. In par-
ticular, Glass [84, 86] has proposed sets of piecewise linear differential equations,
where each gene has a continuous-valued internal state, and a Boolean external
state. Researchers at the Free University of Brussels [230, 229] have proposed an
asynchronously updated logic with intermediate threshold values. These systems
allow easy analysis of certain properties of networks, and have been used for qualita-
tive models of small gene networks, but still do not seem appropriate for quantitative

modeling of real, large-scale gene expression data.

Since we are primarily interested in modeling real gene expression data, we will
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opt for a continuous-valued model.

4.3 Deterministic or stochastic

One implicit assumption in continuous-valued models is that fluctuations in the range
of single molecules can be ignored. Differential equations are already widely used
to model biochemical systems, and a continuous approach may be sufficient for a
large variety of interesting mechanisms. However, molecules present at only a few
copies per cell do play an important role in some biological phenomena, such as the
lysis-lysogeny switch in Lambda phage [183]. In that case, it may be impossible to

model the behavior of the system exactly with a purely deterministic model.

These stochastic effects—which have mainly been observed in prokaryotes—may
not play as much of a role in the larger eukaryotic cells. In yeast, most mRNA
species seem to occur at close to one mRNA copy per cell [237, 113], down to 0.1
mRNA /cell or less (i.e. the mRNA is only present 10% of the time or less in any
one cell). Low copy numbers like these could be due to leaky transcription and not
have any regulatory role. Also, if the half-life of the corresponding protein (typically
measured in hours or days) is much larger than the half-life of the mRNA (averaging
around 20 min in yeast [112]), the protein level may not be affected by stochastic
fluctuations in mRNA. Analysis of mRNA and protein decay rates and abundances
may allow us to identify those few genes for which stochastic modeling may prove

necessary.

Particle-based models can keep track of individual molecule counts, and often
include much biochemical detail and/or spatial structure. Of course, keeping track
of all this detail is computationally expensive, so they are typically only used for
small systems. A related modeling technique is Stochastic Petri Nets (SPN’s), which

can be considered a subset of Markov processes, and can be used to model molecular
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interactions [90]. Whereas fitting the parameters of a general particle model to real
data can be quite difficult, optimization algorithms exist for SPN’s. Hybrid Petri
Nets [11, 156] include both discrete and continuous variables, allowing them to model

both small-copy number and mass action interactions.

Additional sources of unpredictability can include external noise, or errors on
measured data. The Bayesian approach to unpredictability is to construct models
that can manipulate probability distributions rather than just single values. Stochas-
tic differential equations could be used for example. Of course, this does add a whole
new level of complexity to the models. Alternatively, a deterministic model can
sometimes be extended by a simplified analysis of the variance on the expected be-

havior.

Since the role of stochasticity is unclear for the systems we’re interested in (typi-
cally eukaryotes), we will choose for the simpler of the two approaches: a determin-

istic model.

4.4 Spatial or non-spatial

Spatiality can play an important role, both at the level of intercellular interactions,
and at the level of cell compartments (e.g. nucleus vs. cytoplasm vs. membrane).
Most processes in multicellular organisms, especially during development, involve
interactions between different cells types, or even between cells of the same type.
Some useful information can probably be extracted using a nonspatial model, but

eventually a spatial model may be needed.

Spatiality adds yet another dimension of complexity to the models: spatial de-
velopment, cell type interactions, reservoirs, diffusion constants, etc. In some cases,

the abundance of data—spatial patterns—can more than make up for the extra
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complexity of the model. For example, Mjolsness et al. [164] used a time series of
one-dimensional spatial patterns to fit a simple model of eve stripe formation in
Drosophila. Models like the ones proposed by Marnellos and Mjolsness [154] for the
role of lateral interactions in early Drosophila neurogenesis provide experimentally

testable predictions about potentially important interactions.

Current large-scale gene expression data typically does not include any spatial

aspects, so we will use a non-spatial model.

4.5 Forward and inverse modeling

Some of the more detailed modeling methodologies listed above have been used to
construct computer models of small, well-described regulatory networks. Of course,
this requires an extensive knowledge of the system in question, often resulting from
decades of research. In this dissertation, we will not focus on this forward modeling
approach, but rather on the inverse modeling, or reverse engineering problem: given
a specific set of measurements, what can we deduce about the unknown underlying
regulatory network? Reverse engineering typically requires the use of a parametric
model, the parameters of which are then fit to the real-world data. If the connection
structure of the regulatory network (i.e. which genes have a regulatory effect on each
other) is unknown, the parametric model will necessarily have to be very general and
simplistic, providing little insight into the actual molecular mechanisms involved.
Once the network structure is well known, a more detailed model might be used
to estimate individual mechanism-related parameters, such as binding and decay

constants.
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Data requirements for network

inference

Number is the ruler of forms and ideas,
and is the cause of gods and demons.
— Pythagoras

In this Chapter, we will start by examining the amount of data needed to be
able to reconstruct various different network models—a question with great practical
importance, but unfortunately no exact answers. As we increase the number of
variables to model, the size of the parameter space increases exponentially. This
“Curse of Dimensionality” is examined in Section 5.2. Lastly, the data requirements
for network inference imply we may need to combine data sets from different sources

and of different types. These issues are explored in the final two Sections.
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5.1 Sample complexity

The ambitious goal of network reverse engineering comes at the price of requiring
more data points. How many data points are needed to infer a gene network of
N genes depends on the complexity of the model used to do the inference. As we
will see, constraining the connectivity of the network (number of regulatory inputs
per gene) and the nature of the regulatory interactions can dramatically reduce the

amount of data needed.

5.1.1 General network models

We can derive an absolute lower bound on the amount of information—in bits—
needed to construct general network models, using Information Theory!. Suppose
we want to derive a sparse network model of N genes, where each gene is only affected
by K other genes on average (the “connectivity” of the network). This corresponds
to constructing a sparsely connected, directed graph with N nodes and N K edges.
There are N? possible edges between all N genes, and only NK actual edges, so there
are ( ]]VV;) possible models of N genes with K interactions on average. To specify the

correct model, we then need

2 NQ!
log (NK) = 18 TV — N (5.1)

bits of information. We can use Stirling’s approximation to the factorial (n! ~

V2mn(n/e)") to derive an approximation for log (‘;) (see, e.g., [59]):

log (Z) ~ alog(a) — blog(b) — (a — b) log(a — b) (5.2)

first developed by Shannon [201], see Cover and Thomas [59] for a good introduction.
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for a,b> 1. Equation 5.1 then becomes:

N2
log (NK)
~ N?log(N?) — NK log(NK) — (N* — NK) log (N* — NK) (5.3)
= N(Nlog(N) — Klog(K) — (N — K)log(N — K)) (5.4)
~ NKlog(N/K) (5.5)

bits of information. The last approximation holds for K < N, such that log(N —
K) =~ log(N). Since each data point consists of N measurements, we will need at
least Q(K log(N/K)) data points to fully specify a model of this kind. Note that, by
Equations 5.4 and 5.2, we would get the same growth rate for a model with ezactly K
inputs per gene: N log (%) ~ log (]]\,V;) A similar derivation for undirected graphs
(i.e. inferring regulatory interactions, without specifying the causal relationship)

leads to a lower bound of Q(K log(N/2K)) data points.

If we further want to specify whether the interaction is positive or negative, this
only requires one extra bit of information per connection in the network. In general,
if we want to specify p,, parameters per gene, with A, bits of precision each; and py
parameters per interaction, with \; bits of precision, we get N K log(N/K)+ A ,p, N+
AP N K bits, or at least Q(K log(N/K) + A\up,, + A\epr K) data points. Note that we
have not specified how these regulatory inputs are combined, whether the regulatory
function is linear or nonlinear, etc. Each link and each node in the network could

correspond to some arbitrary, parametrized nonlinear function.
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5.1.2 Boolean, fully connected

In a fully connected Boolean network, the output of each gene is modeled as a general
Boolean function of the outputs of all N genes. This means we need to specify the
output of each single gene, for each of the 2V possible different states of the network.
In other words, we need to measure all possible 2V input-output pairs. This is clearly

inconceivable for even fairly small numbers of genes.

5.1.3 Boolean, connectivity K

If we reduce the connectivity of the Boolean network to an average of K regulatory
inputs per gene, the data requirements decrease significantly. To fully specify a
Boolean network with limited connectivity, we need to specify the connection pattern
between the N nodes (genes) and the rule table for a function of K inputs at each.
An absolute lower bound of §2 (QK + K log(N/K)) can be derived using information
theory.2 A tighter lower bound can be found by looking at a slightly simpler model,
where we assume the pattern of connectivity is given, by calculating how the number
of independently chosen data points should scale with K and N. Since this is a
simpler model, its data requirements should be a lower bound to the requirements

for the model with unknown connections.

Every data point (i.e. every input-output pair, specifying the state of the entire
Boolean network at time ¢ and ¢ + 1), specifies exactly one of 2X entries in each
rule table: Given this particular combination of the K inputs to each gene at time
t, the output of the gene is given by its state at time t + 1. We will estimate the
probability P that all N rule tables are fully specified by n data points, and calculate

how the number of data points n needs to scale with P, the number of genes N, and

2As shown in Section 5.1.1, we need K log(N/K) bits per gene to specify the connection
pattern, and 2% bits per gene to specify the Boolean function.
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connectivity K.

The probability that one of 2% entries in a specific rule table is not specified by a
single data point is equal to 1 —27%. For n (independent) data points this becomes
(1 — 27 K)"_ Since every data point has to specify exactly one entry in each rule
table, the probabilities for each individual entry in a rule table to be unspecified are
not entirely independent (e.g. if 25 — 1 entries are unspecified, the remaining entry
has to be specified). However, for P &~ 1 (i.e. we have enough data to have a good
chance at a fully specified model), these probabilities will be extremely close to zero,
and we can approximate them as being independent. The probability that all 2%

entries in a single rule table are specified by n data points is then approximately:
1—2F (1-27%)" (5.6)

The probability that all N rule tables are fully specified by n data points then

becomes:
Pr(1-25(1-27)")" (5.7)

Taking base-2 logarithms, we find:

C; = —log(P) (5.8)
~ —Nlog(1-2% (1-27%)") (5.9)

Further simplifying using log,(1 — z) & —zlog,(e) for z < 1 (keeping in mind
that the quantity in Equation 5.6 is very close to 1), and taking logs again:
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C; ~ N2¥(1-275)"log(e) (5.10)
Cy = —log(C1/log(e)) (5.11)
~ —log(N) — K —nlog (1-27%) (5.12)
~ —log(N)— K +n2 ¥ log(e) (5.13)

If P~ 1, C; will be a small, and Cy a moderate positive constant (e.g. for
P =0.9and P = 0.999, C5 is 3.25 and 9.97 respectively). We can now express n,
the number of data points needed, in terms of N, K and Cj:

n ~ 2K (K +log(N) + Cy) /log(e) (5.14)

which is © (2K (K + log(N ))) This estimate agrees well with preliminary experi-
mental results by Liang et al. [142] and Akutsu et al. [4].

5.1.4 Boolean, linearly separable, connectivity K

In addition to constraining the number of inputs per gene, we could also constrain
the type of Boolean functions used in the network. A natural choice is the set of
linearly separable Boolean functions, i.e., those that can be implemented using a
weighted sum of the inputs, followed by a threshold function. Linearly separable
functions are well-behaved, in the sense that inputs always have either an upreg-
ulating or downregulating effect. Non-linearly separable functions can have inputs
that are upregulating or downregulating, depending on the state of the other inputs

(the classical example of this is the Boolean XOR). Interestingly, the vast majority
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of genes whose regulation is described in the literature seem to have regulation func-
tions which are linearly separable, when abstracted down to the Boolean level [99].3
Combining a reduced connectivity with linearly separable Boolean functions reduces

the data requirements to Q(K log(N/K)) [104].

5.1.5 Continuous, additive, fully connected

When we look at network models with continuous-valued expression levels, we need
to choose a parametrized model of regulation functions. (As opposed to Boolean
functions, functions over the reals are not enumerable, so we would need infinite
amounts of data to fit a “general” continuous-valued function). As mentioned in
Section 1.3, and in analogy with Section 5.1.4, we will focus on additive requlation
models. For models with continuous expression levels, the data requirements are less
clear than for the Boolean models. In the case of linear (D’haeseleer et al., 1999)
or quasi-linear? additive models [241], fitting the model is equivalent to performing
a multiple regression, so at least N + 1 data points are needed for a fully connected

model of N genes®.

5.1.6 Continuous, additive, connectivity K

Data requirements for sparse additive regulation models are as yet unknown, but
based on the similarity with the equivalent Boolean model, we speculate it to be of

the form Q(K log(N/K)). A promising avenue of further research in this area may

3Although notable exceptions to this certainly exist: in Drosophila, hunchback, one
of the key regulatory genes in embryonic development, has a concentration-dependent
regulatory effect on Krippel [199].

4Also known as generalized linear.

SNote that this result is not directly comparable to the Boolean case: the fully connected
Boolean network uses arbitrary Boolean functions, and the estimate for linearly separable
Boolean functions (equivalent to the additive functions used here) assumes K < N
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be the results on sample complexity for recurrent neural networks, which have a very
similar structure to the models presented here. An analysis based on PAC-learning
shows that the number of training instances needed to accurately learn the dynam-
ical behavior (as opposed to the network weights) for a fully connected network is
lower-bounded by Q(N) and upper-bounded by O(N*) [136]. However, this is based
on a worst-case analysis, and might be reduced to O(N) for the general case [216].
There are a few neural network techniques (such as Winnow and Weighted Majority
[144, 145, 146]) that are known to scale as O(K log(N) and perform quite well in
the presence of many irrelevant inputs. However, these techniques are specific for
classification tasks with feedforward networks, using a multiplicative weight update
(one could think of them as doing a binary search on the decision surface). It is un-
clear how these algorithms could be extended to a recurrent network with continuous

outputs.

5.1.7 Clustering

Finally, to allow for comparison with gene clustering methods, we examined data
requirements for clustering based on pairwise correlation comparisons. In that case,
as the number of genes being compared increases, the number of data points will
have to increase proportional to log(/N), in order to maintain a constant, low level of
false positives. Claverie [55] arrived at a similar logarithmic scaling for binary data

(absent/detected).

For this simple abstraction of clustering, we will say that two genes cluster to-
gether if their correlation is significantly greater (with a significance level «) than a
certain cutoff value p.. We test whether we can exclude the null hypothesis p < p,.
based on the measured correlation coefficient r over the available data points. Be-

cause of the large number of comparisons being made, we need to reduce the signif-
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icance level for the correlation test with the number of tests each gene is involved
in. We can use the Bonferroni correction, o = «'/N, in order to keep the expected
number of false positives for each gene constant.® In order to be able to use the same
cutoff-value for the measured correlation r, to decide whether two genes cluster to-
gether, the number of data points will have to increase as the significance level for

each test grows smaller.

If the real correlation coefficient p is close to 1.0, the distribution of the mea-
sured correlation coefficient r is very asymmetrical. The following z-transformation,
developed by Fisher [75], is approximately normally distributed with mean z(p) and

variance 1/(n — 3) (with n the number of data points):

z(r) = %ln (1 t :) (5.15)

We can now devise a single-sided test on z(r) to answer the question: If z(r) >
z(rs), what is the significance level with which we can reject the hypothesis z(p) <
z(pe) (and thus p < p.)? At the tail of the normal distribution, the area under the

normal curve to the right of z(r,) can be approximated by:

1 _ (z=2(pe)? o _ (2(ra)=2(pe)?
a= ——e 22 dzwm e 202 (5.16)
(o2

\/ﬂ (Z(Ta) - Z(pc))

Taking natural logs, replacing o with the Bonferroni correction ov = o/ /N, and

with 0 = 1/4/n — 3, we arrive at:

6In fact, it is sufficient that the false positives do not grow faster than the true corre-
lations. If we assume the number of true correlations per gene increases at least as N7
with the number of genes (with 0 < v < 1, i.e. both the number of clusters and number of
genes per cluster increases), then o = o/ /N'~7 suffices. (For example, when the number
of true correlations grows linearly with N, i.e. v = 1, we can allow the number of false
positives to grow linearly as well, so no correction is needed.) When we plug a = o/ /N1~?
into Equation 5.16, the resulting growth rate for n is similar to the one for a = o/ /N.

o4



Chapter 5. Data requirements for network inference

In(a/) = In(N) ~ —% In(n — 3) — In (V27 (2(ra) — 2(p.)))
—(n = 3) (2(ra) — 2(pc))* /2 (5.17)
2

(2(ra) — 2(p)”
(In(N) +In(1/a) = In(n = 3)/2 = In (V27 (2(ra) — 2(pc)))) ~ (5.18)

n ~ 3+

Although this defines n recursively, as a function of In(n — 3), the dominant term
will be In(V). In other words, if we want to use the same cutoff value 7, to decide
whether p > p., we need to scale the number of data points logarithmically with the
number of genes. Strictly speaking, this analysis only holds for correlation tests, but

we can expect similar effects to play a role in other clustering algorithms.

5.1.8 Summary

Table 5.1 provides an overview of some of the models considered, and estimates
of the amount of data needed for each. These estimates hold for independently
chosen data points, and only indicate asymptotic growth rates, ignoring any constant
factors. Note also that these estimates reflect the amount of data needed to be able
to reconstruct the entire network correctly.” As mentioned before, we are content

with being able to extract the most significant interactions.

For reasonably constrained models, the number of data points needed tends to
scale with log(N) rather than N, and that the data requirements for network infer-

ence are at least a factor K larger than for clustering.

"For example, the sample complexity for reconstructing a single gene in a Boolean,
sparsely connected network scales with 2K K, rather than 2% (K + log(N)) (using Equa-
tion 5.6 rather than 5.7 in Section 5.1.3)
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| Model | Data needed
General: Klog(N/K) + Anpn + Aepe K
Boolean:
fully connected 2N
connectivity K 2K(K +log(N)) (64, 142, 4]
linearly separable, connectivity K | K log(N/K) [104]
Continuous:
additive, fully connected N+1
additive, connectivity K Klog(N/K) (*) [64]
Clustering:
pairwise correlation log(N) [64]

Table 5.1: Sample complexity for various network models. Fully connected: each
gene can receive regulatory inputs from all other genes. Connectivity K: at most K
regulatory inputs per gene. Additive, linearly separable: regulation can be modeled
using a weighted sum. Pairwise correlation: significance level for pairwise com-
parisons based on correlation must decrease inversely proportional to number of
comparisons. (*): conjecture.

In practice, the amount of data may need to be orders of magnitude higher
because of non-independence and large measurement errors (see also [222]). Higher
accuracy methods such as RT-PCR yield more bits of information per data point than
c¢DNA microarrays or oligonucleotide chips, so fewer data points may be required to
achieve the same accuracy in the model. (Conversely, if measurement accuracy is
low, more data points may be required.) So far none of the sample complexity
estimates on this sort of network models includes accuracy of the data. However, we
may be able to use a rough guideline provided by information theory, by looking at
the information capacity of a Gaussian channel. It can be shown that the maximum
amount of information (in bits) encoded in a Gaussian distributed variable with
variance P = 0%, when measured together with an additional Gaussian noise with

variance N = ¢%,, is given by:
1 P
I= 3 log, (1 + N) ~ logy(op) — logy(on) (5.19)
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where the approximation is within 5% for oy < op/3. In other words, every halving
of the measurement error increases the amount of information per measurement by
one bit. This may not sound much, but consider that with a 10% measurement noise,
the information capacity is only I = 3.3 bits per measurement. The logarithmic
scaling does indicate a decreasing usefulness of improving accuracy much further,
especially in view of significant amounts of inherent variability in the systems being

measured.

Note that modeling real data with Boolean networks discards a lot of information
in the data sets, because the expression levels need to be discretized to one bit per
measurement. In the example above, with I &~ 3.3 bits per measurement, discretizing
to one bit would throw away almost 70% of the information contained in the signal.
Continuous models will tend to take better advantage of the available information

in the data.

Another important issue in design of gene expression experiments is whether to
allocate the—so far—often limited and expensive supply of microarrays or oligonu-
cleotide chips to collecting more replicates, or more individual data points. Again,
from an information theoretic point of view, n replicates reduce the noise variance by
a factor of n, increasing the information content at most with log(n). Independent
measurements on the other hand increase the information content proportional to
n, and are therefore—theoretically—preferred. However, if the noise on the mea-
surements is significant, it will generally be much harder to extract this additional
information without a very good model of the noise involved. Replicates have often
been required for publication for other types of biological experiments (usually at
least triplicates, so a standard error can be estimated), and it seems like the consen-
sus may be moving in that direction for expression data as well [87, 141]. As the cost
per experiment decreases, this issue will likely resolve itself in favor of doing more

measurements altogether, i.e., more experiments and more replicates per experiment.
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5.2 The Curse of Dimensionality

Measuring more variables allows for a more exact model, but makes the correct model

exponentially harder to find.

When faced with the task of modeling an unknown process, our intuition tells us
to observe as many parameters of the system as possible. This is clearly reflected
in the current tendency to measure the expression levels of more and more genes

simultaneously, rather than to measure these expression levels as often as possible.

However, in Machine Learning it is well known that the more variables one mod-
els, the harder the modeling task becomes, because the space of models to be searched
increases exponentially with the number of parameters of the model, and therefore
with the number of variables. This is often referred to as the Curse of Dimensionality

[28].

Does this mean that our intuition about modeling is wrong? Not necessarily.
Although we humans do want to be able to look at as many variables of the problem
as possible, we rather quickly select those we think are really important to the system,
and simply ignore the others. Our reason for wanting to know all the variables is
so we wouldn’t miss any of the important ones, not so we could include all the non-
important ones in our model. In order to achieve an accurate model, we must at least
measure those variables which are important to the process being studied. If some
intermediate variables are not measured, it may be possible to infer them during the
modeling process, but this can be very hard. We should be as inclusive as possible
in which variables we measure, and try to eliminate redundant variables after the
data is collected. Careful selection of the input variables is crucial to get around
the Curse of Dimensionality. Use of a priori information can also help narrow down
the range of plausible models. As we saw in Section 5.1, narrowing down the range

of plausible models by putting on additional—realistic—constraints can simplify the
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search for the best model considerably. For example, constraining the genes to be
regulated by no more than 5-7 other genes will simplify the number of regulatory
interactions we need to consider. Similarly, for Boolean networks, constraining the
types of Boolean functions to those that are biologically plausible can significantly

reduce the number of Boolean rules that match the data.

Constraining the model by using a priori information about what is biologically
known or plausible is probably the most important weapon we have to fight the
Curse of Dimensionality. How precisely to include this information into the inference

process is the true art of modeling.

5.3 Types of data

To infer the regulation of a single gene, we need to observe the expression of that
gene under many different combinations of expression levels of its regulatory inputs.
This implies sampling a wide variety of different environmental conditions and per-
turbations. Therefore, the gene network inference techniques we will cover all have

one thing in common: they tend to be data-intensive.

Gene expression time series yield a lot of data, but all the data points tend to be
about a single dynamical process in the cell, and will be related to the surrounding
time points. Therefore, a 10-point time series can generally be expected to contain
less information than a data set of ten independent expression measurements under
different environmental conditions, or with mutations in different pathways. The
advantage of a time series is that it can provide crucial insights into the dynamics
of the process. On the other hand, data sets consisting of individual measurements
provide an efficient way to map the attractors of the network. Both types of data,
and multiple data sets of each, will be needed to unravel the regulatory interactions

of the genes.
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5.4 Combining different data types

The need for large amounts of data means that successful network modeling efforts
will probably have to use data from different sources, and deal with different data
types such as time series and steady-state data, different error levels, incomplete
data, etc. Whereas clustering methods can use data from different strains, in different
growth media etc., combining data sets for reverse engineering of regulatory networks
requires that differences between the experimental conditions be quantified much
more precisely. Likewise, data will have to be calibrated properly to allow comparison
between data sets. Relative expression ratios have limited usefulness unless they can
be calibrated with respect to other data sets post facto (e.g. using expression levels
relative to a given standard). In this respect, there is a growing need for a reliable
reference in relative expression measurements. An obvious approach could be to
agree on a standard strain or tissue pool and carefully controlled growth conditions
to use in all data collection efforts on the same organism. Alternatively, a reference
mRNA population with fixed relative concentrations of mRNA’s could be generated

artificially, or perhaps even derived directly from the genomic DNA.

As individual data sets become larger, the amount of analysis that can be done
within a single data set increases as well. But unless we can have confidence in com-
paring results from different experimenters, we potentially miss out on an enormous

resource: the combined data of all researchers examining the same organism.

60



Chapter 6

A linear model of CNS

development and injury

We will start by examining the most simple form of additive regulation models:
a purely linear one, where changes in expression levels are linearly correlated with
expression levels of other genes. This first-order approximation model is then applied
to a set of real-world gene expression time series on development and injury of rat
central nervous system. We first examine some of the higher-level properties of the
resulting linear model (such as limited connectivity of the network), and find that
they are biologically plausible. Next, we develop a methodology to identify those
specific weights in the network which are well-defined by the data. The results of
this analysis compare favorably with what can be found in the literature regarding

these genes.

6.1 A first-order approximation

Have no fear of perfection — you’ll never reach it.
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— Salvador Dals

The whole idea of correctness is totally overrated.
— Stephanie Forrest, 10/29/99

As we will show, even the simplest form of the additive regulation model (Equa-
tion 1.1) can give interesting and suggestive results. Of course, a linear model such
as this is unlikely to be much more than a caricature of the real system, and should
be thought of as a first-order approximation. This is because its purely linear form
cannot correctly model nonlinear interactions. However, we do expect it to be able
to capture many important linear components of gene regulation. In that sense, it
has similar strengths and weaknesses as using linear (Pearson) correlation to analyze
any real-world variables. Although it is not an optimally fitting model, the majority
of applied statistics is, similarly, based on linear correlations. The value of a coarse
model like this is mainly exploratory. It serves to direct further detailed investigation

by suggesting novel hypotheses about the system.

Let us first rewrite Equation 1.1 as a difference equation, explicitly introducing

the time step At:

Ay; (t)
At

=D wjiy;(t) +bi (6.1)

where y;(t) is the expression level of gene 7 at time ¢, Ay, (t) = y;(t + At) — yi(t), wy;
indicates how much the level of gene j influences gene ¢, and b; is a constant bias
factor to model the activation level of the gene in the absence of any other regulatory
inputs. Each “node” in the regulatory network model performs a simple summation

of its inputs, as illustrated in Figure 6.1.
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change in gene i

constant bias

Figure 6.1: Schematic illustration of a node in the linear network model. The input
from all regulatory genes is summed up, together with a constant bias term. The
result determines the change (i.e., slope) in expression level of the corresponding
gene.

Note that we could equivalently rewrite this equation as an update rule, by mul-

tiplying both sides by At and adding y;(¢):

yi(t + At) = Zwﬂyj t) + b (6.2)

where wj; = Atwy; (+1if i = j), and b = Atb;. In this more general form of an
update rule, there is no implicit assumption that y(t¢) should be a smooth—or even
continuous—function in time. It is included here mainly to illustrate the similarity
with the Boolean network formulation, and some earlier work on continuous models
using an update rule formulation." Note also that the parameters wj; and b are

dependent on the time step At in this formulation.

It is important to keep in mind that it is not the current expression level which is

regulated in the first place, but rather the transcriptional state of the gene. Whereas

'For example, Weaver et al. [241] generated random sparse weight matrices w’ for an
update rule similar to Equation 6.2, and showed that the corresponding network models
can be reconstructed given enough data generated by the network. In their experiments,
the generated “expression levels” y(t) often jumped around erratically from time point to
time point. Comparing Equations 6.1 and 6.2 shows that w' = Atw + I, so in order to
get a smooth time series for small A¢, w’ should be close to the identity matrix. It is the
weight matrix w which corresponds to our intuitive notion of a connection matrix, not w'.
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the transcriptional state may show an on-off behavior at small time scales, the actual
expression level is due to the accumulation of mRNA, essentially related to the
integral of the transcriptional state of the gene over time?. Since we want to model
real gene expression, with expression levels y that are smooth in time, i.e. y(t+At) ~
y(t), we will instead use the difference equation formulation of Equation 6.1 If we
choose At small enough, the parameters w;; and b; of Equation 6.1 will approach the
parameters of the corresponding differential equation (and therefore be independent

of the time step At):

) _ X wint)+ b (63

In addition to regulation by other genes within the data set, the genes may also be
affected by changes in a number of exogenous inputs which we will have to include in
the model (e.g. externally added chemicals in a toxicological experiment, depletion

of nutrients in the growth medium, changing temperature, etc.):

Aiit) = Z wjz- yj (t) + Z Vi Tk (t) + bz (64)

where x(t) is the level of exogenous input & at time ¢, vg; accounts for the effect of

this input on the expression level of gene 1.

Because of the need for fairly large amounts of data, measured under different
conditions, we may need to combine several data sets. In fact, the data I will be using
(see Section 6.2 contains measurements on two different tissue types. Differences in
gene expression between tissues are caused by regulatory inputs to the genes. Some of

these regulatory inputs will be included as variables in our model, others might not.

2This observation also was the inspiration for Glass’s work on modeling gene regulation
using a hybrid Boolean model with piecewise linear dynamics [84, 86], where the expression
level increases or decreases linearly, depending on whether the gene is ON or OFF.
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We could account for those extra regulatory variables which are purely tissue-specific
(i.e. they vary depending on tissue, but do not vary within a given tissue) by adding
an additional “endogenous” input for each. However, under the linear assumption,
the total effect of all these tissue-specific inputs can be summarized with a single
tissue-specific term 7Tj; for each additional tissue [:

Ay;(t
ZYE ) =Y wjiyi(t) + D vk xk(t) + DT+ b; (6.5)
j B l

where 7; is an indicator variable which is 1 iff the particular data we are modeling
comes from tissue [ (otherwise 0), and 7T}; sums up the tissue-specific differences in
regulation by other variables that are not included in the data set. Equivalently,
we can think of genes having a different default expression state within each tissue.
For a single tissue, this default expression state was modeled using the bias term b;.
Likewise, we can think of Tj; 7; + b; (which is constant, but different for each tissue

type) as modeling the default expression state in tissue /.

Given the time series y;(t), finding these parameters requires solving a least
squares system of linear equations, or, equivalently, performing a multiple regres-
sion of each gene on all other genes. In Section 6.3 we will show how we can apply

a model such as this on real data.

6.2 Data sets

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist the facts to suit theories,

instead of theories to suit facts.
— A. Conan Doyle

Wen et al. [245] have published a Gene Expression Matrix of 112 mRNA species

measured at nine different stages during the development of rat cervical spinal cord:
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embryonic days 11-21 (E11, E13, E15, E18, E21), postnatal days 0-14 (P0=E22, P7,
P14), and adult (A=P90). More recently, the same team developed a similar data
set [212] of 70 mRNA species measured at nine time points during development of rat
hippocampus (E15, E18, P0, P3, P7, P10, P13, P25, A=P60), and at ten more time
points (0h=P25, 0.5h, 1.5h, 3h, 6h, 24h, 48h, 10d, 21d, 32d, 49d) following injury of
the central nervous system by injection with kainate (kainic acid), a glutamatergic
agonist which causes seizures, localized cell death, and severely disrupts the normal

gene expression patterns.

The unequal spacing of time points was carefully chosen to coincide with the vary-
ing rate of development and response to injury of the rat central nervous system.
The genes measured are only a tiny fraction of the total number of genes expressed in
these tissues. However, they were selected to be representative of some of the major
gene families assumed to play an important role in CNS development, intracellular
signaling or transcriptional regulation in general: neurotransmitter synthesizing and
metabolizing enzymes, neurotransmitter receptors, various signaling peptides (neu-
rotrophins, heparin binding growth factors, insulin-like growth factors) and their
receptors, cell cycle proteins, transcription factors, as well as developmental marker

proteins and some expressed sequence tags (EST’s).

Each data point in these time series is the result of measurements on three sepa-
rate animals. This ensures high accuracy, eliminates some of the variability between
individuals, and gives us an idea of the variability at each point (“triplicate standard
deviation”, see Section 6.4.2 for an example of how this additional information can
be exploited). When I started working on these data sets, these were the largest pub-
licly available gene expression time series in terms of number of time points, using a
high fidelity gene expression assay. As of this writing, they still stand out for their
relatively high quality, although they have since been surpassed in terms of number

of genes and number of data points.
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Considering the large amount of overlap between the mRNA species for the data
sets (65 species in common) and the related tissue types (rat cervical spinal cord
and hippocampus), it is possible to join them into one larger data set of 65 genes by
28 time points, consisting of 1) cervical spinal cord development, 2) hippocampus
development, and 3) hippocampus injury. The regulatory “hardware” of the genes is
the same, though different parts of it might be active in different contexts. Combining
data from different tissues allows us to get a more complete picture of the regulatory

interactions, provided we account for tissue-specific differences in regulation.

As mentioned before, The choice of these data sets should be viewed in a historic
perspective (even though they are only a couple of years old!): they were the best
that was available at the time. However, it should be pointed out that they are far
from optimal for the sort of models we are interested in. In particular, they consist
essentially of whole-tissue samples, measuring the average expression levels in the
entire cervical spinal cord or entire hippocampus of an individual. These tissue can
be further subdivided into different anatomical regions, each of these regions typically
consists of several functionally different layers of cells, and each of these layers consist
of different cell types. This obviously violates our earlier statement that we want
to focus on genetic regulatory networks at the level of single cells, ignoring cell to
cell interactions and spatial differentiation. Yet, as we shall show, even from these
coarse-grained, whole-tissue measurements, we are able to derive genetic regulatory

interactions which compare well with the existing literature.

Initial analysis of the Gene Expression Matrix presented in Wen et al. [245] was
based mainly on similarities between temporal gene expression patterns measured
using a Euclidean distance metric [213]. Genes were clustered hierarchically, and
waves of activation were identified, representing sets of genes that were turned on in

a sequential manner during the course of development.
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I have previously presented a preliminary statistical analysis of this data set
(D’haeseleer et al. [65]), in which relationships between individual genes were inferred
based on linear correlation, rank correlation and mutual information. Several gene
pairs with high linear correlation were identified, as well as a number of genes with
high rank correlation but non-significant linear correlation. Although the number
of data points per gene was insufficient to derive real results, the use of mutual
information (see, e.g. [201, 59]) to derive causal inferences was illustrated. Since
then, a few other groups have analyzed this data as well. For example, Wahde and
Hertz [239] used the clusters derived in Wen et al. [245] to construct a little cluster

network (see also Section 3.6).

6.3 Fitting the model

Truth . . . and if mine eyes
Can bear its blaze, and trace its symmetries,
Measure its distance, and its advent wait,

I am no prophet - I but calculate.
— Charles MacKay (”The Poetical Works of Charles MacKay”)

The data sets used here cover two tissue types, and include one single exogenous

output to the system (kainate). Equation 6.5 becomes:

Ay; (t)
At

= > wiiyi(t) + Kiw(t) + T 7+ b; (6.6)
j

where k(t) is the kainate level at time ¢, K; is the influence of kainate on gene i, 7 is
an indicator variable for tissue type (7 = 0 for spinal cord, 7 = 1 for hippocampus),
and 7T; accounts for all the differences in regulation between tissue types. Figure 6.2

shows schematically what a “node” in the corresponding linear network model looks

like.
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change in gene i

kainate level
tissue type
constant bias

Figure 6.2: Schematic illustration of a node in the linear network model for the CNS
development and injury data. The input from all regulatory genes is summed up,
together with an input from the kainate level, a constant bias term, and an additional
term to cover tissue-specific differences in regulation. The result determines the
change (i.e., slope) in expression level of the corresponding gene.

Because the original data sets consist of raw ratiometric RT-PCR measurements,
we first normalize the expression level of each gene with respect to its maximum level
over all three data sets. This gives us a basis to compare the interaction strengths of
the genes. Normalization is more commonly done with respect to the average signal,
or with respect to the standard deviation of the signal. However, since this data is
a coarse and non-uniform sampling of a time-series, these concepts are ambiguous
(Should we average over the data set? Over the interpolated time series? Should we
weight the time series based on developmental speed?). In addition, the maximum
expression level of a gene is a useful biochemical concept, related to its production
and decay rates. This choice of normalization also allow easier comparison with
Chapter 7, where we use a sigmoidal transfer function to cap the production rate of

the genes to a maximum level.

The linear model in Equation 6.6 can be fit to a time series finely sampled at
equidistant time points At. Considering the extremely non-uniform spacing of the
measurements (half hour interval after kainate injection, more than two months in-

terval before the final adult cervical spinal cord measurement), we next constructed
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a finely interpolated time series from the data. Because the modeled variables corre-
spond to concentration levels, we need to avoid negative values in the interpolation.
This is achieved by first taking the logarithm of the expression values, applying the
interpolation on these log expression levels, and then taking the exponential of the
resulting interpolation. We use a piecewise cubic interpolation method, more specifi-
cally a multivariate variant of Akima interpolation [2]. This is a local, C* (continuous
in the first derivative) method, where the interpolation only depends on the nearest
data points, and which does not tend to show the spurious excursions between data
points common to, for example, cubic spline interpolation (which also imposes C?
continuity). An interpolation rate of 10 time points per hour gives us 5 interpolated
points between the two closest measurements: fine enough to yield a reasonable ap-
proximation to the differential equation, while still allowing us to calculate the least
squares fit over the entire 7-month data set. We get 24241 interpolated time points
for the spinal cord data (101 days), 16081 for the hippocampus development data
set (67 days), and 11761 for the hippocampus kainate injury data set (49 days), for
a total of 52083 interpolated time points.

The kainate concentration «(t) is zero during the spinal cord and hippocampus
time series, jumps from zero to one at Oh for the kainate time series, and then

= ¢ (:-0h)/Dka Kainate tends to disappear

exponentially decays back to zero: x(t)
from the brain after several hours [244]. We chose an estimated decay constant of

Dy 4 = 100 min, corresponding to a half-life of 69.3 min.?

Note that the (nonlinear) interpolation has a crucial side-effect: it introduces an
implicit additional smoothness constraint on the time series between the measured
data points. This smoothness constraint is justified by the effort that went into

determining at what time points measurements should be taken. If the measurement

3As we will see in Section 6.4.2, knowing the exact in vivo decay rate Dg 4 for kainate
is not crucial, as randomly varying Dy 4 within a fairly large range has little effect on the
results.
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rate is fast enough to keep up with the fastest developmental or perturbational
changes in the system, we can assume the trajectory of the system between data

points to be smooth.

Normally, trying to fit a model with 68 x 65 parameters (including the additional
terms in Equation 6.6) using only 28 x 65 data points would lead to a highly un-
derdetermined system. In other words, we would be able to find infinitely many
models—with different sets of parameters—that all fit the data perfectly. However,
the additional smoothness constraint on the data, allows us to exclude all those mod-
els that behave very erratic in between the measured data points. In addition, it
also assures that the system has a single optimum, so the fitting becomes (barely)
feasible. We do expect there to be many dimensions in which the optimum is poorly
determined, corresponding to parts of the model for which not enough data is avail-
able. Section 6.4.2 will illustrate how one can identify which parts of the model are

well or underdetermined.

The actual fitting of the model to the data requires a small amount of linear
algebra, which is summarized in Appendix B. The end result is a matrix W,
containing the least squares fit of the parameters w;;, K;, T; and b; in Equation 6.6.
The computational complexity of finding a least-squares solution for a linear model
is O(TN?), where T is the total number of time points in the interpolation, and N
is the number of genes. Not surprisingly, the shortage of original data points relative
to the number of dimensions of the problem results in a poorly conditioned system,
with condition number 6.1-10%. This condition number gives an upper bound for how
much the relative error in Y (the interpolated gene expression time series) could be
magnified in the least squares solution, W+.* In other words, if we are given Y plus
some small error term §Y, the resulting weight matrix will be W+ plus some error

dW. For a poorly conditioned system, the relative error ||§W||/[|[W*]|| may be

4This is just yet another way of saying the model is poorly determined: a large range
of parameter sets W all show a good fit with the input data Y
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much larger than the relative error in the input, ||6Y]|/||Y]||, and the magnification
of this error is upper-bounded by the condition number of the system (in this case,
the condition number of the augmented input matrix, ?, see Appendix B):

[6W ] < 9Y ]

W < cond(Y)m (6.7)

However, this is a worst-case scenario and assumes, among other things, that the
error in Y can vary independently for each interpolated time point. In reality, the
nonlinear interpolation spreads out any errors in the original data sets over a range
of interpolated time points, improving the conditioning of the system with respect to
the original data sets. In Section 6.4.2, we show that the noise in the input data gets
multiplied by a factor of “only” 29.7 in W: not as bad as 6.1 -10*, but still poorly
conditioned. In fact, the main goal of Section 6.4.2 is to determine which parts of
W are the least affected by the poor conditioning of the system (and the noise in
the input data).

Likewise, the condition number of W is 6.3 - 10*, indicating that small amounts
of noise in Y (¢) could result in large changes in the slope dY(t)/dt. However, it
turns out that the dynamical behavior of the system is surprisingly robust. If we
initialize the system with the gene expression levels measured at the very first time
point and apply the model iteratively, we can reconstruct the trajectory through
state space almost perfectly for all three data sets. Figure 6.3 shows the original and
reconstructed time series for three representative genes. The interpolated time series
(not shown) are nearly indistinguishable from the reconstruction. The very close fit
is likely due to overfitting, but it does show that errors do not accumulate, despite
the poor conditioning of W. Analysis of the eigenvectors of the linear system also
reveals that the final expression levels are close to fixed points of the system (within
3% for the spinal cord and hippocampus “adult” expression levels, within 9% for the

final hippocampus injury expression levels): the linear model settles into an attractor
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in state space corresponding to the adult expression levels of the real organism.

1
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Figure 6.3: Original (dots) and reconstructed time series (lines) for nestin(top), GRa4
(middle) and aFGF (bottom). Time is in days from birth (day 0, corresponding to
postnatal day PO or embryonic day E22). Dotted line: spinal cord, starting day -11
(E11). Solid line: hippocampus development, starting day -7 (E15). Dashed line:
hippocampus kainate injury, starting day 25 (P25)

6.4 Results and validation

A theory has only the alternatives of being right or wrong.
A model has the third possibility: it may be right, but irrelevant.
— M. FEigen

Before we address the issue of which individual parameters are well determined
versus poorly determined, Section 6.4.1 will look at some of the overall properties

of W. Just as the average of a large number of poor estimators can yield a good
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estimator, the hope is that these global properties may be better determined than the
individual parameters. Next, Section 6.4.2 shows how we can “separate the wheat
from the chaff”: identify the few well determined interactions in the network model.
In Section 6.4.3 we put the class of most robust parameters (those due to the effect
of kainate on the genes) to the test by comparing them with what is known in the
literature. Section 6.4.4 does the same for the most robust gene-to-gene parameters.
Finally, Section Section 6.4.5 compares the results of the linear model with a linear

model based on randomized data.

6.4.1 Biologically plausible properties?

The linear model assumes that every gene is regulated by every other gene. However,
when we look at the least squares fit of the model to the real data, we find that many
of the parameters of the model are close to zero. Figure 6.4 shows a distribution
of interaction weights that is very sharply peaked around zero (with 25th and 75th
percentiles at +0.258 o, compared to £0.674 ¢ for a normal distribution). This means
the connection matrix is a good approximation to a sparse matrix, i.e., each gene
is only influenced by a limited number of others, as we would expect for the real
connection matrix. For a rough estimate of the number of “nonzero” parameters, we
can fit the distribution with a mixture of two zero-centered Gaussians: more than
80% of the parameters get assigned to the narrowest Gaussian (o1 = 0.068), the rest

to the much broader second Gaussian (oo = 0.375).

The sum of input weights to each gene is close to zero, i.e. there seem to be
no genes that are primarily upregulated or downregulated. In fact, the distribution
of the sums of input parameters is significantly much closer to zero than would
be expected based on the distribution of parameters (o = 0.542 versus expected

o = 1.648).> This may partially be an artifact of the model, because there are no

5The expected standard deviation of the sum (assuming the parameters are picked ran-
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Figure 6.4: Histogram of average parameter values w. Note the sharp peak at zero.

fixed upper and lower expression thresholds for each gene. Predominantly positive (or
negative) inputs to a gene would cause a increasing (decreasing) expression level, so
positive and negative inputs must be balanced. More surprisingly, the distribution
of input sum is close to zero even if we exclude the bias term b; for each gene.
In other words, we see few instances of genes which are “OFF” in the absence of
regulatory inputs and which are upregulated by those inputs, or “ON” in the absence

of regulatory inputs and downregulated.

Looking at the sum of output parameters from each gene (or other input such
as kainate etc.), we see that this sum varies significantly more than expected based
on the distribution of parameters (¢ = 2.513 versus expected o = 1.611).%In other
words, there seem to be genes that have a predominantly positive (e.g. GR~v1) or

negative (e.g. IGF II) regulatory effect on the other genes, which is in agreement

domly from the distribution of parameters) is v/68 opqrams for the input vector, V65 dparams
for the output vector, with opgrams = 0.200

75



Chapter 6. A linear model of CNS development and injury

with our biological knowledge.

Whereas the sum of input or output vectors tells us about the sign of regulation,
the magnitude of the vectors informs us about the strength of regulation. We see
a few significantly larger (e.g. GR~v1) and especially more small magnitude output
vectors than expected, given the distribution of parameters.® It seems likely that the
model has discovered that some genes are important regulators, while many others
are not. This explanation is reinforced by a significant negative correlation (r =
—0.46) between output magnitude and average triplicate variability for the gene, i.e.
genes with less variation among the three replicates per time point had higher output
magnitude. Important regulators are presumably more tightly regulated themselves,

and thus would be expected to show less variability.

Surprisingly, we see a similar pattern for the input vectors: a few genes have
large regulatory input parameters,” many others have all small regulatory inputs.
Here, this variation is explained by a significant correlation (r = 0.79) between the
magnitude of input vectors, and the standard deviation of slopes between time points.
Since the linear model correlates expression levels with changes in expression levels,
genes with rapid changes between time points will tend to have larger regulatory
input parameters.® Each gene has a characteristic scale for its input parameters,
corresponding to how fast the expression level of the gene changes throughout the

time series. Instead of a mixture of “zero” and “nonzero” parameters, distribution

6Based on 100 random permutations of the parameter matrix.

"In our earlier work [66], this was assumed to be a sign of a poorly determined gene:
poorly determined variables are often fitted using a number of very large inputs, which
mostly cancel each other out. However, as we will see in Sections 6.4.4 and 6.4.3, one
of the genes with highest input magnitude (BDNF) also has very well determined input
parameters.

8No such correlation was found between output vector magnitude and average expres-
sion level, and no other significant correlations were found between input and output mag-
nitudes, average and standard deviation of expression levels, slopes, or average triplicate
standard deviation.
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of parameter values in Figure 6.4 should probably be considered as a mixture of

distributions at these different scales.

When we divide the genes into functional categories, other interesting patterns
emerge. The categories used were: 5HTR (Serotonin Receptors), AChR (Acetyl-
choline Receptors), GABA-R (GABA Receptors), GluR (Glutamate Receptors), ICS
(Intracellular Signaling), NME (Neurotransmitter Metabolizing Enzymes, including
GAD), cell cycle, glial, growth factor, insulin and IGF, neuronal, neurotrophin, pro-

genitor, synaptic, trans-requlation, and other.

NME and GluR are the main input classes, with weights coming from these
genes on average more than twice as large as from other genes. Both categories are
known to play an important role in development and injury of the central nervous
system. Also important are ICS (46% larger weights), SHTR (45% larger) and trans
requlation (35% larger). A notable exception to primary regulation by NME and
GluR is growth factor, which gets most input from ICS. We also observed that there
is a tendency for genes in one functional class to receive more inputs from genes in

the same class.

In summary, the least squares solution for the linear model results in a sparsely
connected network, in which all genes have both positive and negative inputs, some
genes are predominantly positive or negative regulators, there are a small number
of important regulators with stable expression patterns, regulatory inputs are scaled
by the speed of change in expression level of each gene, some of the main regulatory
gene categories are known to play an important role, and there is more regulation
within a functional category than between categories. All these high-level properties

can be considered plausible from a biological point of view.
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6.4.2 Robust parameters

All theorems are true.

All models are wrong.

And all data are inaccurate.

What are we to do?

We must be sure to remain uncertain.
— Leonard A. Smith

Because we expect large parts of the model to be underconstrained, we performed
a Monte Carlo analysis to assess the effect of noise in the input data on the resulting
parameters, and used this to determine the most robust parameters. As mentioned
earlier, every value in the original data sets is really an average of triplicate experi-
ments. This gives us high accuracy, and a rough estimate of the standard deviation
at each measurement. We used this information to construct 40 new input data
sets, adding a small amount of Gaussian noise (with the same standard deviation)
to each. We then generated the linear model for each of these perturbed data sets,

and analyzed the variability of the parameters over those 40 perturbed models.

To reflect our uncertainty about the kainate decay constant Dy 4 used to generate
the kainate time series, we also lognormally perturbed Dy 4 around its estimated
value of 100 min. This did not qualitatively change the results®. Similarly, continuity
or discontinuity in the slope of the interpolated kainate time series'® at the time of
kainate injection had little effect on the results, indicating that the time resolution

in the kainate time series is sufficient to capture the initial dynamics of the response.

90ver the 40 perturbed models, D 4 varied from a minimum of 45.55 min (half-life of
31.57 min) to a maximum of 205.13 min (half-life of 142.18 min).

10When interpolating the kainate time series, the default slope at Oh is determined by the
Oh and 0.5h data points. In contrast, the slope for unperturbed animals (at postnatal day
25, but without kainate injection) can be estimated from the hippocampus development
time series. Using the slope calculated based solely on the kainate time series would
therefore be equivalent to introducing a discontinuous jump in slope. Alternatively, we
can force the kainate time series interpolation to start with the slope found at P25 in the
developmental time series.
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The results listed below are for Dg 4 lognormally perturbed around 100 min, and a

discontinuous slope of the interpolated kainate time series.

For each parameter in the model, we calculated the average magnitude w of
the parameter, and compared it to its standard deviation o,, over all 40 perturbed
models. Note that although the original triplicate standard deviations are only a
very rough estimate of the real variability for each gene and each time point, o,, will
be the result of some weighted average of a large number of these. In fact, for the
specific weight wj;, o;, will be some weighted average of all the triplicate standard
deviations for both y; and y;, at all time points, over all data sets. Just as the
average of two poor estimators is itself a more accurate estimator (in fact, with half
the variance of the original estimators), o, will have much greater accuracy than

any of the triplicate standard deviations it is based on.

The Z-score of a parameter w is defined as Z,, = |w| /oy, and indicates how many
standard deviations the mean of the parameter is away from zero. From this Z-score,
we then compute a P value, indicating the probability that the “real” value of the
parameter for the best-fit linear model is zero, or even has opposite sign from w
(i.e., the probability that this weight w is a false positive). We could simply count
what fraction of the perturbed models have zero or even the opposite sign for the
parameter in question. However, this would require many more than 40 runs to
get sufficient accuracy in the P values. If we assume each parameter has a similar
distribution, we can look at the distribution of all parameters, each normalized with
respect to its mean @ and standard deviation o,.'! To estimate the P value for a
specific value of Z, we count the number of instances where (w — w)/o,, > Z, and

divide by the total number of parameters (40 x 68 x 65). The Z-scores (or their

"The perhaps more standard—but less accurate—approach would be to assume all pa-
rameters have a Gaussian distribution over the 40 perturbed models. The distribution
estimated above turns out to have a slightly sharper peak and longer tails than the Gaus-
sian, resulting in larger P values for high Z, and smaller P values for low Z.
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derived P values) are then used to identify robust parameters.

Note that the P values used here do not necessarily indicate the probability that
the parameters found correspond to real biological regulatory interactions. They
simply reflect the probability, given the noise on the input data, that the best-fit
linear model for the true expression time series includes a parameter with this sign.
In some instances, fitting a nonlinear interaction using a linear model may require
a number of spurious linear terms. These parameters may be necessary for a good
fit, and thus receive a high Z-score. Our hope is that gene regulation has sufficiently
strong linear component that this first-order approximation with a linear model will

mainly yield biologically relevant results.

6.4.3 Results: Kainate parameters

Figure 6.5 shows the Z-scores and average magnitude of all parameters. Surprisingly,
the most robust parameters in the model are the parameters K;, indicating the effect
of kainate on each gene (black dots in Figure 6.5). This is probably because of the
very fast and drastic effect of kainate-induced seizures on the system, as compared
to the slow and subtle changes during development. Table 6.1 lists a number of the
kainate — gene parameters with the highest Z-scores. Note that a few parameters
(e.g. Kainate — 5-HT;g) have a high Z-score but a low average magnitude. Such
highly consistent but small parameter values may reflect a real but minor regulatory

influence, or simply an absence of regulation (e.g. compensation for nonlinear effects).

Since it is unlikely that kainate actually regulates all these genes directly, we
must assume there are some intermediate steps missing. Including an even earlier
time point may shed some light on the precise sequence of regulation, especially
for the BDNF/IGF II/S1008 trio which also show gene-to-gene interactions (see

Section 6.4.4). It should be noted, however, that most of the existing literature on
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Figure 6.5: Left: Average magnitude of parameters vs. Z-score. Black points are
kainate — gene parameters. Inset: log-log plot shows clearly that the kainate pa-
rameters on average have significantly higher Z,, and higher |w|.

kainate response looks at much coarser time scales (typically hours), and that the 0.5
hr time interval in this data set is the shortest reported in the literature for kainate

response.

Kainate — IGF II: Kar et al. [126] found that IGF I, IGF II and insulin recep-
tor sites show a marked decrease after kainate administration, suggesting “possible
involvement of these growth factors in the cascade of neurotrophic events that is
associated with the reorganization of the hippocampal formation observed following
kainate-induced seizures.” We found a four-fold decrease in IGF II mRNA levels one
half hour after onset of seizures, followed by a two-fold increase in IGF I after 6 hours,

and a large decrease of all IGF’s and IGF receptors around 10-21 days. Our model
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| Parameter | w0 | ow | Zy | P, |
Kainate — IGF II | —1.157 | 0.238 | 4.854 | 4.355- 104
Kainate — BDNF | 40.750 | 0.165 | 4.534 | 7.834-107*
Kainate — TCP +0.542 | 0.092 | 5.894 | 2.828 - 10~°
Kainate — S1008 | 4+0.531 | 0.099 | 5.379 | 1.923 - 10~*
Kainate — G67I86 | +0.379 | 0.076 | 4.964 | 3.620-10~*
Kainate — 5-HT5 | +0.208 | 0.044 | 4.732 | 5.430- 104

Table 6.1: Robust kainate parameters. IGF II: insulin-like growth factor II;
BDNF': brain-derived neurotrophic factor; TCP: T-complex protein; G67I86: glu-
tamate decarboxylase 67 (GADG67) splice variant 186; 5-HT;p: serotonin (5-
hydroxytryptamine) receptor 1B

suggests that it is IGF II which initially sets off the widespread changes in expression
levels of insulin, the insulin-like growth factors, and their receptors following kainate

administration.

Kainate — BDNF: BDNF is upregulated by kainate via two different promoters
in hippocampal neurons [166], and the BDNF mRNA increase due to kainate is not
blocked by protein synthesis inhibitors, indicating BDNF is regulated as an immedi-
ate early gene [47]. In the kainate injury time series, BDNF expression levels increase
five-fold one half hour after onset of seizures. In the adult brain, BDNF is thought
to play a major role in the development of kainate-induced hypertrophy in granular
neurons of the dentate gyrus region of the hippocampus: administration of antisense
deoxynucleotides for BDNF (sequestering the complementary BDNF mRNA) after
kainate administration totally prevented neuronal hypertrophy [92]. Hippocampal
BDNF levels are also correlated with severity of seizures and the extent of neu-
ronal loss in the CA1 and CA3 regions of the hippocampus, and administration
of exogenous BDNF exacerbates the damage to CA3 neurons [190]. Interestingly,
in immature (20-day-old) rats, which normally do not show neuronal loss following

kainic-acid induced seizures, BDNF apparently has a neuroprotective effect: anti-
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sense deoxynucleotide administration results in longer seizure duration and loss of

CA1 and CA3 pyramidal cells and hilar interneurons inside the dentate gyrus [226].

Kainate — TCP: The case for kainate regulation of TCP (T-complex protein)
is rather speculative, even though it is the single most robust parameter in our linear
model. One intriguing link is the mapping of the epilepsy susceptibility locus EJM1
on chromosome 6 [192], near a human homologue of the mouse T-complex [68]. If
TCP is indeed a major gene involved in kainate neurotoxicity, TCP gene defects

might cause increased susceptibility to epilepsy.

Kainate — S1003: S1008 is known to be upregulated five fold in human tempo-
ral lobe epilepsy [91]. S1005 protects hippocampal neurons from damage induced by
glucose deprivation [25], “suggesting that its elevation in neurological disorders may
be a compensatory response.” Perhaps its overexpression is a consequence of glu-
cose deprivation due to neuronal hyperexcitation by kainate. Lastly, S1003 induces
apoptotic cell death in astrocytes [116], which protect against kainate neurotoxic-
ity [157]. Hence, overexpression of S1003 might cause aggravation of kainate toxicity

by astrocyte apoptosis.

Kainate — G67I86: G67I86 is an embryonic splice variant'? of GAD67 [35],
expressed in mice from E10.5 to E15.5 (corresponding to rat E12 to E17), and not
detectable in adult brain [221]. GAD synthesizes the fast-acting neurotransmitter
GABA from glutamate. The short leader peptide translated from GG67I86 is not
enzymatically active, but is thought to exert some unknown regulatory function [221].
Mature GAD67 mRNA was known to be upregulated in hippocampal dentate granule
cells four hours after kainic acid injection [200, 67]. However, the more fine-grained

time series used here shows that G67I86 mRNA levels increase first (0.5h-1.5h),

12G67186 contains a 80 bp insert not found in the adult GAD67 mRNA. This insert
includes a stop codon which truncates the translation of the mRNA, resulting in a short
leader peptide rather than the full-length GADG67 protein.
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followed by a second embryonic splice variant G67180'3 (1.5h), and finally the adult
GADG67 mRNA (1.5h-24h). This is the same sequence in which these splice variants
occur during development [221], indicating that GADG7 expression after kainate
injury may be recapitulating its developmental program. Such recapitulation of
developmental processes plays an important role in regeneration of the peripheral
nervous system following injury, and has also been implicated in the central nervous

system [56, 255, 253].

Kainate — 5-HT;5: Kainate administration causes a release of serotonin in
the hippocampus [227], which would be expected to provoke a compensatory down-
regulation of the 5-HT;p serotonin receptor instead [125]. However, the interaction
between serotonin and 5-HT;g is more complicated than that: 5-HT g is an autore-
ceptor [125], i.e., activation of the receptor causes an inhibition of serotonin release.
In addition, receptor activation will also cause a desensitization of the 5-HTip re-
ceptor [182]. It is conceivable that this complex set of feedback loops might cause
a transient upregulation of 5-HT;g by kainate. Indeed, the 5-HT;g expression time
series shows a transient upregulation, peaking at 1.5-3h, followed by a decrease below

the original expression level.

The direct effect of kainate is a transient phenomenon, lasting at most a couple of
hours. It could be argued that we might be able to derive these kainate parameters
directly from the first few time points in the kainate injury time series, in which all
the effort involved in integrating results from three separate time series is entirely

superfluous.

One can indeed find reasonable, intuitive estimators for K; and the corresponding
Z-score Zy, using the change in expression level between the first two time points,

Ay;(0,0.5) and the triplicate error 0;(0) and 0;(0.5) at those time points (see also

13G67I80 contains a 6bp shorter insert than G67I86, and is translated into the leader
peptide, plus a truncated but enzymatically active GAD67 protein.
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Figure 6.6):
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Figure 6.6: Estimates for kainate parameters K; and their Z-score Zk,, based on the
first two time points in the kainate time series. The original data points are solid,
interpolated time points hollow. k; is the slope between the two first time points in
the data set, z; is a measure of the significance of the change in expression level.

These simple estimators k; and z; show a reasonable correlation to the results
obtained by fitting the linear model to all three complete time series: r = 0.84 and
r = 0.83 respectively. Unfortunately, this nice correlation starts to break down in
the most interesting region: for those genes with high Z-score. For the ten genes

with highest Z-score, the correlation between k; and K; is only barely significant:
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r = 0.67, and the correlation between z; and Zk, is no longer significant: r = 0.47.
The estimates are even worse for the six genes listed in Table 6.1:

e k; strongly underestimates K; for IGF II (k; = 0.696; K; = 1.157)

e k; strongly overestimates K; for BDNF (k; = 1.215; K; = 0.750).

e 2z; strongly underestimates Zg, for S1008 (z; = 3.333; Zk, = 5.379)

e 2; strongly underestimates Zg, for 5-HT g (z; = 3.667; Zg, = 4.732),

e 2z strongly overestimates Z, for G67I86 (z; = 12.333; Zk, = 4.964)

e 2z; strongly overestimates Zg, for BDNF (z; = 7.156; Zx, = 4.534).

Of the six genes with largest Z-scores, TCP is the only one with accurate esti-
mations. Both estimators are particularly unreliable for high values. Although their
accuracy is probably sufficient to pick up most of the important interactions, it is

clear that adding in the rest of the kainate time series, as well as the two develop-

mental time series, significantly improves the results.

6.4.4 Results: Gene-to-gene parameters

Kainate is an exogenous input to the system, so the immediate effects of kainate
administration are easy to isolate. In addition, kainate injury as a model of temporal
lobe epilepsy is very well studied. The gene-to-gene interactions on the other hand are
much harder to unravel, both in vivo as in vitro, and consequently less information

about them is available in the literature.

In the linear model, the parameters accounting for the gene-to-gene interactions
have much smaller Z-scores than for the kainate-to-gene interactions. The gene-to-

gene parameters with Z,, > 1.0 are listed in Table 6.2. Interestingly, GR~y1 and
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IGF IT—accounting for seven out of ten entries in the table—also have the highest
magnitude output vectors, which we interpreted as a sign of important regulatory
genes in Section 6.4.1. None of the Z-scores are significant at the P = 0.05 level,
although in total we only expect about one false positive in this table of ten param-
eters. Remember that the goal of this model is primarily to generate interesting new
hypothesis to guide further research. From that point of view, nine out of ten is

quite acceptable.

| Parameter | w | ow | Zyw | Py |
GFAP — GFAP —0.277 | 0.243 | 1.138 | 0.097
BDNF — BDNF —0.973 | 0.719 | 1.353 | 0.072
IGF II — BDNF —1.598 | 1.494 | 1.070 | 0.106
BDNF — S10053 —0.343 | 0.294 | 1.165 | 0.093
IGF II — S10083 —0.693 | 0.617 | 1.123 | 0.099
GRvy1 — GRo4 +1.144 | 1.108 | 1.032 | 0.112
GRvy1 — GRpS2 +1.036 | 0.965 | 1.074 | 0.106
GR~vy1 — G67180/86 | +1.471 | 1.307 | 1.126 | 0.098
GRy1 — AChE +0.992 | 0.895 | 1.108 | 0.101
GRy1 - NFM +0.795 | 0.718 | 1.108 | 0.101

Table 6.2: All gene-to-gene parameters with Z-score greater than 1.0. GFAP: glial
fibrillary acidic protein; BDNF': brain-derived neurotrophic factor; IGF II: insulin-
like growth factor II; G67I80/86: glutamate decarboxylase 67 (GADG67) splice vari-
ants 180 and I86; AChE: acetylcholinesterase; NFM: neurofilament medium; GRa4,
GRS2, and GRy1: GABA, receptor subunits a4, 2, and ~1.

GFAP — GFAP; BDNF — BDNF: It is interesting to note that two out of
the ten gene-to-gene parameters in Table 6.2 are autoregulatory, i.e., a gene down-
regulating itself. Although these specific genes are not known to regulate themselves,

in general such negative feedback loops are an important homeostatic mechanism.

BDNF, IGF IT — BDNF, S1005: BDNF and S1005 seem to be regulated by
BDNF itself, and IGF II. Moreover, the regulation by IGF II is in both cases roughly
twice as strong as the regulation by BDNF (2.02 times as strong for S10053, 1.64 times
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as strong for BDNF, well within the error bounds on these parameters). This might
lead us to infer the presence of a hidden node'* regulating BDNF and S10043, as in
Figure 6.7. All three of these genes are growth factors, playing a role in differentiation
and development of neurons, as well as in neurite outgrowth. Both IGF II and
BDNF induce differentiation of CNS stem cells-derived neuronal precursors, and
IGF T and BDNF may act together or sequentially to promote differentiation [24]
(the combination of IGF II and BDNF was not examined, but IGF II was found to
have a similar effect as IGF I on differentiation). Furthermore, IGF II and S1003
have almost opposite effects on the growth of developing serotonin and dopamine
neurons in vitro [147]. The interactions between BDNF, IGF II and S1005 may play

an important role in differentiation of developing neurons into different cell types.

) @ ‘
ST

Figure 6.7: Alternative models for the interaction between BDNF, IGF II, and S1008.
Note that BDNF was drawn twice for clarity.

GR7y1 - GRa4, GR32: GRvylisa GABA, receptor subunit. Each pentameric
GABA, receptor consists of five subunits, and so far, 19 mammalian subunit types
(plus several splice variants) have been identified, grouped into seven classes: 6 «
subunit types, 4 5,37y, 10, 1 ¢, 1 7, and 3 p [26]. In the CNS, GABA, receptors
generally consist of combinations of a and S subunits, plus one or more of the 7,
0, or € types, allowing for possibly hundreds of different GABA, receptors. The

upregulation of a4 and (2 by 71 seems to imply the coordinate regulation of an

Interestingly, the combination (BDNF + 1.8 IGF II) shows an even higher Z-score for
regulating BDNF and S1003 (1.434 and 1.332), and a higher average Z-score overall (0.503
versus 0.476 for BDNF alone and 0.436 for IGF II alone)
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a4p2v1 GABA, receptor by its 1 subunit. This specific receptor combination
has not previously been described, perhaps because a4 and ~1 are less common
subunits, a4 antibodies have yielded inconsistent results, and a frequently used 52/3
antibody does not distinguish between 32 and 33 subunits. However, a4y '® has
been detected in the cortex, striatum and hippocampal pyramidal cells [174], o432
has been detected in thalamus and hippocampal dentate granule cells [174] (§ is
known to substitute for 7 in some receptors), a4, 52, and §-mRNA levels are tightly
correlated in individual dentate granule cells [41], and the hippocampus does contain

some of the highest concentrations of both a4 [133] and 1 [134].

GR~vy1 — G67I80/86: GABA is implicated in neuronal development, and it is
thought that GAD (the enzymes(s) which synthesize GABA from glutamate) regu-
lates the expression of GABA receptors via GABA, and that GABA receptor acti-
vation in turn regulates GAD expression [215]. GADG67, a4, 81 and +y1 expression is
associated with proliferation and development in the rat embryonic and early postna-
tal CNS [148]. Considering the timing, this GADG67 expression presumably consists
mainly of the embryonic splice variants G67I80 and G67186. Total GABAA recep-
tor mRNA was found to be highly correlated (R=0.99) with total GAD mRNA in
cervical spinal cord [215], and it seems likely that the GABA, receptor subunits
which appear transiently during spinal cord development (a4, a5, 81, 82, 71, and
v3) would be highly correlated with the transiently expressed GAD67 variants.

GR7y1 — AChE: GABA has been conjectured to control the development of
cholinergic neurons, and indeed, AChE expression is downregulated by activation of
GABA, receptors [132]. Exposure to GABA has also been shown to downregulate
GABA, receptor subunit 71, as well as al, 82, 84, and 72 [27], so perhaps the effect
of GABA on AChE (and $2) is due to downregulation of 1.

GRvy1 — NFM: NFM (neurofilament medium) is a neuronal marker, so it is

15The precise subtype of 8 and v was not identified
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not surprising that NFM would be upregulated in conjunction with a number of
neurotransmitter receptors (a4, 52, y1) and neurotransmitter metabolizing enzymes

(G67180/86, AChE). It has also been noted that GAD family mRNA expression

parallels neurofilament expression [215].

Interestingly, GRy1 and IGF II-—accounting for seven out of ten entries in the
table—also have the highest magnitude output vectors, which we interpreted as a
sign of important regulatory genes in Section 6.4.1. Whereas IGF II is known to be an
important regulator, no such role for GR~1 has been postulated before. The GR~v1
gene product is part of a receptor complex, and would not be expected to play any
direct regulatory role. Nevertheless, it is not unheard off for a protein with a primarily
structural role in the cell to also have a regulatory effect (for example, CASK, a
cytoskeleton protein acting as a structural girder for cell junctions, is known to enter
the nucleus and directly regulate gene expression [115]). Alternatively, some other
factor not included in our data set may be driving the coordinate regulation of these
genes, and be most highly correlated with GRv1 (e.g., GRy1 may have few other
regulatory inputs, and may show a faster response to this regulator than the other
genes), in which case the best causal explanation within the scope of the data set
would be regulation by GRvy1. Either way, the model shows a significant coordinate
regulation of these gene and, lacking any other explanations, further investigation of

the role of GRy1 may be warranted.

6.4.5 A control model

One way to illustrate the power of a modeling methodology is to apply it to a
set of randomized data and compare the results with a model based on real data.
Intuitively, we would like to see the model to return much more significant results on

real data than on randomized data, in which case we could assume that the model
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managed to extract the salient features that are present in the real data but absent

in the randomized data.

Of course, there are various ways to contruct a “randomized” data set: purely
random values taken from some distribution, permutations of the original data sets,
etc. Ideally, one would like to use a randomized data set that has all the same
properties of the real data, with the exception of the property the model is trying to
capture—in this case, causal relationships between the genes. This way, the difference
in performance on the two data sets can only be due to the presence or absence of

the property of interest.

For the linear model and the data sets used here, it has proven quite difficult
to generate a randomized data set that did not outperform the real data, in terms
of Z-scores of gene-to-gene interactions in the resulting linear model. What makes
the real data sets so difficult to deal with for the model, is the very slow, smooth
changes in expression levels, combined with a high amount of correlation between
the expression levels of various genes. Not surprisingly, if we choose a randomization
which perturbs either of these factors, the randomized data will be easier to model

with the linear model.

A number of different randomizations were tried, progressively matching more of
the properties of the real data, while still avoiding to add in any causal relationships
between the simulated genes. The linear model essentially correlates expression levels
with changes in expression levels, so at a minimum the randomized data should
have the same distributions for expression levels and slopes of expression levels.
The former could be achieved for example by randomly permuting the (normalized)
expression levels within each time point. However, this would result in more extreme
changes in expression levels between time points. Larger slopes can be expected to
result in larger parameter values. Moreover, the changes in expression level for each

time interval would become more significant, with respect to the triplicate standard
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deviation of the measurement on either side of the interval.

One of the most important factors that reduces the level of significance of the
real model is the correlation between the genes in the real data set. Appendix C
shows how we can generate randomized data sets that match the real data in (1) the
distribution of expression levels at each time point, (2) the distribution of changes in
expression levels between time points, and (3) the variance and covariance between
simulated genes. The results obtained from these randomized data sets are quite

similar to those obtained from the real data sets, with the following exceptions:

1. The control model has significantly smaller parameter weights (o, = 0.149

versus o, = 0.200 for the real data).

2. The control model has slightly fewer gene-to-gene parameters with high Z-score
(an average of 8.4 with Z,, > 1.0, over 5 randomized data sets; compared to 10

using the real data).

Although these results are somewhat disappointing, it should be kept in mind that
a parameter with high Z-score in the control model does not mean that the model
has “discovered” an imaginary genetic regulatory interaction, but simply that there
is a high probability that the best fit linear model to this specific randomized data
set contains a nonzero value for this parameter. In other words, if our assumption is
that this data was generated by a linear network model, then this model must have
some specific nonzero parameters. The fact that we have violated that assumption
by generating the data in a randomized fashion does not invalidate the possibility
that the best-fit parameters to real data may reflect biological reality. The real
validation test for a model such as this invariably has to come from comparison with
the literature (as in the previous Sections) or, ideally, verification or refutation of

the predictions in the laboratory.
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Modeling gene networks with

recurrent neural networks

As a net is made up of a series of ties,

so everything in this world is connected by a series of ties. If anyone thinks
that the mesh of a net is an independent, isolated thing, he is mistaken.

It is called a net because it is made up of a series of interconnected meshes,

and each mesh has its place and responsibility in relation to other meshes.
— Buddha

The performance of the linear model is quite promising, but the model has some
quite unrealistic properties. In order to compensate for these, we add a nonlinear
transfer function (similar to a dose-response curve), and an explicit mRNA decay
term, resulting in a set of nonlinear differential equations similar to a recurrent neu-
ral network. I will briefly introduce some background on training neural networks,
including such issues as the delta-bar-delta training rule, early stopping, weight de-
cay, and weight elimination. Next, I demonstrate how we can randomly generate
small “synthetic” networks with similar properties and dynamical behavior as found
in the real data, and how to reconstruct the network by training a recurrent neural

network on coarsely sampled, noisy time series data. Various measures of perfor-

93



Chapter 7. Modeling gene networks with recurrent neural networks

mance are suggested, and various settings of the learning algorithm are explored
to optmize the performance of the modeling methodology. Results seem promising,
although possibly not quite as good as for the linear model. Finally, I briefly discuss
how to extend the “robust parameters” analysis used in Chapter 6 to the nonlinear
model, which should allow for a better distinction between the “true” and “false”

weights.

7.1 Nonlinear differential equations

Although the linear model performs better than expected, it has some serious draw-
backs. One issue is that a linear, additive system can only have a single attractor
in state space. If we interpret attractors of genetic regulatory networks as cell types
(as suggested by Kauffman [130]), this would mean only cells with a single stable
cell type could be modeled. In fact, the virtual 7; inputs in Equation 6.5 do allow
for separate cell types. For example, eigenvector analysis of the linear model in
Chapter 6 does show a separate attractor for the spinal cord data set (here of course
corresponding to an tissue-wide average expression level, not a single cell type) and
the hippocampus data set. Nevertheless, there can only be a single stable attrac-
tor for each “tissue type”. The adult expression levels in the normal developmental
hippocampus time series and the kainate injury time series actually lie on the same,
one-dimensional attractor which intersects both adult expression patterns. In order
to achieve different point attractors, it is essential to introduce nonlinearity in the

model.

A second important drawback of the linear model is that its assumptions about
gene regulation are very unrealistic. For example, nothing prevents expression levels
in Equation 6.5 from becoming negative, or from increasing without bounds. Even

though the best-fit model to the real expression data does not show this behavior,
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it would be preferable to constrain the outputs of the model to conform to physical
reality by imposing a lower and upper bound on concentration levels. The obvious
solution is to switch to a model as in Equation 1.4:
Wi _ g5 bi)— D 7.1
P ijiyj+i — LDy (7.1)
J
Figure 7.1 shows a schematic representation of what a “node” in the nonlinear
network would look like, for the specific case of the data sets used in Chapter 6—with

an additional kainate input and tissue type indicator variable.

k change in gene i

kainate level
tissue type
constant bias

Figure 7.1: Schematic illustration of a node in the nonlinear (neural) network model.
The input from all regulatory genes is summed up, together with an input from
the kainate level, a constant bias term, and an additional term to cover tissue-
specific differences in regulation. This weighted sum of inputs is passed through a
sigmoidal transfer function S(-) and a proportional decay term is subtracted. The
result determines the change (i.e., slope) in expression level of the corresponding
gene.

The sigmoidal transfer function S(-) (bounded between 0 and 1) introduces the
needed nonlinearity and imposes an upper bound on the production rate of the
mRNA. Although the total input ) wj; y; + b; to the gene may become negative
(strong repression of the gene), since S(-) is lower-bounded to zero and the decay
term D; y; is proportional to the expression level, y; can never decrease below zero.

Note that this model does not include regulated decay (or protection from decay)
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of gene products induced by other regulatory factors, only passive first-order decay.
The decay term D;y; imposes a maximum concentration level, at the point where

production and decay balance each other out:
max(y;) = Ai/D; (7.2)

The set of nonlinear ordinary differential equations given in Equation 7.1 could
be fitted to a data set using general optimization methods, essentially by doing some
form of gradient descent on the parameters. For example, Mjolsness et al. [164] use
Simulated Annealing to simultaneously find a set of network parameters and diffusion
parameters to fit a spatial expression pattern. However, as we shall see in the next
section, very efficient optimization techniques for precisely this sort of differential

equation have already been developed within the field of neural networks.

7.2 Dynamic recurrent neural networks

Instead of using general optimization methods, we can view Equation 7.1 as defining
a continuous-time, or dynamic, recurrent neural network. The advantage of this
approach is that the neural network community has developed efficient algorithms to
fit parameters of this specific type of network (see Pearlmutter [177] for a review). In
addition, we can apply some of the techniques that have been developed to reduce the
connectivity of the network, and easily incorporate additional biological knowledge

by imposing Bayesian priors on properties of the network or individual weights.

Neural networks have a reputation for being a “black box” modeling technique:
only useful for prediction, without allowing one to learn about the system being
modeled by “opening the box”. The main reason for this reputation is that neural

networks are often applied to systems which are not expected to show any similarity
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to the network structure used in the neural network. Here we have a one-to-one
mapping between genes and their regulatory interactions, and network nodes and
weights, so we expect the resulting network structure to show some similarity to the

real regulatory network.

The black box approach here would be to connect the “gene” node outputs to a
number of hidden layers, which then would feed back into the gene nodes. No doubt
this would allow a closer fit to the data (at the expense of needing more data to avoid
overfitting), but we would have less hope of being able to match the network of hidden
nodes to biological reality. On the other hand, if we have measurements regarding
intermediary nodes (e.g. protein concentrations), we may be able to add these nodes
and preserve the one-to-one mapping. Also, if there is sufficient evidence for shared
patterns of regulation among genes, we may add a hidden node to the network, in

the hope the new hidden node corresponds to a real regulatory intermediate.

Albertini and Sontag [7] showed that for recurrent network models such as Equa-
tion 7.1, the input/output behavior uniquely determines all the weights. In other
words, given enough data on the dynamical behavior of the system under different
conditions, there is only a single such recurrent neural network that best matches
the data. It has also been shown [205, 206] that feedforward networks of this type

are as powerful as Turing Machines or analog computers.

7.3 Learning algorithms

As is illustrated in Chapter 2, real world data comes in a variety of types. Some
data, such as the Gene Expression Matrix or the diauxic shift data, may consist of
a time series, where each point reflect the state of the cells at a particular time in
a dynamic process. These sets provide us with a lot of training data at a time, but

each time point will be related to the surrounding time points, reducing the amount
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of information present in the data. For these data sets, we need to train the neural

network to follow the same trajectory when starting from the same initial state.

Other data, more conventionally, describes the steady state of the cells when
presented with a certain environment, or with a given mutation, usually either a
deletion or overexpression of a certain gene. For this type of data, we will need
to train the network to exhibit a given stable attractor when presented with a set
of external inputs (mutations can usually be represented using a virtual external
input to the affected genes). Learning rules to learn attractors tend to be somewhat

simpler, because they do only need to learn a fixed point, and not the exact dynamics.

In order to take advantage of all the data present on an organism, we would
want to use both types of data to train the same network. However, these data
sets do require different learning algorithms. It should be possible to combine both
types of data, and different data sets of each type, into a single error term which
can be used to train the network. Or we can alternate training using the different
learning rules, just as we alternate training on different training data within the same
set. However, it may be necessary to weight the different data sets by how much
information they really contain, otherwise the single point steady state data may be
practically ignored compared to the much larger time series data sets. Integrating
different sets of data and different learning rules will likely be an important factor
in making this sort of model feasible. Learning algorithms for dynamic recurrent
neural networks are reviewed in Pearlmutter [177], and the two most relevant ones
(Backpropagation through Time and Recurrent Backpropagation) are derived for the
specific form of Equation 7.1 in Appendix D.

Backpropagation Through Time (BPTT), developed by Werbos [247, 248], allows
a recurrent neural network to be trained to follow a specified trajectory through state
space. Any recurrent network, simulated over n discrete time steps can be represented

by an n-layered, purely feedforward network, by “unrolling” the recurrent net (See
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Figure 7.2): one simply replicates all the nodes n times, and updates their activation
levels one layer per time step. This has been the basis for most learning algorithms
for recurrent neural networks, because now any learning algorithm for feedforward
nets can be applied. BPTT uses the standard backpropagation algorithm [246, 191]

to train recurrent neural networks this way.

t= t=At t=2At - t=T-At t=

Figure 7.2: Example of a simple, 4-node recurrent network, unrolled in time from
t =0 tot =T with a time step At.

Pearlmutter [176] has derived a continuous-time version of BPTT, applicable to
Equation 7.1. Simulating the network using the differential equation form, rather
than with discrete time steps, has a number of advantages. First of all, it is unclear
what time step we should use so the dynamics of the differential equation system
do not get lost in the simulation. Secondly, if the training data is sampled at non-
uniform intervals, the number of time steps to unroll the recurrent network may be
different for each training sample. Lastly, by keeping in mind that we’re really dealing
with a set of differential equations, we may be able to use some special simulation

techniques that are faster than simply running a set of difference equations.

Appendix D.2 derives the continuous-time BPTT learning rule for Equation 7.1.
The computational complexity of the algorithm is O(QT P), where @ is the number
of iterations needed to train the network, T is the number of discretized time points

in the entire time series, and P is the number of weights (in our case, P = O(N?);
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if we started out with a sparse network, we would have P = O(NK)). All the
runs below were done with a modified version of Pearlmutter’s CBP software [175]

implementation of BPTT.

The idea behind training a neural network is to find the derivative of an error term
E with respect to the individual weights wy (i.e. the w;;, A; and D; in Equation 7.1)
of the network. These derivatives can then be used to do gradient descent on the

weights, updating them in the direction that minimizes F:

OF

A’LU]C = —na—u)k

(7.3)

where 7 is a learning rate indicating what size steps should be taken in parameter
space (see also Section 7.3.1). The error term E in general can take the form of an
weighted integral over time. In our case, since we only have a sparsely sampled time

series to fit, the error term will simplify to something like:

E=3 S (wilt) — 5i(t)? (7.4)

t=t1 1

where ¢;(t) is the measured expression level of gene i at time point ¢. More elaborate
error terms are easily added. For example, we could add an integral of the magnitude
of the second derivative to impose a smoothness constraint (although, as we will see
later, there is a more elegant way to do this). Or we could add a term indicating
how poorly the model fits certain biological expectations. The equations derived in
Appendix D.2 only require that we can easily differentiate the total error F with

respect to the gene expression levels ;.

7.3.1 Adjusting learning rate using delta-bar-delta

The choice of learning rate n in Equation 7.3 is crucial in the performance of the

learning algorithm. If the learning rate is too large, the weight update may overshoot
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it’s optimum value, causing the weight vector to jump back and forth in parameter
space. If the learning rate is too small, a large number of iterations will be needed to
reach the optimum. This problem is exacerbated by the fact that different regions of
parameters space often have different degrees of “ruggedness”, resulting in a different
optimal learning rate at different times during training. Similarly, different weights

may have their own optimal learning rate.

The delta-bar-delta algorithm [123] uses a simple heuristic to get around these
problems. Essentially, it maintains a separate learning rate 7 for each weight wy,
and automatically adjusts these during training. When the current gradient (“delta”)
for the weight points in the same direction as the time-averaged gradient (“delta-
bar”) during previous iterations, 7 is increased (up to a pre-defined maximum).
Conversely, when the current gradient points in the opposite direction (i.e. we just

overshot the optimum), 7 is decreased. More formally:

5i(t) = g—ia) (7.5)
5e(t) = 08:(t— 1)+ (1— 0)64(0) (7.6)

where the time index ¢ indicates iteration number, and gk(t) is an exponentially
weighted average (with 0 < 6 < 1) of the gradient 0 at previous iterations. Note
that the sign of 8,0, will indicate whether the gradient & points in the same direction

as before (hence, “delta-bar-delta”). The learning rate 7y is then updated using:

€1 if Sk(t — 1)(5k(t) >0

B (7.7)
—6277k(t) if 5k(t — 1)5k(t) <0

Ang(t) =

where €; and €; are some small constants, determining the speed at which the learning

rate can vary.
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7.3.2 ML interpretation of minimizing £

Note that the standard quadratic error term in Equation 7.4 is equivalent to finding a
Maximum Likelihood fit of the model to the data, under the assumption of Gaussian

noise on the measurements. The likelihood of the model given the data is defined as:

P(ylw) = H P (gt (7.8)

Maximizing the likelihood thus finds the model which would be most likely to
produce the observed data y. Note that, via Bayes’ rule (see Equation 7.18), this is
equivalent to maximizing P(w|y), if we have no prior assumptions on the distribution
of the observed data P(y) and the weights of the model P(w). If we assume the
measured outputs are given by the values y;(t) produced by the model, plus a zero-

centered Gaussian noise term:

P(g(t)w) = N (%), p=1yi(t),0 =5s) (7.9)
1 _ww-50)°
— P (7.10)

\V2Ts

then the negative log-likelihood becomes:

—log(P (ylw)) = —Zlog/\f (:(t), = yi(t), 0 = s) (7.11)

o Zyz — it (7.12)

and thus minimizing a quadratic error terms as in Equation 7.4 is equivalent to min-

imizing the negative log-likelihood, which is equivalent to maximizing the likelihood.
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7.4 The Curse of Dimensionality revisited

As mentioned earlier, high-dimensional systems are hard to model, especially if com-
paratively few training samples are available. The problem is generally stated as one
of generalization, i.e. being able to produce correct outputs on new inputs. Note
that our goal here is slightly different: we want to predict the structure of the net-
work, not its behavior under new conditions. Of course, the goals are identical in
the limit, as sufficient data on the dynamical behavior will uniquely determine the
network parameters. [193] mentions three conditions that are typically necessary for

good generalization:

1. The inputs to the network contain sufficient information pertaining to the
target. This validates our desire to measure as many variables of the system
as possible. If we overlook an important input to the system, obviously the

model will not be able to learn the influences that input exerts.

2. The function we are trying to learn should be, in some sense, smooth. We can
expect this to be true for most biological systems, because they are generally

stable with respect to small perturbations.

3. The training set should be a sufficiently large and representative subset (“sam-
ple” in statistical terminology) of the set of all cases that we want to generalize

to (the “population” in statistical terminology). This is our main problem!

The data sets used in Chapter 6 are on the order of 65 genes x 28 time steps [245,
212]. For yeast, publicly available data is on the order of 6400 genes x 400 exper-
iments [217, 118]. Rules of thumb for training neural networks require that a few
times as many training cases as parameters are available to avoid any loss of gen-

eralization due to overfitting. The use of good regularizers and early stopping can
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prevent overfitting with fewer training samples, but clearly we are nowhere near the

required amount of data at the moment.

Considering we do not (yet?) have sufficient large-scale data to achieve a good
model solely based on this data, it is important to include as much extra knowledge
as possible (see Section 8.2.3), but also that we try to minimize the size of the model
(number of parameters). As conjectured in Table 5.1 (and as proven in the Boolean
case), if we can reduce the number of inputs per gene, we may be able to derive a
reasonable network from a number of data points that only grows with the logarithm

of the number of genes.

7.4.1 Simplifying the model
Weight Decay

Weight decay is a simple technique to reduce unneeded connections in the network
by decaying their weights to zero. Intuitively, the hope is that, by putting a constant
downwards pressure on the weights, those that are unimportant for fitting the data
will decay down to zero, whereas those that are important will be maintained at a
higher level. Weight decay adds a penalty term equal to the sum of the squared

weights to the error function:
E=E+a) w; (7.13)
k

where « is the weight decay rate. The effect on the weight update rule is an extra

negative term proportional to the size of the weight:

OF'

Aw, = —nawk
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_9F
nawk

— oy, (7.14)

Interestingly, weight decay is equivalent to biasing the network with respect to a

Bayesian prior on the weights, where the prior distribution of weights is a zero-mean

Gaussian:
P(wy) = N(wg,p=0,0=s) (7.15)
1 v
= T2 7.16
Tost (7.16)
then
P(w) = [[N(we i = 0,0 = ) (7.17)

Whereas Maximum Likelihood finds the model that maximizes P(y|w), Bayesian
inference maximizes the more correct term P(w|y), i.e rather than finding the model
for which the observed data is most likely, it finds the model which is most likely
given the data (the maximum a posteriori or MAP model). The two are related by

Bayes’ rule:

_ PFw)P(w)

P(wly) = PG) (7.18)

If we assume all observed data sets y are equiprobable, we can ignore the term
in the denominator. To find the maximum, we again take the negative log of these

probabilities, and with Equations 7.10 and 7.17 we get:
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~log (P(w[9)) o B (wilt) — (1)) + a3 wf (7.19)

where Ep is the normal quadratic error term indicating the fit between the model
outputs and the measured data, Ey is a quadratic (weight decay) error term indi-
cating the fit between the model parameters and their expected distribution, and
a and [ are rate parameters indicating the balance between these two error terms.
Minimizing a quadratic error term plus weight decay is thus equivalent to finding
the MAP model under the assumption of Gaussian measurement noise and Gaussian

distributed weights.

Weight decay (also known as ridge regression in statistics) can also be interpreted
as a classic example of a reqularizer, an additional term added to the optimization
to make the system “better behaved” (e.g., smoother! or better conditioned). In
other words, adding the additional constraint of minimizing the sum of weights can
reduce an underdetermined model—with an infinite number of possible solutions—to
a well-determined one—corresponding to the single solution that optimizes both Ep
and Ey . It has been shown that a weight decay regularizer can result in significant

improvements in generalization [108, 137].

Weight Elimination

Other penalty terms besides the sum of squared weights can be used. Whereas weight
decay tends to shrink the large weights more than the small ones (often preferring

many small weights over a single large one), weight elimination [242] tends to work

Tn fact, the additional smoothness constraint imposed by the interpolation in Chapter 6
can likewise be interpreted as a regularizer.
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mainly on the small weights. This makes it more suitable to eliminate unneeded
connections.
wi

E'=E+~v) (7.21)
k

where v is the weight elimination rate, and wy is a weight threshold. For small weights
wy < wp, the weight elimination error term is quadratic, as in weight decay. For
large weights wy, > wq, the weight elimination error term is approximately 1.2 As for
weight decay, we can think of weight elimination as imposing a Bayesian prior on the
distribution of weights. As shown in [242], weight elimination corresponds to a prior
probability distribution over the weights which resembles a narrow Gaussian around
zero (indicating unneeded connections), superimposed on a much wider, uniform
distribution for the relevant weights. This is exactly the sort of distribution we
would expect for a noisy reconstruction of a sparsely connected network. Therefore,
we would expect weight elimination to perform better than weight decay for this

particular application.

[242] suggests choosing wq of order one for activation levels of order one, and
adaptively changing v based on the error E. Alternatively, if we want to train
towards a network with a desired number of parameters (e.g. on the order of the
amount of data available) we may want to update wy such that the specified fraction

of weights falls below wj.

Pruning algorithms

Weight decay and weight elimination do not actually reduce the total number of

connections. They simply allow certain weights to evolve towards zero, hopefully

20ne could therefore think of the weight elimination error term as counting the number
of large weights.
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indicating that the associated connections are superfluous. Pruning algorithms, on
the other hand, directly remove connections. The two best known ones are Optimal
Brain Damage [60], and Optimal Brain Surgeon [101]. Both compute a saliency
measure for weights in the network, as an estimate of how much the training error will
increase if the weight were to be removed. Connections with the smallest saliency can
then be deleted, after which the remaining weights are updated through retraining.

A variant of Optimal Brain Surgeon has been used to prune recurrent networks [178].

7.4.2 Early stopping

During training of a neural network on limited data, the network typically progresses
from being underfit, to adequately fit, to overfit. The overfit network may fit the
training data significantly better, but only at the expense of generalization, i.e. it will
perform significantly worse on new data. If we could stop training before overfitting
occurs, we would get a network which generalizes better to conditions it has not
been trained on, and therefore—hopefully—has a network structure which is a better

approximation of the regulatory network.

Early stopping is usually performed by splitting the available data in a training
and validation set, training only on the former, and stopping when the validation
error starts to increase (or training to convergence on the training data, and picking
the weights for which the validation error was minimal). The obvious drawback is
that splitting the data reduces the amount of data available for training even further.
In practice, this problem can be overcome—at the cost of additional computation—
using, e.g., cross-validation: repeatedly leaving out a small subset of the data and
training on the rest, averaging the generalization error over the left-out subsets.
Here, since we will be dealing primarily with synthetic data, we can simply assess

the performance based on comparison with the known goal.
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7.5 Experiments with synthetic data sets

In the linear model, we could derive the best fit model in a single step using a
little linear algebra. For the nonlinear model, we need to iteratively update the
network parameters, where each iteration of the neural network training algorithm
involves integrating differential equations forwards and back across the entire time
span. We can expect this to take several magnitudes more computation time (hours,
versus seconds for the linear model). In order to speed up experimentation, we start
out examining some small synthetic data sets, generated from a known, randomly
generated network. This also allows us to compare the performance using different
variants (e.g. weight decay versus weight elimination), because the “target” network

is known.

7.5.1 Generating synthetic data sets

For now, I have chosen to use networks with N = 20 nodes (“genes”) and K ~ 4
inputs per node. Since the computational complexity grows linear with the number of
weights (and thus quadratic with V), these smaller networks should train about ten
times as fast per time step and per iteration, compared to a network with N = 65.
Also, in order to focus on learning the connection weights of the network, I have

assumed unit production and decay rates (A4; = D; = 1).

The goal is to generate some small artificial networks with similar properties and
dynamical behavior as found in the real data sets, sample this dynamical behavior
at a similar time resolution as found in the real data, add a similar level of noise to
the measurements, and then try to reconstruct the original network from this limited
amount of coarsely sampled, noisy data. The following is the sequence of steps to be

taken to generate the synthetic networks and data:
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Generate a sparse, 21 X 20 connection matrix (the extra input dimension is
for a constant bias term). Each weight has a 80% chance of being set to zero, 20%
chance K = 4 of being drawn from a standard normal distribution. Such random
networks do not tend to show very interesting dynamics: most nodes very quickly
saturate at 0 or 1. In what follows we will call those weights that are nonzero in
the synthetic network “true weights”, and those that are zero “false weights”. Note
that, because of the Gaussian distribution of the nonzero weights, many of them will
actually be close to zero as well. Realistically, we can only hope to reconstruct those

nonzero weights which are within the tails of the distribution.

Reduce the sum of inputs to each node. As we saw in Chapter 6 (Sec-
tion 6.4.1), the results for the linear model show that sums of input weights (i.e.
>.;jwj;) are about three times smaller than expected, based on the distribution of
weights. I.e., positive and negative regulation seems carefully balanced to keep the
genes within their active range. We will likewise attempt to reduce the standard de-
viation of input sums to one third the expected level, by iteratively re-randomizing
the inputs to nodes with large input sums. (Because re-randomizing only the largest
input sum at each iteration would result in a truncated distribution, we actually add
a small amount of Gaussian noise® to the input sums before ranking them. This way,
each node has some weighted probability of being re-randomized, and the resulting
distribution of input sums is approximately Gaussian.) Re-randomizing approxi-
mately preserves the distribution of weights, although the networks tend to have
slightly fewer non-zero weights (typically around 70, rather than the expected 84).
Networks generated using this approach tend to have fixed points in which many
nodes settle to intermediate values, but the fixed point is still reached fairly quickly,

with little interesting dynamics.

3With standard deviation equal to the standard deviation of input sums we are aiming
for
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Scale the network weights to show interesting dynamics. The above expla-
nation assumed a standard normal distribution for the non-zero weights. If we scale
the weights up by a constant factor, more interesting dynamics emerge. When the
weights become too large, the nodes again start saturating at 0/1, or oscillations tend
to set in. Some experimentation showed that multiplying the weights by 5 (i.e. the
weights are drawn from a N (4 = 0,0 = 5) Gaussian distribution) yields a dynamical

behavior which subjectively resembles the real data sets.

Generate and sample time series. The networks were started at a random
initial state, and Equation 7.1 was simulated for 500 time steps at a time resolution
of At = 0.1 (typically sufficient to reach the fixed point). In the real CNS data
sets, the average change per gene between time points is approximately 16% of its
maximal expression level (i.e. an average change of 0.16 if all genes are normalized
to have a maximum of 1.0). The synthetic trajectories were then sub-sampled at a
similar rate, resulting in an average of 5-6 time points per time series before reaching

the fixed point.

Add noise similar to the real data. In order to get a fair comparison, we
should also assess the effect of noise in the input data on our ability to reconstruct
the network. We can use the triplicate standard deviations in the real CNS data
sets to derive a simple noise model, and then add similar amounts of noise to our
sampled synthetic data. As Figure 7.3(a) shows, the amount of noise is somewhat
correlated with the absolute expression level, but little further structure can be
identified because of the large spread in the raw expression levels. When we look at
normalized data (Figure 7.3(b)), the picture becomes much clearer: the noise level
is clearly correlated with the normalized expression level. The regression line drawn
in the figure is s = 0.0112 + 0.0832y, with y the normalized expression level and s

the corresponding (normalized) triplicate standard deviation. This is the model used
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to add noise to the synthetic data. The increasing spread in the observed triplicate
standard deviation can largely be explained by the fact that these standard deviations
are very rough estimates, based on a small sample. The spread of triplicate standard
deviations in the real data is only slightly larger than expected based on this simple
error model (i.e., the real data has slightly more measurements with higher and lower

than expected triplicate standard deviation).
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Figure 7.3: A simple noise model for the CNS data sets. (a) Raw expression levels
and standard deviation over the triplicate experiments vary over a wide range. Some
correlation can be observed, but it obscured by the uneven distribution of the data.
(b) After normalizing expression levels to a maximum of 1.0, the correlation is much
clearer, although the distribution is still heteroscedastic (i.e., the spread increases
with expression level).

7.5.2 Evaluating the networks

To compare different network models we need to have some measure of their perfor-
mance. Classically, one would look at the error term used to train the network to
rank them with respect to how well they match the data (ideally using a separate
test set to evaluate the generalization error. However, here the primary goal is not to

match the synthetic data, but to match the structure of the network that generated
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this data in the first place. In other words, given the weight matrix resulting from
training the neural network on the synthetic data, how “close” is this weight matrix
to the one from the original network. As we shall see, a number of performance
measures can be used, none of which stand out as being significantly better than the

rest.

Figure 7.4 shows two examples of trained network weights plotted against original
network weights. Clearly visible is the approximately 80% zero weights in the original
network, which are assigned nonzero values in the trained network, and thus are
smeared out on the vertical axis. Also visible in Figure 7.4(b) is the effect of weight
elimination, which likewise clusters a number of weights near the horizontal axis. The
true weights show significant correlation with their values in the trained network, and

several true weights with large values in the trained network can easily be identified.
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Figure 7.4: Original network weights versus trained network weights after 2000 it-
erations. (a) Without using weight decay or weight elimination. (b) With weight
decay rate o = 0.00005 and weight elimination rate v = 0.0005.
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Performance based on zero-nonzero classification

The first “bit” of information we are interested in, is which genes regulate which
other genes. In other words, can we distinguish the true weights (nonzero in original
network) from the false weights (zero in original network). We will try to divide
the weights of the trained network based on their size into “nonzero” and “zero” (or
“significant” and “insignificant”) classes, and then assess how many errors we have

made doing so.

As mentioned earlier for the linear model (Section 6.4.1), one simple way to
classify the weights is by fitting the weight distribution by a mixture of two Gaussians,
and identify the ones in the wider Gaussian as nonzero. F,;, is the fraction of true
weights among the weights identified as nonzero in this way. Note that the use of
weight elimination should make this mixture model more plausible, as it tries to

enforce such a mixture of Gaussians on the weight distribution.

Alternatively, if we have an estimate of the number N K of true nonzero weights,
we could simply take the top VK largest weights in the trained network and classify

these as nonzero. Fy,, is the fraction classified correctly using this approach.

Rather than taking the top n weights and calculating what fraction F' are true
weights, we can reverse the question: What number n of the largest weights should
we look at to have no more than a fraction P(= 1 — F) false positives (i.e. false
weights identified as nonzero in the trained network). In particular, we will look for

the value of n at which we see no more than P = 0.25 and P = 0.5 false weights

(N25 and N50).

In practice, as we will see in Section 7.5.3, nonzero classification based on a
mixture of Gaussians typically results in the largest nonzero class, and thus poorest
performance. Picking the top N K largest weights typically gives better performance,

and Ny, and N5 are progressively more restrictive in how many weights they accept

114



Chapter 7. Modeling gene networks with recurrent neural networks

as being significant.

Correlation-based performance measures

If we also want to assess the accuracy of the weights values given by the trained
network, we could examine, for example, the sum of squared errors between the
original network weights and the trained network weights. This is related to the
Pearson (linear) correlation between the two distributions. We will call this measure

R, (“p” for Pearson, “a” for all weights).

Pearson correlation assumes Gaussian distributions, and we know that at least
the weights in the original network are strongly non-Gaussian (in fact, the distribu-
tion consists of about 80% zeros, plus 20% Gaussian distributed weights). Similarly,
when using weight elimination, the resulting weight distribution of the trained net-
work will be strongly non-Gaussian. When dealing with non-Gaussian distributions,
rank correlation measures are preferred over linear correlation. R,, measures the

Spearman rank correlation over all weights.

Finally, we can identify two more-or-less independent components that determine
the performance of a given network. Firstly, do the true weights show significantly
greater magnitudes than the false weights in the trained network? Secondly, are the
weights derived for those true weights correlated with their real values? M, is a
measure for this first component, consisting of the ratio of the standard deviation of
the true weights over the standard deviation of the false weights (i.e. the standard
deviations of their values in the trained network). R, is a measure for the second

component, consisting of the Spearman rank correlation over the true weights only.
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7.5.3 Results

Five random networks were generated as described above, and three time series were
collected with a total of 18 time points (networks generating fewer or more than 18
time points in the first three time series sampled were rejected, to keep the results
comparable). Four of the networks had three time series with six points each, one
network had one series each of 5, 6 and 7 time points. To more clearly show the trends
in performance with various parameter settings, for each network, all the runs were
performed with the same random number. Also, the performance measures given

below are the average over all five network, unless otherwise noted.

Early stopping: We will first examine the effect of early stopping on the perfor-
mance measures defined in the previous section, using a mixture of weight elimination
and weight decay. Figure 7.5 clearly shows that measures reach a peak (or plateau)
at 1000-2000 iterations. For the remaining experiments, we will therefore only show

results at 2000 iterations.

Weight decay: Next, we can examine the effect of weight decay on the perfor-
mance. The weight decay parameter a was sampled logarithmically from o = 0.00001
to a = 0.001. The results are shown in Figure 7.6. The effect of weight decay is
rather minimal, and is only evident in the increase in number of weights we can
classify at P=0.25 and P=0.5 (Ngs, N5o). Although not obvious from these graphs,
weight decay does have a marked effect on the magnitude of all weights, reducing

them overall by about 50% for o = 0.001 compared to o = 0.

Weight elimination: The weight elimination parameters v was sampled loga-
rithmically from v = 0.0001 to v = 0.002. The results are shown in Figure 7.7.

Weight elimination performs markedly better than weight decay, improving most
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of our performance measures, presumably because it provides a better prior model
for the weight distribution of the original network. The threshold weight wq (see
Equation 7.21 was scaled automatically to match a mixture of Gaussians with 20%
of weights in the larger Gaussian. Note that because of this, F},;,—the performance
using a mixture of Gaussians to identify the “nonzero” weights—approaches Fi,,—

the performance when classifying only the VK largest weights as nonzero.

Combination of weight decay and weight elimination: Clearly, weight elim-
ination seems to outperform weight decay. However, in practice we may actually
want to use a mixture of both: weight elimination puts almost no constraints on
the size of weights much larger than wy, so we may want to constrain these with a
small amount of weight decay. Preliminary experiments indicated that the optimal
performance is found roughly in the neighborhood of o = 0.00005, v = 0.0005. We
therefore scanned a between 0.000005 and 0.001 for v = 0.0005, and scanned ~ be-
tween 0.0001 and 0.002 for @ = 0.00005. The results are shown in Figures 7.8 and
7.9. Again, the use of weight elimination leads to clear improvements in almost all

performance measures, whereas weight decay now seems almost entirely superfluous.

7.5.4 The next step: Calculating Z-scores for the weights

So far, the analysis of the results derived using the neural network approach consisted
only of identifying “true” weights based on the size of the weights in the trained
network. The results are promising, but still far from exciting, typically allowing us
to identify the ten or so highest weights as true weights with a significance of only
P=0.25 (i.e. Np5 ~ 10). The assumption that the magnitude of a weight reflects its
importance is known to perform rather badly in practice in neural networks (see, e.g.,
Bishop [32], p.360). In fact, if we had followed the same strategy for the linear model,

we would have achieved rather poor results as well. If we look back at Figure 6.5,
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we observe that most of the largest weights in the linear model turn out to have
large oy, i.e. they are poorly determined by the data. There, the solution was to
explicitly take o, into account when trying to decide which weights were real. In
order to improve on our results of the previous section, we should be able to do the

same for the nonlinear model.

We can derive the standard deviations (and, in fact, the covariances) of the
weights in the network by examining the Hessian, i.e. the matrix of second derivatives
of the error F with respect to the weights:

0’E
H., =
ol awkawl

(7.22)

(Note that the Hessian is of the size number of weights x number of weights, and

thus scales with the fourth power of the number of nodes in the network.)

Earlier (Section 7.4.1) we showed that training the network to convergence is
equivalent to finding the weight matrix wy;p that maximizes the posterior probability
P(w|y) of the weights given the measurement data y (see Equation 7.18). By Taylor-
expanding the log posterior probability around this optimum wyp with Aw = w —

wnmp, it can be shown (see MacKay [149]) that:
1
P(w[9) ~ P(wply) exp (—5Aw HAw) (7.23)

In other words, the posterior probability of the weights can be approximated near
its optimum as a Gaussian with covariance matrix H™!, the inverse of the Hessian
evaluated at wyp. The desired standard deviations of the weights are then given by
the square roots of the diagonal elements of the inverse of the Hessian. The Z-score

of a weights would then become:

(7.24)
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Note that this is directly related to the saliency of a weight, as derived by Hassibi
and Stork within the framework of the “Optimal Brain Surgeon” (OBS) pruning
technique [101]:
1wl 1

L,. = =72 7.25
¢ H,, 27w (7.25)

They arrived at this formula from an entirely different direction: the saliency
of a weight is a measure for how much the error E would change if we were to
prune away the corresponding weight wy, and optimally adjust the other weights
under the assumption of a locally quadratic error surface. Whereas OBS is primarily
interested in the weights with smallest saliency, and iteratively removes these to
prune the network, we would like to find the weights with highest saliency, because

these are the most robust ones.

Various approaches have been developed to calculate the Hessian (see Bishop [32]
for an overview). A simple approximation can be derived by observing that the
backpropagation algorithm already calculates the first derivatives of the error term.
We perturb each weight w; in turn by a small amount € and observe how the first
derivative OF /0wy, changes. To reduce residual errors to O(e?), we use a symmetrical

central difference formulation:

8wk8wl - 2_6

O°F ! ( oF (w;+€) — a—E(wl — 6)> +O(e?) (7.26)

8—wk 8wk

Unfortunately, the computed Hessian turns out to be very poorly conditioned,
with condition number of the order of 107%. Although it is not numerically impossible
to derive the inverse of the Hessian, and thus the variances of the weights, the results
are expected to be highly inaccurate. Remember that in the linear model we also
had to deal with a poorly conditioned system (Section 6.3), but there the condition

number was not quite as bad (around 10™*) and we were primarily interested in the
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larger entries (i.e. larger network parameters) of the result. Here, we are interested
in the smallest entries (on the diagonal), which are likely to contain a larger relative
error, and even worse: the inverse 1/[H™ ']z of these smallest entries. Not surpris-
ingly, the Z-scores calculated in this fashion showed very little relationship with the

true weights of the network.

Further experimentation along these lines is continuing. One of the factors ex-
acerbate the conditioning of the Hessian is the fact that the input variables are not
zero-mean, introducing a large constant component in all the weights leading to a
given node, giving the Hessian a block-diagonal appearance and possibly drowning
out some of the smaller true second derivatives. We can eliminate this block diago-
nal by subtracting the mean from all the inputs and training the network using this
data. In principle, this should only affect the bias weights b;, which now have to
compensate for the lack of a constant component in the other inputs. It may also
be possible to derive a better approximation for the inverse of the Hessian directly
(rather than estimating the Hessian first and inverting) using the technique used by
Hassibi and Stork for OBS [101]. Finally, as a last resort we could take the same
approach as we did for the linear model: generate new input data sets with small

amounts of noise added, and directly observe the variance in the weights.
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Figure 7.5: Effect of early stopping on performance, for number of iterations from
100 to 100,000 (note the logarithmic scale). Top left: fraction of true positives when
fitting weight distribution using a mixture of Gaussians (F,,;,) and fraction of true
positives within the top KN largest weights (Fi,,). Top right: number of weights
at P=0.25 and P=0.50 (N5, N5g). Bottom left: Spearman rank correlation of true
weights (Rs:), of all weights (Rs,); and linear Pearson correlation of all weights (R,,).
Bottom right: ratio of standard deviation of true weights versus all weights.
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Chapter 8

Conclusions

This is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.
— Winston Churchill, 10 November 1942

8.1 The story so far...

Rather than giving up on these network models because they are officially “under-
determined”, I have shown that they can indeed be applied to infer at least part of
the regulatory interactions between genes from large-scale gene expression data. The
first important result is a rather theoretical one: the estimates of data requirements
in Chapter 5 show that, as long as we impose sufficient constraints on the network
models, their data requirements might only scale logarithmically with the number
of variables (number of genes). This compares favorably with the data requirements

for clustering, although it is still perhaps an order of magnitude or more larger.

In practice, the lack of data compared with the number of parameters of the data

turned out to be much more of a stumbling block than I had originally anticipated.
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In retrospect, the underdetermined nature of the model should not have come as a
surprise, simply based on the dimensionality of the data, and the significant corre-
lations between the measurements. Nevertheless, I showed that it is indeed possible
to identify some portion of the significant weights in the model, using the knowledge
we have regarding the variability of the individual measurements. This points out
yet again how crucial it is to know the error behavior of the data one is working
with. A common trend towards the usage of replicate experiments may allow for

more widespread use of this technique.

The linear model used in Chapter 6 is an extreme simplification, and should be
regarded only as a first-order approximation. The tissues studied consist of multiple
functional regions, multiple layers within each region, and multiple cell types within
each layer, all of which can be expected to exhibit different expression patterns during
development and injury. Also, the number of variables used is only a small fraction of
the important variables that play a role in these tissues. Protein, neurotransmitter,
and neuropeptide levels are missing entirely. Nevertheless, we find we can isolate
several important known regulatory interactions. Other predictions generated by
the model seem quite plausible when compared with current knowledge, and form

useful new hypotheses that can guide further experimentation.

Finally, I showed that it is possible to move to a more realistic, nonlinear model,
even with limited amounts of data. Although this nonlinear model should in principle
be able to match the underlying regulatory network more closely, the actual fitting
of the network becomes more complex and expensive, requiring training a neural
network over thousands of iterations, where each iteration involves a forwards and
backwards numerical integration through time. Nevertheless, even looking only at
the magnitude of the weights we can identify approximately the top ten largest
weights (out of a total of 420 weights) as “true” weights, with a P-value of 0.25.

This does not sound like a great achievement, but as we saw in the linear model,
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significance levels of a weight are only poorly correlated with their magnitude. As
in the linear model, we should be able to achieve much better identification of the
true weights by also taking the variability of each weight into account. Experiments

along these lines are currently ongoing.

8.2 Directions for future research

8.2.1 Refinements of the linear model

Some further refinements could still be made to the linear model. For example, to
capture the change in developmental speed around birth, we could explicitly add an

additional input to the system for the “birth” event.

Rather than using the ordinary least squares solution, we could use a weighted
least squares. This would allow us to (1) weigh expression levels according to the
corresponding triplicate standard deviations on the measurements, (2) weigh inter-
polated time points based on the location within the interpolation interval (higher
weight close to the real data points), (3) give equal weight to all the intervals between
real data points (at the moment, their “weight” in the least squares solution is essen-
tially proportional to the length of the interval, giving much higher weight to the final
data points which are months apart). Note that the use of the Monte Carlo analysis
in Chapter 6 essentially already covers the first two points: measurement with a
larger triplicate standard deviation will get perturbed more, resulting in a smaller
contribution to the Z-score of the associated weights. Similarly, perturbations in the
real data points will probably cause larger perturbations in the interpolated time
points, particularly in those interpolated points farthest away from the real data

points.

Lastly, since the linear model essentially performs a multiple regression of all
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genes on all genes, perhaps we could exploit some of the techniques developed to
determine the significant inputs in multiple regression. Some of these are based on
adding additional penalty terms to the optimization to account for the number of
inputs, size of input weights, etc. At the extreme, this can reduce to a linear case of

the sort of network optimization techniques discussed in Chapter 7.

8.2.2 Refinements of the neural network model

We have really only scratched the surface of modeling genetic regulatory networks
using neural network models. Clearly, the work on identifying the “true” weights of
the network based on their Z-score will have to be further developed (this is work in

progress).

The introduction of dynamic Bayesian network methodology for gene expression
analysis is an especially promising development. The nonlinear neural network devel-
oped in Chapter 7 is essentially similar to a nonlinear dynamic Bayesian network, as
pointed out by Murphy and Mian [165]. Bayesian networks do not so much provide
a different model, but rather a new perspective from an area which has a very thor-
ough theoretical foundation, just as the neural network perspective provided us with

useful insights and efficient tools to tackle a set of nonlinear differential equations.

Beyond these issues, there a wide variety of possible elaborations on the basic

model that might be useful. Here are some of the more promising ones:

Fitting steady-state data using RBP

As already briefly mentioned in Section 7.3, we may also want to take advantage
of the large number of data sets that do not consist of time-series data, but rather

of individual measurements under different conditions, i.e. we would like to train
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the model to have certain fixed points. Recurrent Backpropagation (RBP), inde-
pendently developed by Pineda [181] and Almeida [12], provides us with an update
rule for the weights to minimize the difference between the measured expression level
92(t) and the fixed point of the model, y?(¢). Asin BPTT, it is trivial to add in extra
error terms, provided we can easily differentiate the total error E with respect to the

gene expression levels y;. Appendix D.3 gives the RBP learning rule for Equation 7.1.

If we want to integrate BPTT and RBP into a single modeling methodology, we
can simply treat fixed points as a special case of time series. One could either train
on a two-point time series, where §;(0) = §;(At) = 9. This approach is similar to
teacher forcing [249], and has the disadvantage that the achieved fixed point may
not necessarily be a stable one. Alternatively—and closer to how RBP works—we
could train on a two-point time series, where 4;(0) = 7;(T) = 9>, with T sufficiently

large that the system reaches its own (stable) fixed point 3? (assuming one exists).

Time delays

Another possibility is to add time delays between the output of one unit and its effect
on another. This could correspond to time delays incurred due to the transcription
and translation steps, possible transport of the generated protein through the cell,
or simply the effect of a series of intermediate steps that are not explicitly being

modeled as nodes in the network. The total input to each node then becomes
zit) = D wsiy;(t — 730), (8.1)
j

(See Pearlmutter [176] for a derivation of the corresponding learning rules for the
delays 7;;) For data such as the Gene Expression Matrix [245], where expression pat-
terns are measured days apart, the time resolution is too coarse to notice time delays

between individual genes. However, for data sets such as the yeast cell cycle [217],
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where the sampling rate is on the order of the response time of many genes, time
delays may be crucial to correctly model the observed behavior. Likewise, circadian
rhythms tend to involve long time delays, likely corresponding to regulatory proteins

slowly being transported into the nucleus.

Hidden nodes

Several genes may be regulated by the same intermediate regulator not included in
the data set (e.g. the end product of a long signalling cascade that combines several
different signals), resulting in a large number of similar connections to these genes.
It may be possible to simplify the model by adding an extra hidden node for this
intermediate regulator, trading off a larger number of nodes for a smaller number of
connections. (Hidden nodes can be trained using exactly the same learning rules as
mentioned above.) Section 6.4.4 provides an example of a situation where it might
be possible to infer a hidden node (although in this case, the addition of a hidden

node does not significantly decrease the complexity of the model).

Two-layer networks

As mentioned earlier, protein interactions play an important role within a cell. It may
be possible to include the effect of these interactions at the level of their influence
on gene regulation, but modeling them explicitly would provide a model that is
closer to the biological reality. The obvious extension would be a two-layer network,

corresponding to mRNA levels and protein levels.

This model is more complex than the one proposed before. However, separating
protein interactions from gene regulations may significantly cut down on the number
of inputs to each gene. If these protein interactions are essential to the correct

working of the system, they would have to be included as connections between units
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in the simple model anyway. Furthermore, the number of extra connections from
the mRNA layer to the protein layer is only on the order of the number of genes,
and the weights on these connections may be preset based on the known properties
of the mRNAs. Lastly, this kind of model would allow us to integrate both mRNA

expression data and protein level data very naturally.

8.2.3 Incorporating biological knowledge

A LITTLE KNOWLEDGE CAN GO A LONG WAY
— Jenny Holzer

Obviously, if we have any a priori knowledge about the system we are trying to
model, we should try to build that knowledge into the model. This may take the form
of hardwiring known parts of the model, or simply biasing the training algorithm to

generate a network that reflects the a priori knowledge.

Known or inferred protein interactions

Protein interactions can be inferred in a number of ways. There are some specialized
interaction assays for specific classes of proteins such as kinases of DNA binding
proteins. It is also possible to infer interaction based on similarity to other proteins
that are already known to interact, or even based on three dimensional configuration.
However, there is also a general protein interaction assay, the yeast 2-hybrid method
[74]. For example, Uetz et al. [232] recently used large-scale yeast 2-hybrid screens

to identify 957 putative interactions, involving 1004 yeast proteins.

Given reliable information on which proteins interact with which others, we would
be able to fix a large part of the structure of our recurrent network, instead of having

to starts out with a fully interconnected net. However, none of these techniques can
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capture all of the possible protein interactions. Once sufficient information of this
nature becomes available, we might be able to construct an a priori probability
distribution of the weights of the connections in the network, and then use the
deviation from this distribution as a penalty term in the total error (Equation 7.4)

to bias the training of the network.

Hints from theoretical biology

One of the goals of theoretical biology is to find general principles that are at work
in biological systems. We may be able to use some of these principles to guide us in

our search for a good model.

In particular, Michael Savageau has been examining principles of gene regulation.
On one hand, Savageau’s demand theory [194] relates to the mode of regulation
of single genes, stating that genes whose products are in high demand should be
positively regulated, and vice versa. On the other hand, his analysis of small coupled
gene circuits based on six “criteria for functional effectiveness” (stability, robustness,
decisiveness, efficiency, responsiveness and selectivity) gives an indication of what
circuit structures and parameter settings can be expected [109]. If correct, these
principles could be used to assess the biological plausibility of the final model. It is

as yet unclear how they could be used to guide the training of the recurrent network.

8.3 A look towards the future

As of this writing, we are still in the exponential phase of deployment of large-scale
gene expression measurement technologies. Frost & Sullivan [80] estimate approx-
imately a doubling in the number of arrays used for each of the next two years,

with a prediction of well over 1.5 million arrays used in 2003. Considering the
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nearly constant stream of new technologies, this may very well be an underesti-
mate. Miniaturization, automation and mass-production will likely reduces the cost
per gene expression experiment to a few dollars per chip. Once these technologies
start influencing our daily lives—probably primarily as diagnostic tools in a hospital

setting—there is no predicting how pervasive they will become.

As these genome-scale technologies mature, we can expect to see:

e More whole-genome measurements, rather than selected subsets of genes, in-
creasing the need for analysis tools that can deal with large amounts of super-

fluous variables.

e Higher accuracy, allowing better distinction between genes with similar expres-
sion patterns. At the moment, some people still view array data essentially as
qualitative data: useful as a first approach, but in need of validation by other
means if one actually wants to publish a result. With increasing accuracy,
automation, and understanding of the errors, large scale gene expression tech-
nology will likely become generally accepted as a quantitative measurement

tool.

e Possibly higher time resolution, as we get more experience with response times
of the very fastest genes. To observe the very fastest changing genes, we may
very well have to resort to lab-on-a-chip approaches to do the measurement in
situ, before the mRNA decays. For now, time resolutions on the order of a few
minutes are definitely feasible, and sufficient for the vast majority of mRNA

species.

e More data points, making the sorts of approaches presented here more effective.
As mentioned before, in order to infer the regulation of any gene, one has to

thoroughly exercise the different inputs to the gene. The recent trickle of very
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large data sets (such as Hughes et al. [118]: 300 separate measurements on

yeast, all calibrated) are likely only the beginning.

e More replicates, resulting in better error models and a better appreciation
of why and when genes show increased variability. Currently, replicates are
mainly used for averaging (thus reducing the error variance), and for assigning
significance levels to the amount of up- or down-regulation of a gene. However,
as I have illustrated in Chapter 6, they also provide a crucial tool to identify

well-determined regulatory interactions in the data.

Especially the advent of larger data sets and more data sets with replicates Should
make the modeling methodologies developed here more widely applicable. We can
also expect to see production of more large-scale non-mRNA data, bringing with
it an increased need for integration between disparate data types within the same
computational analysis, as well as integration with other information sources, such
as literature data bases, etc. The Bayesian approach to learning neural networks—
adding additional knowledge as priors on the resulting network—provides for a very

flexible tool to integrate these disparate types of data.

After the explosion of genomic-scale data, we are finally starting to see a smat-
tering of computational tools that can deal with this data. I hope the techniques I
have developed here will be a useful addition to this growing genomic biologist’s tool
chest. Much work yet remains to be done, and as the technologies and analysis tools

develop, we will likely identify other challenges.

As the saying goes: “in the land of the blind, the one-eyed man is King” large-
scale gene expression technology has given us an “eye” into the internal workings
of cells. It’s still only one eye, so we're only seeing half the picture. And it’s still
somewhat blurry, but we’re furiously developing lenses. But what a difference one

eye makes...
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My pen is at the bottom of a page,
Which, being finished, here the story ends;
"Tis to be wished it had been sooner done,
But stories somehow lengthen when begun.

— Byron
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Appendix A

Overview of clustering methods

I believe the day will come when the biologist will—without being a
mathematician—not hesitate to use mathematical analysis when he requires it.
— Karl Pearson, in Nature, 1901

This appendix appeared earlier as part of a review paper, written in collaboration
with Shoudan Liang and Roland Somogyi [64] (reprinted here by permission of Oxford
University Press). This particular section was co-written with Shoudan Liang. It
is up-to-date up to about the end of 1999. In the months since then, a number of
new clustering algorithms have been developed [100, 105, 106, 52, 111, 203, 140].
One has to wonder whether this plethora of clustering algorithms represents genuine
advances in the field, or rather whether it is illustrative of the ease with which one can
invent “yet another clustering algorithm”. One promising note is the increased use of
robust statistics, such as “jackknife correlation” [106], leave-one-out cross validation

(LOOCV) [29], etc.
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A.1 Distance measures and preprocessing

Most clustering algorithms take a matrix of pairwise distances between genes as in-
put. The choice of distance measure—used to quantify the difference in expression
profiles between two genes—may be as important as the choice of clustering algo-
rithm. Distance measures can be divided into at least three classes, emphasizing
different regularities present within the data: a) similarity according to positive cor-
relations, which may identify similar or identical regulation; b) similarity according
to positive and negative correlations, which may also help identify control processes
that antagonistically regulate downstream pathways; c) similarity according to mu-

tual information, which may detect even more complex relationships.

So far, most clustering studies in the gene expression literature use either Eu-
clidean distance or Pearson correlation between expression profiles as a distance
measure. Other measures used include Euclidean distance between expression pro-
files and slopes (for time series [245]), squared Pearson correlation [65], Euclidean
distance between pairwise correlations to all other genes [72], Spearman rank corre-

lation [65], and mutual information [65, 161, 45].

Conspicuously absent so far are distance measures that can deal with the large
numbers of highly related measurements in the data sets. For example, clustering
yeast genes based on all publicly available data will be highly biased towards the large
cell cycle data sets: 73 data points in 4 time series, containing almost 8 complete
cell cycles [217], whereas only a single data point may be present for various stress
conditions, mutations, etc. Correlation between the experiments will also lead to
highly elliptical clusters, which form a problem for clustering methods that are biased
towards compact, round clusters (such as K-means). A distance measure that can
deal with the covariance between experiments in a principled way (e.g. Mahalanobis

distance [151] may be more appropriate here. For even longer time series, distance
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measures based on Fourier or wavelet transforms may be considered.

A related issue is normalization and other preprocessing of the data. Distance
measures that are sensitive to scaling and/or offsets (such as Euclidean distance)
may require normalization of the data. Normalization can be done with respect to
the maximum expression level for each gene, with respect to both minimum and
maximum expression level or with respect to the mean and standard deviation of
each expression profile. From a statistical point of view, we recommend using the
latter, unless there is a good reason to preserve the mean expression values. When
using relative expression levels (for example, microarray data), the data will tend to
be log-normally distributed, so the logarithm of the relative expression values should
be used. Califano et al. [46] suggest using a nonlinear transformation into a uniform
distribution for each gene instead, which will tend to spread out the clusters more

effectively.

A.2 Clustering algorithms

All clustering algorithms assume the pre-existence of groupings of the objects to be
clustered. Random noise and other uncertainties have obscured these groupings. The
objectives of the clustering algorithm are to recover the original grouping among the

data.

Clustering algorithms can be divided into hierarchical and non-hierarchical meth-
ods. Non-hierarchical methods typically cluster N objects into K groups in an
iterative process until certain goodness criteria are optimized. Examples of non-
hierarchical methods include K-means, EM (expectation-maximization) and Auto-
class. Hierarchical methods return a hierarchy of nested clusters, where each cluster
typically consists of the union of two or more smaller clusters. The hierarchical meth-

ods can be further distinguished into agglomerative and divisive methods, depending
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on whether they start with single-object clusters and recursively merge them into
larger clusters, or start with the cluster containing all objects and recursively divide
it into smaller clusters. In this section, we review several clustering methods for gene

expression.

The K-means algorithm [150] can be used to partition N genes into K clusters,
where K is predetermined by the user (see e.g. Tavazoie et al. [228] for an application
to yeast gene expression). K initial cluster “centroids” are chosen—either by the
user, to reflect representative expression patterns, or at random—and each gene is
assigned to the cluster with the nearest centroid. Next, the centroid for each cluster
is recalculated as the average expression pattern of all genes belonging to the cluster,
and genes are reassigned to the closest centroid. Membership in the clusters and
cluster centroids are updated iteratively until no more changes occur, or the amount
of change falls below a pre-defined threshold. K-means clustering minimizes the sum
of the squared distance to the centroids, which tends to result in round clusters.
Different random initial seeds can be tried to assess the robustness of the clustering

results.

The Self-Organized Map (SOM) method [135] is closely related to K-means and
has been applied to mRNA expression data of yeast cell cycles as well as hematopoi-
etic differentiation of four well-studied model cell lines [225]. The method is more
structured than K-means in that the cluster centers are located on a grid. At each
iteration, a randomly selected gene expression pattern attracts the nearest cluster
center, plus some of its neighbors in the grid. Over time, fewer cluster centers are
updated at each iteration, until finally only the nearest cluster is drawn towards each
gene, placing the cluster centers in the center of gravity of the surrounding expres-
sion patterns. Drawbacks of this method are that the user has to specify a priori
the number of clusters (as for K-means), as well as the grid topology, including the

dimensions of the grid (typically one, two or three-dimensional) and the number of
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clusters in each dimension (e.g. 8 clusters could be mapped to a 2x4 2D grid or a
2x2x2 3D cube). The artificial grid structure makes it very easy to visualize the re-
sults, but may have residual effects on the final clustering. Optimization techniques
for selecting the number of clusters developed for K-means can presumably be used

here too.

The Expectation-Maximization (EM) algorithm [61] for fitting a mixture of Gaus-
sians (also known as Fuzzy K-Means [31] is very similar to K-means, and has been
used by Mjolsness et al. [162] to cluster yeast data. Rather than classifying each
gene into one specific cluster, we assign membership functions (typically Gaussians,
or any other parametric probability distribution) to each cluster, allowing each gene
to be part of several clusters. Asin K-means, we alternately update the membership
for each expression pattern, and then the parameters associated with each cluster:
centroid, covariance and mixture weight. Cluster boundaries are sharp and linear in

K-means, smooth and rounded in EM.

Autoclass [49] is also related to EM, in that it finds a mixture of probability
distributions. In addition, it uses Bayesian methods to derive the maximum posterior

probability classification, and the optimum number of clusters.

Wen et al. [245] used the FITCH hierarchical clustering algorithm [73] to group
the expression patterns of 112 genes in spinal cord development, producing a graph
similar to the phylogenetic trees familiar to most biologists [211]. The expression
clusters captured the main waves of gene expression in development. While the
algorithm used in this study minimizes the overall distance in the tree, the computa-
tional requirement grows with the fourth power of the number of elements, making

it impractical for much larger data sets.

Eisen et al. [70] applied a standard agglomerative hierarchical clustering algo-

rithm, average-linkage analysis, to large-scale gene expression data. Starting with N
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clusters containing a single gene each, at each step in the iteration the two closest
clusters are merged into a larger cluster. Distance between clusters is defined as the
distance between their average expression pattern. After N-1 steps, all the genes are
merged together into a hierarchical tree. Other hierarchical methods may calculate
distance between clusters differently. In UPGMA (unweighted pair-group method
using arithmetic averages [210] for example, the distance between two clusters is

defined as the average distance between genes in the two clusters.

Ben-Dor and Yakhini [30] have developed a clustering algorithm based on random
graph theory. Their method shares features with both agglomerative hierarchical
clustering and K-means. Clusters are constructed one at a time. The gene with
the largest “affinity” (smallest average distance to all other genes in the cluster) is
added to the cluster, if the affinity is larger than a cutoff. A gene can also be removed
from the cluster if its affinity drops below the cutoff. A finite number of clusters are
constructed depending on the cutoff. The ability to remove ill-fitting genes from the
cluster is an attractive feature of this algorithm. Zhu and Zhang [257] used a similar

algorithm to cluster yeast sporulation data.

Alon et al. [13] used a divisive hierarchical algorithm to cluster gene expression
data of colon cancer. The method relies on the maximum entropy principle and
attempts to find the most likely partition of data into clusters at a given “cost” (sum
of squared within-cluster distances). Starting from a single cluster with large cost, as
the allowed cost is lowered, the cluster breaks up spontaneously into multiple clusters
in order to maximize the entropy for the configuration, within the constraint of fixed

total cost.

Califano et al. [46] have developed a clustering algorithm to identify groups of
genes which can be used for phenotype classification of cell types, by searching for
clusters of microarray samples that are highly correlated over a subset of genes.

Only the most significant clusters are returned. The same technique could be used

143



Appendix A. Overview of clustering methods

to find clusters of genes that are highly coexpressed over a subset of their expression
profiles. Han et al. [97] used a similar, partial matching approach to group objects
into a hypergraph based on correlations over subsets of the data. In a hypergraph,
each hyperedge (corresponding to a single cluster) connects several nodes (genes), so
each node (gene) can be part of several hyperedges (clusters). Mjolsness et al. [163]
developed a hierarchical algorithm that places objects into a directed, acyclic graph,
where each cluster can be part of several parent clusters. The algorithm optimizes
the number of clusters, cluster positions and partial cluster memberships of objects,
such as to provide the most compact graph structure. All three clustering methods
allow genes to be part of several clusters, possibly coinciding with multiple regulatory
motifs or multiple functional classifications for each gene. This makes them especially
appropriate for eukaryotic gene expression where genes are controlled by complex

inputs from multiple transcription factors and enhancers.
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Fitting the linear model

First, we rewrite Equation 6.6 in matrix notation:

Ay(t) =Wy(t)+Kk(t)+Tr+B (B.1)

where Ay(t), 7(¢), K, T and B are now column vectors containing the corresponding
values of Ay;(t) = vi(t + At)—vyi(t), vi(t), K;, T; and b; for all 65 genes, and W is
a 65 X 65 matrix containing the parameters w;. To simplify, we can include the
parameters K, T and B as extra columns in the matrix W (which now becomes
a rectangular 65 x 68 matrix), provided we add x(t), 7, and a unit constant as

additional “inputs” to y(¢) in the right hand side.

Il
=
=i
==L
wefl

(B.2)

For convenience, we will call the augmented weight matrix W, and the augmented

input vector ¥(¢). Note that we have one such equation for each time interval in each
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of the interpolated time series. We can combine these into a single matrix equation:

AY o
WY B.
A7 (B.3)

where AY is a 65 x 52080 matrix, containing Ay(t) = y(t + At) —¥(¢) for all
52080 interpolated time intervals of each time series; and Y is a 68 x 52080 matrix,
containing ¥(t), x(t), 7, and a unit constant for all but the last time points of each

time series:

Y5 (295 (1) - yi(ns)-yi(nsl)  yP(2)-yr (1) - yi(na)-yi(nal)  F(2)-yF (1) - yF(ng)-yf(nitl)

AY =
Y 2y (1) -y (ns)-yi () 95 (2)-9% (1) -y (na)-yh (narl) vl 2=y (1) - vk (ni)-yk (1)
spinal cord hippocampus hippocampus
development development kainate injury
y (1) oo yi(ns=1) yr(1) - yr(na—1) yi(1) oo yh(me—1)
v | @ e yk(e=1) yR() ey m=1) k(1) - yr(ne—1) (B.4)
0 0 0 0 k(1) -+ Kk(ng—1)
0 0 1 1 1 1
1 1 1 1 1 - 1
w11 - WhN K Th b
W=| : .. SR (B.5)
wi,N *** WN,N Ky Tn by

where N is the number of genes (N = 65), ng, n, and n; are the number of inter-

polated time points in the spinal cord development, hippocampus development and
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hippocampus kainate injury time series, respectively (for convenience, the interpo-
lated time points are ordered from 1 to n in each time series), and y#(¢), y*(t) and
y¥(t) are the interpolated expression levels in those three time series. Note that the
kainate level x(t) (third row from the bottom in Equation B.4) is zero except for the
kainate injury time series, and that the tissue indicator variable 7 (second row from
the bottom in Equation B.4) is 0 for spinal cord and 1 for the two hippocampus time

series.

If Y were an invertible square matrix, we could solve for W exactly using W =
AY/ At-Y~!. Since Y is rectangular, and has more rows than columns, the system is
overdetermined and no exact solution for Equation B.3 is possible. However, we can

find the least squares solution W using the following formula (see, e.g., [220, 88]):

AY

WH="o
At

Y (YY) (B.6)

(Or, if Y is rank-deficient, we could use the pseudoinverse [220, 88] to find a unique
least squares solution). The resulting 65-by-68 matrix W gives us the least squares

fit for the parameters w;;, K;, T; and b; in Equation 6.6.
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Linear models based on

randomized data

C.1 Simultaneously matching slopes and expres-

sion levels

As mentioned in Section 6.4.5, we could match the distribution of expression level at
each time point in the real data sets by randomly permuting the expression values
within each time point. Unfortunately, this tends to drastically change the dis-
tribution of changes in expression levels, which we also want to match. We can

approximately match both distributions in the following way:

1. Initialize the randomized time series using a random permutation of the real,

normalized expression levels for each time point.

2. Starting at the first time interval, rank the slopes between the first two time

points. Rank the slopes for the first interval in the real data set. Assign the
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ranked “real” slopes to the ranked randomized slopes, i.e., the randomized time
series with highest slope will get assigned the highest slope in the real data set.

This will shift the expression levels for the second time point.

3. Rank the new expression levels for the second time point, and assign the ranked

expression levels to the correspondingly ranked randomized time series.

4. Alternatively match the ranked slopes for the next interval and match the
ranked expression levels for the following time point until the slopes and ex-
pression levels have been adjusted for the entire time series. Do the same to

get randomized versions of all three real data sets.

5. The randomized time series now have the exact same distribution of expression
levels for each time point as the real data, but the slopes are only a crude
approximation (because after we matched the slopes, we changed the expression
levels of the second time point of each time interval). However, if we iterate
steps 1-5 a number of times, both distributions will converge to be very close

to the real data.

C.2 Matching the covariance matrix

We have now achieved a randomized data set that matches both expression levels
and slopes of the real data. However, the new time series will typically be more
independent that what we find for the real genes. In the real model, it is often hard to
decide whether gene A should get a regulatory input from gene B or C, because B and
C are highly correlated. If we were to use a randomized data set with less correlation
among the variables, the model would be able to assign interaction parameters with
much greater certainty. In order to get a truly comparable randomized data set, we

also want to match the amount of correlation between the individual time series.
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Otherwise, any differences in performance between the real and randomized data
could be purely due to differences in amount of correlation, not differences in the

presence or absence of causal interactions.

If we think of each data point—i.e. set of measurements of all 65 genes—as a
point in a 65-dimensional space, then these 28 data points determine a 65-dimensional
(hyper-)ellipsoid. The standard deviation of each variable (gene) is related to the size
of the projection of this ellipsoid on the corresponding dimension. The covariance
between genes is then be a measure of how much this high-dimensional ellipsoid lies
along the diagonal of the corresponding dimensions. We want to achieve a random-
ized data set for which this ellipsoid (i.e. the covariance matrix of the variables) has

a similar size and similar amounts of “diagonality”.

The Singular Value Decomposition (SVD) [220, 88] of a set of zero-centered vari-
ables essentially provides us with a change of basis to the principal axes of the

ellipsoid mentioned above:

Y=U-S-V' (C.1)

If Y is a m xn matrix (in our case 28 data points by 65 genes), then U is an mxn
matrix containing the new set of (now orthogonal) variables, S is a diagonal n x n
matrix containing the singular values, essentially the sizes of the principal axes of the
ellipsoid, and V is an n x n matrix with the principle axes of the original ellipsoid.
The columns of U - S are also called the Principle Components of the data. The
singular values in S are the square roots of the eigenvalues of the covariance matrix

of the data, and V contains the corresponding eigenvectors.

Using subscript 'r’ for the real data set, and ’c¢’ for the control (randomized)
data set, if Y, stands for the zero-centered randomized time series (i.e. we subtract

the mean value of the expression level from each gene), then the following formula
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stretches the principle components of the randomized time series to the same size as
those of the real time series, and rotates them to lie along the principle axis of the

real data:
Y.« U,-S,- VI (C.2)

The result is a time series which resembles the original randomized data, but
which has a covariance matrix which is similar to that of the real data. We can
now integrate matching slopes, expression levels and covariances within a single

procedure:

1. Initialize the randomized time series using a random permutation of the real,

normalized expression levels for each time point.
2. Subtract the mean expression level from each time series.

3. Calculate the SVD of the zero-centered time series, and replace the singular

values with those of the real time series (Equation C.2).
4. Add back in the mean values we subtracted in step 2.

5. Starting at the first time interval, alternatively match slopes and expression

levels with the real data set.

6. Repeat steps 2-6 until convergence.

Within a reasonably small number of iterations, we arrive at a randomized data
set, which almost perfectly matches the real data set in terms of expression levels,
slopes between time points, and covariances between genes. Of course, after this elab-
orate matching of the randomized data to the real data, one might wonder whether

we haven’t just recreated the original data set. If so, we would expect to see high
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correlations between the randomized time series and some of the real genes. Some
correlation is to be expected, because the new time series follow the same overall
trends, by following the same distribution of expression levels at each time point as
the real data. Fortunately, it turns out the correlations between randomized and real
time series are significantly smaller! than the correlations within the real time series
or within the randomized time series, i.e. the new time series show more similarity

to each other than to the real genes, and vice versa.

1P < 0.05, based on 200 randomized time series
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Derivation of Backpropagation

Through Time

This appendix is an extension of the derivation for continuous-time Backpropaga-
tion Through Time (BPTT) by Pearlmutter [176], expanded based on clarifications
from [247], and with a few corrections. The notation is mostly identical to [176],
with the exception of the use of S(-) for the sigmoidal transfer function, £(-) in the
integral of the error term, and separate rate terms A; and D; for the production and

decay terms.

D.1 General derivation

Let us start with the general case. Given a set of differential equations of the form:

W= (6, T0) (0.)

where y; is the activation level of node 7, I are external inputs, and w is a set of

weights that determines how each particular node 7 combines the external inputs and
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activation levels to generate the slope f;(t).
Given also an error term E, which we need to minimize:

tn
E = E(y(t),t)dt (D.2)
t1
Typically, £ will be a measure of the distance between y(¢) and its desired value
¥(t), possible weighted by a function over ¢ to indicate when a good match is most
crucial. Our goal then will be to optimize the weights w of the system to minimize

the error term E. Typically, this involves calculating the derivative of E' with respect

to the weights w, and then doing a gradient descent on w to minimize FE.

If Equation D.1 is, for example, of a form:
dy;
E:S(Zwﬂy]) —yi + I; (D-3)
j

then it defines a continuous-time recurrent neural network (See Section D.2).! In
order to find the training rule to update the weights, we can “unroll” such a network
into time using a discrete time step At, generating a regular, feed-forward network
with as many layers as time steps in the discretized time span, and then take the
limit as At goes to zero. Variables discretized in time will will be indicated with a
tilde: y;, etc. Using Equation D.1, we then derive the following first order difference

equation:
Gi(t + At) = g;(t) + At fi(y(t), w, I(t)) (D.4)

We now introduce the ordered derivative [247, 248] of the error term E with

respect to a variable (J;, where the )y are ordered such that their values can be

L Although, as [247] points out, this approach is applicable to any dynamical system of
the form D.1.
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calculated in the order @i, Qo,...Q,, E. Whereas the regular partial derivative of
E with respect to @y refers to the instantaneous change in E due to a small change
in )y, the ordered derivative is the total propagated change due to all the vari-
ables Q1 ... Q, that directly depend on ();. The chain rule for ordered derivatives
(indicated by 07) is as follows:
OtE  OF OtE 0Q;
60, ~ QT 2 00, agi

(D.5)

For example, the ordered derivative of E' with respect to §;(¢) measures how much
a small change to y; at time ¢ affects £ when that error is propagated through time.

Since g;(t) directly affects g,(¢t + At), the chain rule results in:

... _O'E _ OE OtE  OF;(t+ At)
4(t) = oui(t) — 0u(b) T ; ag;(t+At) 9t (D-6)
_ Ate(t)+ Y5t + Ay 2T AD (D.7)

j agz (t)

where e;(t) is OE/0y;(t), i.e. the immediate effect of a change in 7;(¢) on E. Using
Equation D.4, we get:

Zi(t) = Ate;(t) + Z(t + At) + At Z Zi(t + At) - 05y (D). w, I(t)) (D.8)

7 0y;(t)

Note that the calculation of Z;(¢) depends on the later values of Z;(t + At). This

is where backpropagation derives its name from: the errors due to the differences
between the outputs of the nodes are propagated back through the network and
used to calculate how the weights should be updated to minimize the error. We can

rewrite this as a difference equation:

Lt + At) — Z(1)

. 0f;(y(®), w, 1(2))
At = —ei(t) — ;Zj(t + At) .

o7;(t)

(D.9)
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and taking the limit as At — 0:

dz; ofi(y,w,I
LS 05y, w,1) 2 (D.10)
dt

Let us now look at the effect of a small change in a particular weight w; on the
total error E. wy does not directly affect E, but it does directly affect (¢ + At) for

all discretized time points t. The ordered derivative of the error E' with respect to

the individual weights w; becomes:

OtE b 9YE 0;(t+ At)

- = . D.11
tn '
t1 awk

and taking the limit as At — 0:

23 o 9fi(y, w,1)

— = =t D.13

Dy /t T oy (D-13)

D.2 BPTT for gene networks

Rather than the standard form of a recurrent neural network used in [176], and listed
in Equation D.3, we will use the following form, which has separate rate constants
for the production and decay terms, and where an external inputs are treated similar

to outputs from other nodes?:

dy;
2Note that in Equation D.3, a similar effect can be obtained by having separate input
nodes, with all other input weight set to zero. For a fixed input I;, such nodes will converge
to an activation level of y; = I;.
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where—in our case—S(-) is a differentiable sigmoidal bounded between S(—o0) =

and S(+o0) = 1, and z;, the total input to node i, given by:
T =Y Wjiyj (D.15)
J

With this formulation, the difference equation for z; becomes:

Zi(t + At) — Z(1)
At

and taking the limit as At — 0:

% = DZ Z; — €; — ZAJ Wsj S'(x]-) Zj (D17)
J

Equation D.12 will give slightly different formulas for the different classes of
weights w;;, A; and D;:

0'E n . 3

w. D Z(t+ At)At A S'(2(2)) ilt) (D.18)
ij t

oOtE tn

9A. Dzt + At)AtS(7,(1)) (D.19)
i t1

OtE tn . ~

5h. = X A(t+ ANALE() (D.20)
1 tl

and their continuous equivalent, taking the limit as At — 0:

OF tn

Dw. = \ Aj Zj Sl($j) yzdt (D21)
i 1

OF tn

OF tn

aDZ = _/tl ijjdt (D23)
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To train the network, one integrates the system y forward in time from t = ¢
to t = t,, sets the boundary condition z;(t,) = 0,> and then integrates the sys-
tem z backwards in time using Equation D.17, at the same time integrating Equa-
tions D.21-D.23 to compute OF/Owy. Using these last quantities, one can then

perform the standard gradient descent on the weights of the network:

OF

—p— D.24
" s (D.24)

Awy, =

Note that this procedure treats the very first expression measurement of each
time series data set different from the others: §(¢;) is used to initialize the network
at time ¢t = t;, and these initial values get fed back through the network and drive
its behavior from ¢t = ¢; to t = ¢,,. The other measurements in the time series, at
the sampling times t, 3. . . t,, are used to determine the instantaneous errors e(t) in
the backwards propagation of the error (Equation D.17). In other words, we assume
the first measurement ¥ (¢;) is correct, and use it to initialize the network, but allow
an imperfect match with the other measurements (since the total error E usually

cannot be minimized to zero).

We can avoid this discrepancy by treating the initial values y(¢;) as additional
parameters of the network (one set for each time series), and optimize these to reduce

the total error E as well. We get:

OF
y;(t1)

(using the definition of z;(¢)). Note that z;(¢;) will include two terms: the backwards
integration of Equation D.17, corresponding to the propagated errors at subsequent

time points due to the initialization y(¢;); and e;(¢;), the instantaneous contribution

30r rather, z;(t, + At) = 0, because the outputs of the network just after the last
measurement do not contribute to the total error E.
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to the error due to a difference between the initialization y;(¢1) and the measured
value ¢;(t1). Just as for all other measurements ¥ (¢x), the network will have to trade
off these two terms and find a set of parameters that, for each sampling time #,
allows a good fit for the real data y(¢), without ruining the fit at subsequent time

points tgyq1 ... 1.

D.3 Recurrent Backpropagation

Recurrent Backpropagation (RBP) can be seen as a special case of Backpropagation
Through Time (BPTT), where the dynamic behavior to be learned is a fixed point.
One can imagine letting Equation D.1 relax to a fixed point, and then having the
error F consist of a single measurement of the distance between the achieved fixed
point y° and the desired fixed point $°. For Equation D.14, the fixed points are

solutions of:

)0 = % (a2) (D.26)

Pineda [181] and Almeida [12] independently showed that the error gradient with

respect to the weights w;; is given by:

OF

5wij

=—A;z S'(z)) yi (D.27)
where z; is a solution to:
Dizi=e;+ Y Ajw; S'(z;) 2 (D.28)
J
which can be found by relaxing the following equation to a fixed point:
dz;

— = Dizi e+ ) Ajw S'(x;) 7 (D.29)
J
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Note that the z; defined here is subtly different from the z; in Section D.2, as
is evidenced by the difference in sign between Equations D.29 and D.17, and Equa-
tions D.27 and D.21. In fact, the z; defined here is related to z;(t, — At) in Sec-
tion D.2, if we measure the distance from the desired fixed point $° at time ¢,,
and integrate Equation D.17 backwards in time for a single time step At. Here, we

integrate Equation D.27 forwards in time to find its fixed point.
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